
Stat 252 Winter 2007
Assignment #5 Solutions

1. Textbook

(8.40) (a) By definition, if 0 < y < θ, then

FY (y) =
∫ y

−∞
fY (u) du =

∫ y

0

2(θ − u)
θ2

du =
(2θu− u2)

θ2

∣∣∣∣y
0

=
(2θy − y2)

θ2
=

2y

θ
− y2

θ2
.

That is,

FY (y) =


0, y ≤ 0,
2y
θ − y2

θ2 , 0 < y < 1,

1, y ≥ θ.

(b) If U = Y/θ, then for 0 < u < 1,

FU (u) = P (U ≤ u) = P (Y ≤ uθ) =
2uθ

θ
− u2θ2

θ2
= 2u− u2.

Since the distribution of U does not depend on θ, this shows that U = Y/θ is a pivotal quantity.

(c) A 90% lower confidence limit for θ is therefore found by finding a such that P (U > a) = 0.10
for then we will have

P (U > a) = P

(
Y

θ
> a

)
= P

(
θ <

Y

a

)
= 0.10.

Solving

0.10 = P (U > a) =
∫ 1

a
fu(u) du =

∫ 1

a
(2− 2u) du = 1− 2a + a2

for a gives a = 1−
√

0.10 (use the quadratic formula and reject the root for which a > 1) so that

P

(
θ <

Y

1−
√

0.10

)
= 0.10 or, equivalently, P

(
θ ≥ Y

1−
√

0.10

)
= 0.90.

(8.41) (a) A 90% upper confidence limit for θ is found by finding b such that P (U < b) = 0.10
for then we will have

P (U < b) = P

(
Y

θ
< b

)
= P

(
θ >

Y

b

)
= 0.10.

Solving

0.10 = P (U < b) =
∫ b

0
fu(u) du =

∫ b

0
(2− 2u) du = 1− 2b + b2

for b gives b = 1−
√

0.90 (use the quadratic formula and reject the root for which b > 1) so that

P

(
θ >

Y

1−
√

0.90

)
= 0.10 or, equivalently, P

(
θ ≤ Y

1−
√

0.90

)
= 0.90.



(b) We know from (8.40) (c) that

P

(
θ <

Y

1−
√

0.10

)
= 0.10

and we know from (8.41) (a) that

P

(
θ >

Y

1−
√

0.90

)
= 0.10.

Therefore,

P

(
Y

1−
√

0.90
≤ θ ≤ Y

1−
√

0.10

)
= 0.80

so that [
Y

1−
√

0.90
,

Y

1−
√

0.10

]
is an 80% confidence interval for θ.

(8.6) Recall that a Poisson(λ) random variable has mean λ and variance λ. This was also done
in Stat 251.

(a) Since λ is the mean of a Poisson(λ) random variable, then a natural unbiased estimator for
λ is

λ̂ = Y .

(As you saw in problem (8.4), there is NO unique unbiased estimator, so many other answers
are possible.) It is a simple matter to compute that

E(λ̂) = E(Y ) = λ and Var(λ̂) =
λ

n
.

We will need these in (c).

(b) If C = 3Y + Y 2, then

E(C) = E(3Y ) + E(Y 2) = 3E(Y ) + (Var(Y ) + [E(Y )]2) = 3λ + (λ + λ2) = 4λ + λ2.

(c) This part is a little tricky. There is NO algorithm to solve it; instead you must THINK.
Since E(C) depends on the parameter λ, we do not know its actual value. Therefore, we can
estimate it. Suppose that θ = E(C). Then, a natural estimator of θ = 4λ + λ2 is

θ̂ = 4λ̂ + λ̂2,

where λ̂ = Y as in (a). However, if we compute E(λ̂) we find

E(θ̂) = E(4λ̂) + E(λ̂2) = 4E(λ̂) + (Var(λ̂) + [E(λ̂)]2) = 4λ +
λ

n
+ λ2.

This does not equal θ, so that θ̂ is NOT unbiased. However, a little thought shows that if we
define

θ̃ := 4λ̂ + λ̂2 − λ̂

n
= 4Y + Y

2 − Y

n
,

then E(θ̃) = 4λ̂ + λ̂2 so that θ̃ IS an unbiased estimator of θ = E(C).



(8.8) If Y is a Uniform(θ, θ + 1) random variable, then its density is

f(y) =

{
1, θ ≤ y ≤ θ + 1,

0, otherwise.

It is a simple matter to compute

E(Y ) =
2θ + 1

2
and Var(Y ) =

1
12

.

(a) Hence,

E(Y ) = E
(

Y1 + · · ·+ Yn

n

)
=

E(Y1) + · · ·+ E(Yn)
n

=
2θ+1

2 + · · ·+ 2θ+1
2

n
=

2nθ + n

2n
= θ +

1
2
.

We now find

B(Y ) = E(Y )− θ =
(

θ +
1
2

)
− θ =

1
2
.

(b) A little thought shows that our calculation in (a) immediately suggests a natural unbiased
estimator of θ, namely

θ̂ = Y − 1
2
.

(c) We first compute that

Var(Y ) = Var
(

Y1 + · · ·+ Yn

n

)
=

Var(Y1) + · · ·+ Var(Yn)
n2

=
1/12 + · · ·+ 1/12

n2
=

1
12n

.

As on page 367,
MSE(Y ) = Var(Y ) + [B(Y )]2

so that

MSE(Y ) =
1

12n
+

(
1
2

)2

=
3n + 1
12n

.

(8.9) (a) Let θ = Var(Y ), and θ̂ = n(Y/n)(1 − Y/n). To prove θ̂ is unbiased, we must show
that E(θ̂) 6= θ. Since

E(θ̂) = E(n(Y/n)(1− Y/n)) = E(Y )− 1
n

E(Y 2),

and since Y is Binomial(n, p) so that E(Y ) = np, E(Y 2) = Var(Y )+ [E(Y )]2 = np(1−p)+n2p2,
we conclude that

E(θ̂) = np− np(1− p) + n2p2

n
= (n− 1)p(1− p).

(b) As an unbiased estimator, use

n

n− 1
θ̂ = n

(
Y

n− 1

) (
1− Y

n

)
.

(8.34) Let θ = V (Y ) := Var(Y ). If Y is a geometric random variable, then

E(Y 2) = V (Y ) + [E(Y )]2 =
2
p2

− 1
p
.



Now a little thought shows that

E
(

Y 2

2
− Y

2

)
=

1
p2

− 1
2p

− 1
2p

=
1
p2

− 1
p

=
1− p

p2
= θ.

Thus, choose

V̂ (Y ) = θ̂ =
Y 2 − Y

2
.

If Y is used to estimate 1/p, then a two standard error bound on the error of estimation is given
by

2
√

V̂ (Y ) = 2
√

θ̂ = 2

√
Y 2 − Y

2
.

2. Textbook

(8.4) (a) Recall that if Y has the exponential density as given in the problem, then E(Y ) = θ.
In order to decide which estimators are unbiased, we simply compute E(θ̂i) for each i. Four of
these are easy:

E(θ̂1) = E(Y1) = θ;

E(θ̂2) = E
(

Y1 + Y2

2

)
=

E(Y1) + E(Y2)
2

=
θ + θ

2
= θ;

E(θ̂3) = E
(

Y1 + 2Y2

3

)
=

E(Y1) + 2E(Y2)
3

=
θ + 2θ

3
= θ;

E(θ̂5) = E(Y ) = E
(

Y1 + Y2 + Y3

3

)
=

E(Y1) + E(Y2) + E(Y3)
3

=
θ + θ + θ

3
= θ.

In order to compute E(θ̂4) = E(min{Y1, Y2, Y3}) we need to do a bit of work, namely

P (min{Y1, Y2, Y3} > t) = P (Y1 > t, Y2 > t, Y3 > t) = P (Y1 > t) · P (Y2 > t) · P (Y3 > t)

= [P (Y1 > t)]3

= e−3t/θ.

Thus, f(t) = (3/θ)e−3t/θ, t > 0, which, as you will notice, is the density of an Exp(θ/3) random
variable. Thus,

E(θ̂4) = E(min{Y1, Y2, Y3}) =
θ

3
.

Hence, θ̂1, θ̂2, θ̂3, and θ̂5 are unbiased, while θ̂4 is biased.

(b) To decide which has the smallest variance, we simply compute. Recall that an Exp(θ)
random variable has variance θ2. Thus,

Var(θ̂1) = Var(Y1) = θ2;

Var(θ̂2) = Var
(

Y1 + Y2

2

)
=

Var(Y1) + Var(Y2)
4

=
θ2 + θ2

4
=

θ2

2
;

Var(θ̂3) = Var
(

Y1 + 2Y2

3

)
=

Var(Y1) + 4 Var(Y2)
9

=
θ2 + 4θ2

9
=

5θ2

9
;

Var(θ̂5) = Var(Y ) = Var
(

Y1 + Y2 + Y3

3

)
=

Var(Y1) + Var(Y2) + Var(Y3)
9

=
θ2 + θ2 + θ2

9
=

θ2

3
;



and so θ̂5 has the smallest variance. In fact, we will show later that it is the minimum variance
unbiased estimator. That is, no other unbiased estimator of the mean will have smaller variance
than Y .

(9.7) If MSE(θ̂1) = θ2, then Var(θ̂1) = MSE(θ̂1) = θ2 since θ̂1 is unbiased. If θ̂2 = Y , then since
the Yi are exponential, we conclude E(Y ) = θ and Var(Y ) = θ2/n. Thus,

Eff(θ̂1, θ̂2) =
Var(θ̂2)

Var(θ̂1)
=

1
n

.

3. If Y1, . . . , Yn are i.i.d. Uniform(0, θ), and X := max{Y1, . . . , Yn}, then

P (X ≤ x) = P (Y1 ≤ x) · · ·P (Yn ≤ x) =
xn

θn
, 0 ≤ x ≤ θ.

It therefore follows that the density of X is

fX(x) =
nxn−1

θn
, 0 ≤ x ≤ θ.

Hence,

E(X) =
∫ θ

0
x · nxn−1

θn
dx =

n

θn
· θn+1

n + 1
=

nθ

n + 1
,

and so if θ̂3 = (n+1)
n max{Y1, . . . , Yn} = (n+1)

n X, we find

E(θ̂3) =
(n + 1)E(X)

n
= θ

so that θ̂3 is an unbiased estimator of θ. Furthermore,

E(X2) =
∫ θ

0
x2 · nxn−1

θn
dx =

n

θn
· θn+2

n + 2
=

nθ2

n + 2

so that

Var(X) = E(X2)− [E(X)]2 =
nθ2

n + 2
− n2θ2

(n + 1)2

and

Var(θ̂3) =
(n + 1)2

n2
Var(X) =

(
(n + 1)2

n2
· n

n + 2
− 1

)
θ2 =

θ2

n(n + 2)
.

We now find

Eff(θ̂1, θ̂3) =
Var(θ̂3)

Var(θ̂1)
=

θ2

n(n+2)

θ2

3n

=
3

n + 2
< 1

provided n > 1. Since Eff(θ̂1, θ̂3) < 1, we conclude that Var(θ̂3) < Var(θ̂1) so that in this
example θ̂3 := (n+1)

n max{Y1, . . . , Yn} is preferred to θ̂1 := 2Y .

4. Since
log f(y|θ) = 2 log(θ)− θ2y,

we find
∂2

∂θ2
log f(y|θ) =

−2
θ2

− 2y.



Thus,

I(θ) = −E
(

∂2

∂θ2
log f(Y |θ)

)
=

2
θ2

+ 2E(Y ) =
4
θ2

since E(Y ) = θ−2. (This is because Y ∼ Exp(θ−2).)

5. Standard Normal Handout

(1.) Observe that

1− Φ(z) =
∫ ∞

−∞

1√
2π

e−
x2

2 dx−
∫ z

−∞

1√
2π

e−
x2

2 dx =
∫ ∞

z

1√
2π

e−
x2

2 dx.

Let u = −x so that du = −dx and∫ ∞

z

1√
2π

e−
x2

2 dx = −
∫ −∞

−z

1√
2π

e−
u2

2 du =
∫ −z

−∞

1√
2π

e−
u2

2 du = Φ(−z).

That is, 1− Φ(z) = Φ(−z) as required.

(2.) If X ∼ N (µ, σ2), then

FX(x) =
∫ x

−∞

1
σ
√

2π
e−

(u−µ)2

2σ2 du.

Let z = u−µ
σ so that σ dz = du and∫ x

−∞

1
σ
√

2π
e−

(u−µ)2

2σ2 du =
∫ x−µ

σ

−∞

1√
2π

e−
z2

2 dz = Φ
(

x− µ

σ

)
as required.

(3.) Consider

erf(z) =
2√
π

∫ z

0
e−x2

dx

and let u =
√

2 x so that du =
√

2 dx and

erf(z) =
√

2√
π

∫ √
2 z

0
e−

u2

2 du = 2 · 1√
2π

∫ √
2 z

0
e−

u2

2 du. (†)

However,

1√
2π

∫ √
2 z

0
e−

u2

2 du =
1√
2π

∫ √
2 z

−∞
e−

u2

2 du− 1√
2π

∫ 0

−∞
e−

u2

2 du =
1√
2π

∫ √
2 z

−∞
e−

u2

2 du− 1
2

= Φ(
√

2 z)− 1
2

so that (†) implies
erf(z) = 2 Φ(

√
2 z)− 1

as required.



(5.) By definition,

E( (aebZ −K)+ ) =
∫ ∞

−∞
(aebz −K)+φ(z) dz.

Observe, however, that (aebz −K)+ := max{aebz −K, 0} which implies that the integral above
is non-zero provided that aebz −K ≥ 0 or z ≥ 1

b log(K/a). Therefore,∫ ∞

−∞
(aebz −K)+φ(z) dz =

∫ ∞

1
b

log(K/a)
(aebz −K)φ(z) dz

= a

∫ ∞

1
b

log(K/a)
ebzφ(z) dz −K

∫ ∞

1
b

log(K/a)
φ(z) dz.

We now consider separately these last two integrals. We first find∫ ∞

1
b

log(K/a)
ebzφ(z) dz =

1√
2π

∫ ∞

1
b

log(K/a)
ebze−

z2

2 dz

and so completing the square gives

1√
2π

∫ ∞

1
b

log(K/a)
ebze−

z2

2 dz =
eb2/2

√
2π

∫ ∞

1
b

log(K/a)
exp

{
−(z − b)2

2

}
dz.

Letting u = z − b so that du = dz we find

eb2/2

√
2π

∫ ∞

1
b

log(K/a)
exp

{
−(z − b)2

2

}
dz =

eb2/2

√
2π

∫ ∞

1
b

log(K/a)−b
e−

u2

2 dz = eb2/2 Φ
(

b +
1
b

log
a

K

)
.

Next we find

K

∫ ∞

1
b

log(K/a)
φ(z) dz = K

[
1− Φ

(
1
b

log(K/a)
)]

= KΦ
(
−1

b
log(K/a)

)
= KΦ

(
1
b

log
a

K

)
.

Combining everything we conclude that

E( (aebZ −K)+ ) = aeb2/2 Φ
(

b +
1
b

log
a

K

)
−KΦ

(
1
b

log
a

K

)
.

6. Incomplete Gamma Function Handout

(1.) By definition,

Γ(a; y) :=
∫ y

0
xa−1 e−x dx.

If u = xa−1 and dv = e−x dx so that du = (a − 1)xa−2 dx and v = −e−x, then integration by
parts gives∫ y

0
xa−1 e−x dx = −xa−1e−x

∣∣∣∣y
0

+ (a− 1)
∫ y

0
xa−2e−x dx = −ya−1e−y + (a− 1)

∫ y

0
xa−2e−x dx.

That is,
Γ(a; y) = −ya−1e−y + (a− 1)Γ(a− 1; y)



as required.

Since Γ(a; y) = (a− 1)Γ(a− 1; y)− e−yya−1 we can solve for Γ(a− 1; y) to conclude

Γ(a− 1; y) =
1

a− 1
[
Γ(a; y) + e−yya−1

]
.

Replacing a− 1 by a gives

Γ(a; y) =
1
a

[
Γ(a + 1; y) + e−yya

]
as required.

(2.) By definition,

G(a; y) :=
∫ ∞

y
xa−1 e−x dx,

and so we have
Γ(a; y) + G(a; y) = Γ(a).

Since Γ(a; y) = (a− 1)Γ(a− 1; y)− e−yya−1 we conclude that

Γ(a)−G(a; y) = (a− 1)[Γ(a− 1)−G(a− 1; y)]− e−yya−1

and so

G(a; y) = Γ(a)− (a− 1)Γ(a− 1) + (a− 1)G(a− 1; y) + e−yya−1

= (a− 1)G(a− 1; y) + e−yya−1

using the fact that (a− 1)Γ(a− 1) = Γ(a).

Solving G(a; y) = (a− 1)G(a− 1; y) + e−yya−1 for G(a− 1; y) we conclude

G(a− 1; y) =
1

a− 1
[
G(a; y)− e−yya−1

]
.

Replacing a− 1 by a gives

G(a; y) =
1
a

[
G(a + 1; y)− e−yya

]
as required.


