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2. Textbook

(8.30) If λ̂ = Y , then E(λ̂) = E(Y ) = λ so that Y is an unbiased estimator of λ. Since the
standard error of λ̂ is

σλ̂ =
√

Var(Y ) =

√
λ

n
,

a natural guess for the estimated standard error is

σ̂λ̂ =

√
λ̂

n
.

(8.36) (a) If Z ∼ N (0, 1), then using Table 4 gives

P (−1.96 ≤ Z ≤ 1.96) ≈ 0.95.

That is, the normal distribution with mean 0 and variance 1 is a parameter-free distribution.
Thus, if Y ∼ N (µ, 1), then

Y − µ

1
∼ N (0, 1).

Substituting for Z gives
P (−1.96 ≤ Y − µ ≤ 1.96) ≈ 0.95

so that solving for µ in the probability statement gives

P (Y − 1.96 ≤ µ ≤ Y + 1.96) ≈ 0.95.

In other words, a 95% confidence interval for µ is

[Y − 1.96, Y + 1.96].

(b) To find a 95% upper confidence limit for a normal distribution means to find zα such that
if Z ∼ N (0, 1), then

P (Z ≤ zα) = 0.95.

Using Table 4, we find that zα ≈ 1.645. Similar to (a), we find that

P (Y − µ ≤ 1.645) ≈ 0.95

so that solving for µ in the probability statement gives

P (µ ≥ Y − 1.645) ≈ 0.95.

In other words, Y − 1.645 is a 95% lower confidence limit for µ. You should notice that because
Y − µ ∼ N (0, 1), the inequality switched.

(c) To find a 95% lower confidence limit for a normal distribution means to find zα such that if
Z ∼ N (0, 1), then

P (Z ≥ zα) = 0.95.



Again using Table 4, we find that zα ≈ −1.645. Similar to (a), we find that

P (Y − µ ≥ −1.645) ≈ 0.95

so that solving for µ in the probability statement gives

P (µ ≤ Y + 1.645) ≈ 0.95.

In other words, Y +1.645 is a 95% upper confidence limit for µ. You should notice that because
Y − µ ∼ N (0, 1), the inequality switched.

(Remark: Technically, the answers to (b) and (c) should be switched, but because I am most
concerned that you intuitively understand what is going on, that is a minor concern.)

(8.37) (a) If X ∼ χ2(1), then using Table 6 gives

P (0.0009821 ≤ X ≤ 5.02389) ≈ 0.95.

Since the pivotal quantity Y 2/σ2 has a χ2(1) distribution, substituting in for X in the probability
statement gives

P

(
0.0009821 ≤ Y 2

σ2
≤ 5.02389

)
≈ 0.95

so that

P

(
Y 2

5.02389
≤ σ2 ≤ Y 2

0.0009821

)
≈ 0.95.

In other words, a 95% confidence interval for σ2 is[
Y 2

5.02389
,

Y 2

0.0009821

]
.

(b) To find a 95% upper confidence limit for a chi-squared distribution with df = 1 means to
find χ2

α,1 such that if X ∼ χ2(1), then

P (X ≤ χ2
α,1) = 0.95.

Using Table 6 gives χ2
α,1 ≈ 3.84146 so that

P (X ≤ 3.84146) ≈ 0.95.

Substituting in for X and solving for σ2 in the probability statement gives

P

(
σ2 ≥ Y 2

3.84146

)
= 0.95.

In other words, Y 2/3.84146 is a 95% lower confidence limit for σ2. You should notice that
because Y 2/σ2 ∼ χ2(1), the inequality switched.

(c) To find a 95% lower confidence limit for a chi-squared distribution with df = 1 means to
find χ2

α,1 such that if X ∼ χ2(1), then

P (X ≥ χ2
α,1) = 0.95.



Using Table 6 gives χ2
α,1 ≈ 0.0039321 so that

P (X ≥ 0.0039321) ≈ 0.95.

Substituting in for X and solving for σ2 in the probability statement gives

P

(
σ2 ≤ Y 2

0.0039321

)
≈ 0.95.

In other words, Y 2/0.0039321 is a 95% upper confidence limit for σ2. You should notice that
because Y 2/σ2 ∼ χ2(1), the inequality switched.

(Remark: Technically, the answers to (b) and (c) should be switched, but because I am most
concerned that you intuitively understand what is going on, that is a minor concern.)

(8.38) (a) From (8.37), we find that

P

(
Y 2

5.02389
≤ σ2 ≤ Y 2

0.0009821

)
≈ 0.95.

Since the square root function is monotonic, we can conclude

P

(√
Y 2

5.02389
≤
√

σ2 ≤
√

Y 2

0.0009821

)
≈ 0.95.

Since Y is a non-negative random variable, and since σ > 0, we conclude

P

(
Y√

5.02389
≤ σ ≤ Y√

0.0009821

)
≈ 0.95,

or, in other words, a 95% confidence interval for σ is[
Y√

5.02389
,

Y√
0.0009821

]
.

(b) Similarly, Y/
√

0.0039321 is a 95% upper confidence limit for σ.

(c) Similarly, Y/
√

3.84146 is a 95% lower confidence limit for σ.

(8.25) (a) Let p1 denote the proportion of Americans who ate the recommended amount of
fibrous foods in 1983, and let p2 denote the proportion who ate the recommended amount in
1992. The data then yield p̂1 = 0.59 and p̂2 = 0.53. The estimated standard errors are easily
calculated as:

σ̂p̂1 =

√
p̂1(1− p̂1)

n
=

√
0.59 · 0.41

1250
and σ̂p̂2 =

√
p̂2(1− p̂2)

n
=

√
0.53 · 0.47

1251
.

Thus, a point estimate for the difference is given by p̂1− p̂2 = 0.59− 0.53 = 0.06. This indicates
that there was a 6% decrease in the proportion of Americans who were eating the recommended
amount of fibrous foods in 1993 compared with 1982. A bound on the error of estimation is

2
√

σ̂2
p̂1

+ σ̂2
p̂2
≈ 0.04.



(b) Note that the answer in (a) yields an approximate 95% confidence interval of

0.06± 0.04 = [0.02, 0.10].

Since this interval does not cover 0, there is statistically significant evidence to indicate that
there has been a demonstrable decrease in the proportion of Americans who ate the recom-
mended amount of fibrous foods in 1993 compared with 1982.

(8.50) (a) This problem is similar to (8.25). Using the answers to (8.25), and the fact that
t0.01,1250 = 2.3293, we conclude that an approximate 98% confidence interval for the difference
is

p̂1 − p̂2 ± 2.3293
√

σ̂2
p̂1

+ σ̂2
p̂2

or 0.06± 0.046.

(b) As before, since this interval does not cover 0, there is statistically significant evidence to
indicate that there has been a demonstrable decrease in the proportion of Americans who ate
the recommended amount of fibrous foods in 1993 compared with 1982.

3. Textbook

(8.10) (a) If θ̂ = max{Y1, . . . , Yn}, then its distribution function is

F (t) = θ−nα tnα, 0 ≤ t ≤ θ

so that
f(t) = n α θ−nα tnα−1, 0 ≤ t ≤ θ.

We easily calculate that

E(θ̂) =
∫ θ

0
n α θ−nα tnα dt =

n α θ−nα θnα+1

nα + 1
=

n α

n α + 1
θ.

Thus, we conclude θ̂ is a biased estimator of θ.

(b) Clearly, the estimator

n α + 1
n α

θ̂ =
n α + 1

n α
max{Y1, . . . , Yn}

is an unbiased estimator of θ.

(c) In order to calculate MSE(θ̂) we must find Var(θ̂). We find

E(θ̂2) =
∫ θ

0
n α θ−nα tnα+1 dt =

n α θ−nα θnα+2

nα + 2
=

n α

n α + 2
θ2.

Thus,

Var(θ̂) = E(θ̂2)− [E(θ̂)]2 =
n α

n α + 2
θ2 −

[
n α

n α + 1
θ

]2

=
nα

(nα + 1)2(nα + 2)
θ2.

Finally,

MSE(θ̂) = Var(θ̂) + [B(θ̂)]2 =
[

nα

(nα + 1)2(nα + 2)
+

1
(nα + 1)2

]
θ2 =

2θ2

(nα + 1)(nα + 2)
.



(8.15) If Y(1) = min{Y1, . . . , Yn}, then its distribution function is

F (t) = 1− e−tn/θ, t > 0

so that
f(t) =

n

θ
e−tn/θ, t > 0.

We easily calculate (use integration by parts) that

E(Y(1)) =
∫ ∞

0

n

θ
te−tn/θdt =

θ

n

so that if θ̂ = nY(1), then E(θ̂) = nE(Y(1)) = θ so that θ̂ is an unbiased estimator of θ.

In order to calculate MSE(θ̂) we must find Var(θ̂). Notice, however, that Y(1) is an exponential
random variable with parameter θ/n. Thus,

Var(θ̂) = Var(nY(1)) = n2 Var(Y(1)) = n2 θ2

n2
= θ2.

This gives
MSE(θ̂) = Var(θ̂) + [B(θ̂)]2 = θ2 + 0 = θ2.

(8.32) If θ̂ = Y , then E(θ̂) = E(Y ) = θ so that Y is an unbiased estimator of θ. The standard
error of θ̂ is

σθ̂ =
√

Var(Y ) =
θ√
n

.

Thus, if the estimated standard error is

σ̂θ̂ =
θ̂√
n

,

then

E(σ̂θ̂) =
E(θ̂)√

n
=

θ√
n

= σθ̂

so that σ̂θ̂ is an unbiased estimator of the standard error.

(8.43) From the data presented, we find that n = 2374 adults in the continental US were
interviewed, of which 1912 were registered voters. Thus, if p denotes the true proportion of
registered voters in the continental US, then from this we conclude

p̂ =
1912
2374

.

Thus, an approximate 99% confidence interval for p is given by

p̂± t0.005,2373

√
p̂(1− p̂)

n
or

1912
2374

± 2.5779 ·
√

1912/2374 · 462/2374
2374

.

In other words, at the 99% confidence level, the proportion of adults in the continental US
registered to vote is between 0.7844 and 0.8263.



4. We begin by finding the distribution of θ̂, namely

P (θ̂ ≤ t) = P (Y1 ≤ t) · · ·P (Yn ≤ t) =
tn

θn
, 0 ≤ t ≤ θ.

It therefore follows that the density of θ̂ is

fθ̂(t) =
ntn−1

θn
, 0 ≤ t ≤ θ.

We must now find a pivotal quantity. Let

U =
θ̂

θ

so that
P (U ≤ u) = P (θ̂ ≤ θu) = un, 0 ≤ u ≤ 1

from which we conclude
fU (u) = nun−1, 0 ≤ u ≤ 1.

We now find a and b such that∫ b

a
fU (u) du = 0.90,

∫ a

0
fU (u) du =

∫ 1

b
fU (u) du = 0.05.

That is, ∫ a

0
nun−1 du = 0.05

implies an = 0.05 and so a = n
√

0.05. Furthermore,∫ 1

b
nun−1 du = 0.05

implies 1− bn = 0.05 and so b = n
√

0.95. We then conclude that

P
(

n
√

0.05 ≤ U ≤ n
√

0.95
)

= 0.90

and so substituting U = θ̂/θ gives

P

(
θ̂

n
√

0.05
≤ θ ≤ θ̂

n
√

0.95

)
= 0.90.

The required 90% confidence interval for θ is therefore[
θ̂

n
√

0.05
,

θ̂
n
√

0.95

]
.

5. Let U = Y/θ so that for 0 ≤ u ≤ 1,

P (U ≤ u) = P (Y ≤ θu) =
∫ θu

0
2θ−2y dy =

y2

θ2

∣∣∣∣θu

0

= u2.



The density function of U is therefore fU (u) = 2u for 0 ≤ u ≤ 1. Thus, we must find a and b so
that ∫ a

0
2u du =

α

2
and

∫ 1

b
2u du =

α

2
.

Computing the integrals we find a2 = α/2 and 1− b2 = α/2. Hence,

1− α = P (a ≤ U ≤ b) = P

(√
α/2 ≤ Y

θ
≤
√

1− α/2
)

= P

(
Y√

1− α/2
≤ θ ≤ Y√

α/2

)
.

In other words, [
Y√

1− α/2
,

Y√
α/2

]
is a confidence interval for θ with coverage probability 1− α.

6. Let U = θ2Y so that for u > 0,

P (U ≤ u) = P (Y ≤ θ−2u) =
∫ θ−2u

0
θ2e−θ2y dy = 1− e−u.

Thus, we must find a and b so that∫ a

0
e−u du = α1 and

∫ ∞
b

e−u du = α2.

Computing the integrals we find a = − log(1− α1) and b = − log(α2). Hence,

1− (α1 + α2) = P (a ≤ U ≤ b) = P (− log(1− α1) ≤ θ2Y ≤ − log(α2))

= P

(
− log(1− α1)

Y
≤ θ2 ≤ − log(α2)

Y

)
= P

(√
− log(1− α1)

Y
≤ θ ≤

√
− log(α2)

Y

)
.

In other words, [√
− log(1− α1)

Y
,

√
− log(α2)

Y

]
is a confidence interval for θ with coverage probability 1− (α1 + α2).

7. Let U = Y − θ so that for −∞ < u < ∞,

P (U ≤ u) = P (Y ≤ θ + u) =
∫ θ+u

−∞

e(y−θ)[
1 + e(y−θ)

]2 dy = − 1
1 + e(y−θ)

∣∣∣∣θ+u

−∞
= 1− 1

1 + eu
.

The density function of U is therefore fU (u) = eu

(1+eu)2
for −∞ < u < ∞. Thus, we must find a

and b so that

α1 = P (U < a) =
∫ a

−∞

eu

(1 + eu)2
du and α2 = P (U > b) =

∫ ∞
b

eu

(1 + eu)2
du.



Computing the integrals we find

α1 = 1− 1
1 + ea

and α2 =
1

1 + eb

and so solving for a and b we find

a = log
(

α1

1− α1

)
and b = log

(
1− α2

α2

)
.

Hence,

1− α = P (a ≤ U ≤ b) = P

(
log
(

α1

1− α1

)
≤ Y − θ ≤ log

(
1− α2

α2

))
= P

(
Y − log

(
1− α2

α2

)
≤ θ ≤ Y − log

(
α1

1− α1

))
.

In other words, [
Y − log

(
1− α2

α2

)
, Y − log

(
α1

1− α1

) ]
is a confidence interval for θ with coverage probability 1− (α1 + α2).


