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1. If the population mean is µ, then E(Yi) = µ, i = 1, . . . , n. Hence,
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(That is, Y is an unbiased estimator of µ.) In order to show that S2 is an unbiased estimator
of σ2, we begin by expanding (Yi − Y )2 = Y 2

i − 2YiY + Y
2. This gives
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where we used the fact that
n∑

i=1

Yi = nY .

If the population variance is σ2, then Var(Yi) = σ2, i = 1, . . . , n, so that E(Y 2
i ) = Var(Yi) +

(E(Yi))2 = σ2 + µ2. Hence,

E(S2) =
1

n− 1

(
n∑

i=1

E(Y 2
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)
=
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(
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)
=

n
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(
σ2 + µ2 − E(Y 2)

)
.

However, we still must compute E(Y 2). As above, E(Y 2) = Var(Y ) + (E(Y ))2 = Var(Y ) + µ2

which leaves us with Var(Y ) to compute. It is common to assume that the data were collected
independently of each other; that is, if i 6= j, then Cov(Yi, Yj) = 0. Therefore, from Theorem 5.12
(that’s Stat 251 material)
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Finally, we conclude that E(Y 2) = σ2/n + µ2 so

E(S2) =
n

n− 1

(
σ2 + µ2 − E(Y 2)

)
=

n

n− 1

(
σ2 + µ2 −

(
σ2

n
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))
=

n
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n
= σ2

meaning that S2 is an unbiased estimator of σ2 as required.



2. Let Y denote the life time of a heat lamp in this greenhouse, so that Y ∼ N (50, 4) (in hours).
If Y1, . . . , Y25 represent the 25 heat lamps for this medicinal herb growing operation, then we
are interested in

P (Y1 + · · ·+ Y25 > 1300).

Since the Yi are assumed to be i.i.d. we can conclude that

P

(
Y1 + · · ·+ Y25

25
>

1300
25

)
= P (Y > 52)

where Y ∼ N (50, 4/25). In order to calculate P (Y > 52) we normalize and use Table 4 so that

P (Y > 52) = P

(
Y − 50

2/5
>

52− 50
2/5

)
= P (Z > 5) ≈ 0

where Z ∼ No(0, 1). Hence, we see that

P (Y1 + · · ·+ Y25 > 1300) ≈ 0;

that is, it is extremely unlikely that there will be a bulb burning after 1300 hours.

3. If Y1 ∼ N (µ1, σ
2
1), then the moment generating function of Y1 is

mY1(t) = exp
{

µ1t +
σ2

1t

2

}
and, similarly, if Y2 ∼ N (µ2, σ

2
2), then the moment generating function of Y2 is

mY2(t) = exp
{

µ2t +
σ2

2t

2

}
.

Therefore, the moment generating function of Y1 + Y2 is given by

mY1+Y2(t) := E(e(Y1+Y2)t) = E(eY1t) · E(eY2t)

since Y1 and Y2 are independent. Hence, we find

mY1+Y2(t) = E(eY1t) · E(eY2t) = mY1(t) ·mY2(t) = exp
{
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σ2

1t

2

}
· exp

{
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σ2
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2

}
= exp
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1

2
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2

2

)
t

}
which we recognize as the moment generating function of a normal random variable with mean
µ1+µ2 and variance σ2

1 +σ2
2. That is, we have shown Y1+Y2 ∼∼ N (µ1+µ2, σ

2
1 +σ2

2) as required.

4. (a) Suppose that Y1, . . . , Yn are i.i.d. N (µ, σ2) random variables. As proved on January 12,
2007,

Y ∼ N
(

µ,
σ2

√
n

)
so that normalizing we conclude

Y − µ

σ/
√

n
∼ N (0, 1).



From the Theorem given on January 15, 2007, we know that the random variable

(n− 1)S2

σ2

has a χ2(n− 1) distribution. It also follows from this theorem that Y and S2 are independent.
It now follows from the definition of the t distribution that if Z ∼ N (0, 1) and W ∼ χ2(ν) are
independent, then

T =
Z√
W/ν

∼ t(ν).

Thus, let

Z =
Y − µ

σ/
√

n
and W =

(n− 1)S2

σ2

so that
Z√
W/ν

=
Y−µ
σ/
√

n√
(n−1)S2

σ2 /(n− 1)
=

Y − µ

S/
√

n
∼ t(n− 1)

as required.

4. (b) Similarly,

(n− 1)S2
1

σ2
1

∼ χ2(n− 1) and
(m− 1)S2

2

σ2
2

∼ χ2(m− 1)

and, by assumption, S1 and S2 are independent. Hence, from the definition of the F distribution,
we conclude that

(n−1)S2
1

σ2
1

/(n− 1)

(m−1)S2
2

σ2
2

/(m− 1)
=

S2
1/σ2

1

S2
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2

∼ F (n− 1,m− 1).

5. Textbook

(7.38) Suppose that Wi = Xi− Yi. Since X1, X2, . . . , Xn and Y1, Y2, . . . , Yn are all independent
and identically distributed, so too are W1,W2, . . . ,Wn. Thus we find E(Wi) = E(Xi − Yi) =
E(Xi)− E(Yi) = µ1 − µ2 and

Var(Wi) = Var(Xi − Yi) = Var(Xi) + Var(Yi)− 2 Cov(Xi, Yi) = σ2
1 + σ2

2

using Theorem 5.12 and the fact that Cov(Xi, Yi) = 0 since Xi and Yi are independent. If

W =
1
n

n∑
i=1

Wi,

then since the Wi are iid, we conclude

E(W ) = µ1 − µ2 and Var(W ) =
σ2

1 + σ2
2

n
.

Hence, we can now apply Theorem 7.4 to the normalized random variables

Un =
W − E(W )√

Var(W )
=

W − (µ1 − µ2)√
(σ2

1 + σ2
2)/n

=
X − Y − (µ1 − µ2)√

(σ2
1 + σ2

2)/n

and conclude that the distribution of Un converges to N (0, 1).



(7.40) Using the same notation as in (7.38), we find that if the sample sizes differ, then

Var(W ) =
σ2

1

n1
+

σ2
2

n2
.

Therefore, if

Un =
X − Y − (µ1 − µ2)√

σ2
1

n1
+ σ2

2
n2

then Un again converges in distribution to N (0, 1). In order to compute the required probability,
we simply normalize to obtain a random variable which is (approximately) a standard normal
so that we can use Table 4. That is,

P ( | (X − Y )− (µ1 − µ2)| ≤ 0.05 ) = P

∣∣∣∣∣∣(X − Y )− (µ1 − µ2)√
σ2
1

n1
+ σ2

2
n2

∣∣∣∣∣∣ ≤ 0.05√
σ2
1

n1
+ σ2

2
n2


= P

∣∣∣∣∣∣(X − Y )− (µ1 − µ2)√
0.01
50 + 0.02

100

∣∣∣∣∣∣ ≤ 0.05√
0.01
50 + 0.02

100


≈ P (|Z| ≤ 2.5)
≈ 1− 2(0.0062) = 0.9876

where Z ∼ N (0, 1).

(7.41) If n1 = n2 = n, then we are trying to find the value of n such that

P ( | (X − Y )− (µ1 − µ2)| ≤ 0.04 ) = 0.90.

Now, if we normalize (and write Z ∼ N (0, 1)), then we obtain

P

|Z| ≤ 0.04√
0.01
n + 0.02

n

 = 0.90.

But from Table 4 we find that P (|Z| ≤ 1.645) ≈ 0.90, which implies that

0.04√
0.01
n + 0.02

n

≈ 1.645.

Solving for n gives n ≈ 50.74. Thus, we need each sample to contain at least 51 data points.

6. Textbook

(6.64) If Y1, Y2, . . . , Yn are all independent and identically distributed beta(2, 2) random vari-
ables, then each has density function

fY (y) =
Γ(4)

Γ(2)Γ(2)
y(1− y) = 6y(1− y), 0 < y < 1.



(a) If Y(n) = max{Y1, . . . , Yn}, then

P (Y(n) ≤ t) = P (Y1 ≤ t, . . . , Yn ≤ t) = P (Y1 ≤ t) · · ·P (Yn ≤ t) = [P (Y1 ≤ t)]n

since the Yi are independent (the second equality) and identically distributed (the third
equality). Now, for any 0 < t < 1,

P (Y1 ≤ t) =
∫ t

0
fY (y) dy =

∫ t

0
6y(1−y) dt =

∫ t

0
6y dy−

∫ t

0
6y2 dy = 3t2−2t3 = t2(3−2t)

so that the distribution function of Y(n) is

F (t) = [P (Y(n) ≤ t)]n = t2n(3− 2t)n, 0 < t < 1.

(Of course, F (t) = 0 for t ≤ 0, and F (t) = 1 for t ≥ 1.

(b) The density function of Y(n) is therefore

f(t) =
d

dt
F (t) =

d

dt
t2n(3−2t)n = 2nt2n−1(3−2t)n−2nt2n(3−2t)n−1 = 6nt2n−1(3−2t)n−1(1−t)

for 0 < t < 1 and 0 otherwise.

(c) For n = 2, the expected value E(Y(2)) is

E(Y(2)) =
∫ 1

0
t f(t) dt =

∫ 1

0
12t4(3−2t)(1−t) dt =

∫ 1

0
(36t4−60t5+24t6) dt =

36
5
−60

6
+

24
7

=
22
35

.

(6.65) If Y1, Y2, . . . , Yn are all independent and identically distributed exponential(β) random
variables, then each has density function

fY (y) =
1
β

e−y/β , 0 < y < ∞.

(a) If Y(1) = min{Y1, . . . , Yn}, then

P (Y(1) > t) = P (Y1 > t, . . . , Yn > t) = P (Y1 > t) · · ·P (Yn > t) = [P (Y1 > t)]n

since the Yi are independent (the second equality) and identically distributed (the third
equality). Now, for any 0 < t < ∞,

P (Y1 > t) =
∫ ∞

t
fY (y) dy =

1
β

∫ ∞
t

e−y/β dy = e−t/β

so that
P (Y(1) > t) = e−tn/β.

Thus, the distribution function of Y(n) is

F (t) = P (Y(1) ≤ t) = 1− P (Y(1) > t) = 1− e−tn/β = 1− e−t/(β/n)

which is the distribution function of an exponential random variable with mean β/n.



(b) If n = 5, β = 2, then the distribution function of Y(1) is

F (t) = 1− e−5t/2, 0 < t < ∞

so that the corresponding density function is

f(t) =
5
2
e−5t/2, 0 < t < ∞.

Hence,

P (Y(1) ≤ 3.6) =
5
2

∫ 3.6

0
e−5t/2 dt = −e−5t/2

∣∣∣∣3.6

0

= 1− e−9.


