Stat 252 Winter 2007
Assignment #2 Solutions

1. If the population mean is p, then E(Y;) = p, i = 1,...,n. Hence,
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(That is, Y is an unbiased estimator of p.) In order to show that S? is an unbiased estimator
of o2, we begin by expanding (Y; — Y)? =Y? — 2V;Y + Y?. This gives
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where we used the fact that .
Z Y, =nY.
i=1

If the population variance is 2, then Var(Y;) = o2, i = 1,...,n, so that E(Y?) = Var(¥;) +
(E(Y;))? = 02 + p%. Hence,
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However, we still must compute E(?Q). As above, E(?z) = Var(Y) + (E(Y))? = Var(Y) + u?
which leaves us with Var(Y') to compute. It is common to assume that the data were collected
independently of each other; that is, if i # j, then Cov(Y;,Y;) = 0. Therefore, from Theorem 5.12
(that’s Stat 251 material)

n
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Finally, we conclude that E(?Q) =0?/n+ u? so
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meaning that S? is an unbiased estimator of o2 as required.

E(S%) = — —



2. Let Y denote the life time of a heat lamp in this greenhouse, so that Y ~ A(50,4) (in hours).
If Y1,...,Yss represent the 25 heat lamps for this medicinal herb growing operation, then we

are interested in
P(Y1 + -+ Yas5 > 1300).

Since the Y; are assumed to be i.i.d. we can conclude that
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where Y ~ N(50,4/25). In order to calculate P(Y > 52) we normalize and use Table 4 so that

Y 50 _ 5250
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where Z ~ No(0,1). Hence, we see that

P(Y1 + -+ Yas > 1300) =~ 0;

that is, it is extremely unlikely that there will be a bulb burning after 1300 hours.

3. It Y, ~ N (i, a%), then the moment generating function of Y7 is

o?t
my, (t) = exp § pit + Ty

and, similarly, if Y2 ~ NV(p2,03%), then the moment generating function of Y3 is

2
o5t
my, (t) = exp {M2t+ ;}

Therefore, the moment generating function of Y7 + Y5 is given by
my 4y (1) := E(eM1H2)) = E(eM1) - E (%)

since Y7 and Y5 are independent. Hence, we find
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which we recognize as the moment generating function of a normal random variable with mean
1+ p2 and variance a% —i—a%. That is, we have shown Y7+ Y2 ~~ N (1 + 2, 0% —i—og) as required.

4. (a) Suppose that Y7,...,Y, are i.i.d. N(u,0?) random variables. As proved on January 12,

2007,
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so that normalizing we conclude

~ N(0,1).



From the Theorem given on January 15, 2007, we know that the random variable

(n —1)52
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has a x?(n — 1) distribution. It also follows from this theorem that Y and S? are independent.
It now follows from the definition of the ¢ distribution that if Z ~ A(0,1) and W ~ x2(v) are
independent, then

Z
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Thus, let
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as required.

4. (b) Similarly,
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and, by assumption, S; and S5 are independent. Hence, from the definition of the F' distribution,

we conclude that —
e
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(m—;)Sg/(m ~1) ~ S2/03
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~F(n—1m-—1).
5. Textbook

(7.38) Suppose that W; = X; —Y;. Since X1, Xs,..., X, and Y7, Ys,...,Y,, are all independent
and identically distributed, so too are Wi, Wy, ..., W,,. Thus we find E(W;) = E(X; - Y;) =
E(X;) — E(Y;) = pi1 — p2 and

Var(W;) = Var(X; — Y;) = Var(X;) + Var(¥;) — 2Cov(X;,Y;) = o7 + 03
using Theorem 5.12 and the fact that Cov(X;,Y;) = 0 since X; and Y; are independent. If
n
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then since the W; are iid, we conclude

2., 2
EW) =pu; —ps and Var(W) = M.

n
Hence, we can now apply Theorem 7.4 to the normalized random variables
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and conclude that the distribution of U,, converges to N(0, 1).



(7.40) Using the same notation as in (7.38), we find that if the sample sizes differ, then
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then U,, again converges in distribution to A(0, 1). In order to compute the required probability,
we simply normalize to obtain a random variable which is (approximately) a standard normal
so that we can use Table 4. That is,

P(|(X-Y)—(u1—p2) <005)=P (7_?)—(M1—M2)< 0.05
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where Z ~ N(0,1).
(7.41) If ny = ny = n, then we are trying to find the value of n such that
P([(X =Y) — (11 — p2)| £0.04) = 0.90.

Now, if we normalize (and write Z ~ N (0,1)), then we obtain

0.04
Pl|Z] < ——— | =0.90.
0.01 4 0.02
n n

But from Table 4 we find that P(|Z| < 1.645) =~ 0.90, which implies that

008 L 1.645.
0.01 0.02
I

Solving for n gives n =~ 50.74. Thus, we need each sample to contain at least 51 data points.
6. Textbook

(6.64) If Y1,Y5,...,Y, are all independent and identically distributed beta(2,2) random vari-
ables, then each has density function

fy(y) = F(g)(ﬁ)@)y(l —y)=6y(l—y), 0<y<L



(a) If Y{,) = max{Y1,...,Y,}, then
P(Yi <) = P(Yi <t,...,Yy <t) = P(Y; <t)--- P(Y, <t) = [P(Y; < 8)]"

since the Y; are independent (the second equality) and identically distributed (the third
equality). Now, for any 0 < t < 1,

Py <t)= /Otfy(y)dy = /Ot6y(1—y)dt = /OtGydy—/OtGyzdy = 32— 2t% = t*(3 - 2t)
so that the distribution function of Y(, is
Ft)=[P(Y, <t)]"=t"(3-2t)", 0<t<L.
(Of course, F(t) =0 for t <0, and F(t) =1 for t > 1.
(b) The density function of Y{, is therefore

d d
= aF(t) = —2"(3-2t)" = 2nt?" "1 (3—2t)"—2nt?"(3—2t)" ! = 6nt? L (3—2t)" "L (1—t)
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for 0 < ¢ < 1 and 0 otherwise.
(c) For n =2, the expected value E(Y(y)) is

36 60 24 22
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E(Y(Q)):/ tf(t) dt:/ 12t4(32t)(1t)dt:/ (36t4760t5+24t6)dt:€—€+ = =3
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(6.65) If Y7,Y5,...,Y,, are all independent and identically distributed exponential(/3) random
variables, then each has density function

1
fr(y) = Be_y/ﬂ, 0 <y < oo
(a) If Yy = min{Y7,..., Yy}, then
PYqy>t)=P(Y1>t,....,Y, >t)=P(Y1>t)---P(Y, >t) = [P(Y1 > 1)]"

since the Y; are independent (the second equality) and identically distributed (the third
equality). Now, for any 0 < t < oo,

R A
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so that
P(Yqy >t)=e /0,

Thus, the distribution function of Y, is
Ft)y=P(Yyy <t)=1-PYy >t)=1—-e "B =1—_¢tEm

which is the distribution function of an exponential random variable with mean (3/n.



(b) If n =5, 3 =2, then the distribution function of Yy is
Fit)=1—e? 0<t<

so that the corresponding density function is

5
ft) = 56_5t/2, 0<t<o0.

Hence,
5 [36 3.6
P(Yy) <3.6) = 2/ et = —e 2| =170
0 0



