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1. (a) To find the method of moments estimator of θ we must solve the equation E(Y ) = Y for
θ. Since E(Y ) = θ, we conclude θ̂MOM = Y .

1. (b) By definition,

L(θ) =
n∏

i=1

f(yi|θ) = θ2n

(
n∏

i=1

y−3
i

)
exp

{
−θ

n∑
i=1

1
yi

}
.

1. (c) In order to maximize L(θ), we attempt to maximize the log-likelihood function

`(θ) = log L(θ) = 2n log θ − 3
n∑

i=1

log yi − θ

n∑
i=1

1
yi

.

We find that

`′(θ) =
d

dθ
`(θ) =

2n

θ
−

n∑
i=1

1
yi

and setting `′(θ) = 0 implies that

θ =
2n

n∑
i=1

1
yi

.

Since
`′′(θ) =

−2n

θ2
< 0

for all θ, the second derivative test implies

θ̂MLE =
2n

n∑
i=1

1
Yi

.

1. (d) Since

L(θ) = θ2n

(
n∏

i=1

yi

)−3

exp

{
−θ

n∑
i=1

1
yi

}
we see that if we let

u =
n∑

i=1

1
yi

, g(u, θ) = θ2ne−θu, and h(y1, . . . , yn) =

(
n∏

i=1

yi

)−3

,

then L(θ) = g(u, θ) · h(y1, . . . , yn) so from the Factorization Theorem we conclude that

U =
n∑

i=1

1
Yi

is sufficient for the estimation of θ.



1. (e) If T (U) = 2n
U , then since T is a one-to-one function and since any one-to-one function of

a sufficient statistic is also sufficient, we conclude that

T

(
n∑

i=1

1
Yi

)
=

2n
n∑

i=1

1
Yi

= θ̂MLE

is also sufficient.

1. (f) Since

log f(y|θ) = 2 log θ − 3 log y − θ

y
,

we find
∂

∂θ
log f(y|θ) =

2
θ
− 1

y
and

∂2

∂θ2
log f(y|θ) = − 2

θ2

Thus,

I(θ) = −E
(

∂2

∂θ2
log f(Y |θ)

)
=

2
θ2

.

1. (g) An approximate 90% confidence interval for θ is given by θ̂MLE − 1.645
1√

n I(θ̂MLE)
, θ̂MLE + 1.645

1√
n I(θ̂MLE)


or [

2n∑n
i=1

1
Yi

− 1.645
√

2n∑n
i=1

1
Yi

,
2n∑n
i=1

1
Yi

+ 1.645
√

2n∑n
i=1

1
Yi

]
.

1. (h) The generalized likelihood ratio is

Λ =
L(θ0)

L(θ̂MLE)
=

θ2n
0

(∏n
i=1 y−3

i

)
exp

{
−θ0

∑n
i=1

1
yi

}
θ̂2n
MLE

(∏n
i=1 y−3

i

)
exp

{
−θ̂MLE

∑n
i=1

1
yi

} =
(

θ0

θ̂MLE

)2n

exp

{
θ̂MLE

n∑
i=1

1
yi
− θ0

n∑
i=1

1
yi

}

=

(
θ0

2n

n∑
i=1

1
yi

)2n

exp

{
2n− θ0

n∑
i=1

1
yi

}

=
(

θ0e

2n

)2n
(

n∑
i=1

1
yi

)2n

exp

{
−θ0

n∑
i=1

1
yi

}
and so the rejection region is

{Λ ≤ c} =


(

θ0e

2n

)2n
(

n∑
i=1

1
Yi

)2n

exp

{
−θ0

n∑
i=1

1
Yi

}
≤ c


=


(

n∑
i=1

1
Yi

)2n

exp

{
−θ0

n∑
i=1

1
Yi

}
≤ C


where c and C are constants. In fact, C = c

(
θ0e
2n

)−2n
.



1. (i) If n = 8 observations produce
∑8

i=1
1
Yi

= 10, then based on this data, an approximate
90% confidence interval for θ is

[1.6− 0.66, 1.6 + 0.66] or [0.94, 2.26].

Since θ0 = 1 falls in this interval, we conclude from the confidence interval–hypothesis test du-
ality that we do not reject H0 : θ = 1 in favour of HA : θ 6= 1 at significance level α = 0.10.

1. (j) If θ0 = 1 and
∑8

i=1
1
Yi

= 10, then the observed generalized likelihood ratio is

Λ =
( e

16

)16
(10)16 exp {−10} = e65168−16

and so
−2 log Λ = −2(6 + 16 log 5− 16 log 8) ≈ 3.04011.

Since −2 log Λ
approx∼ χ2(1), we find from Table 6 that the critical value corresponding to α = 0.10

is χ2
0.10,1 = 2.70554. Therefore, since 3.04011 > 2.70554, based on this data we can reject H0 in

favour of HA at the α = 0.10 level.

2. Let U = Y − θ so that for −∞ < u < ∞,

P (U ≤ u) = P (Y ≤ θ + u) =
∫ θ+u

−∞

e(y−θ)[
1 + e(y−θ)

]2 dy = − 1
1 + e(y−θ)

∣∣∣∣θ+u

−∞
= 1− 1

1 + eu
.

The density function of U is therefore fU (u) = eu

(1+eu)2
for −∞ < u < ∞. Thus, we must find a

and b so that

α1 = P (U < a) =
∫ a

−∞

eu

(1 + eu)2
du and α2 = P (U > b) =

∫ ∞

b

eu

(1 + eu)2
du.

Computing the integrals we find

α1 = 1− 1
1 + ea

and α2 =
1

1 + eb

and so solving for a and b we find

a = log
(

α1

1− α1

)
and b = log

(
1− α2

α2

)
.

Hence,

1− α = P (a ≤ U ≤ b) = P

(
log
(

α1

1− α1

)
≤ Y − θ ≤ log

(
1− α2

α2

))
= P

(
Y − log

(
1− α2

α2

)
≤ θ ≤ Y − log

(
α1

1− α1

))
.

In other words, [
Y − log

(
1− α2

α2

)
, Y − log

(
α1

1− α1

) ]
is a confidence interval for θ with coverage probability 1− (α1 + α2).



3. (a) If X1, X2, X3 are i.i.d. Exp(λ) random variables and we define Y = min{X1, X2, X3},
then for y > 0,

P (Y > y) = [P (X1 > y)]3 = [1− P (X1 ≤ y)]3 = [1− (1− e−y/λ)]3 = e−3y/λ.

That is,

FY (y) = 1− e−3y/λ and fY (y) =
3
λ

e−3y/λ, y > 0,

implying that Y ∼ Exp(λ/3).

3. (b) The likelihood function is L(λ) = fY (y|λ) = 3
λe−3y/λ (since there is n = 1 random

variable, namely Y ). In order to maximize the likelihood function, we attempt to maximize the
log-likelihood function

`(λ) = log 3− log λ− 3y

λ
.

Since
`′(λ) = − 1

λ
+

3y

λ2

so that `′(λ) = 0 implies λ = 3y, and since

`′′(λ) =
1
λ2

− 6y

λ3
so that `′′(3y) = − 1

9y2
< 0,

we conclude from the second derivative test that λ̂MLE = 3Y .

3. (c) We begin by noting that MSE(λ̂MLE) = Var(λ̂MLE)+[bias(λ̂MLE)]2. Since Y ∼ Exp(λ/3),
we find

E(Y ) =
λ

3
and Var(Y ) =

λ2

9
.

This implies that Var(λ̂MLE) = Var(3Y ) = 9 Var(Y ) = λ2 and E(λ̂MLE) = E(3Y ) = 3E(Y ) = λ
so that bias(λ̂MLE) = 0. Hence, MSE(λ̂MLE) = Var(λ̂MLE) + [bias(λ̂MLE)]2 = λ2 + 0 = λ2.

3. (d) We find

log fY (y|λ) = log 3− log λ− 3y

λ
and so

∂2

∂λ2
log fY (y|λ) =

1
λ2

− 6y

λ3
.

Thus,

I(λ) = −E
(

∂2

∂λ2
log fY (Y |λ)

)
= −E

(
1
λ2

− 6Y

λ3

)
=

6E(Y )
λ3

− 1
λ2

=
1
λ2

.

The Cramer-Rao inequality tells us that any unbiased estimator λ̂ of λ must satisfy

Var(λ̂) ≥ 1
I(λ)

= λ2

(since n = 1 in this problem). Since Var(λ̂MLE) = λ2 = 1
I(λ) we have found an unbiased estima-

tor whose variance attains the lower bound of the Cramer-Rao inequality. Hence, λ̂MLE must
be the MVUE of λ.



4. (a) By the confidence interval–hypothesis test duality, we do not reject H0 : θ = 5 if and
only if 5 ∈ (X − 1, X + 2). In other words, we reject H0 if 5 ≤ X − 1 or if 5 ≥ X + 2. Hence,
the required rejection region is

RR = {X ≤ 3 or X ≥ 6}.

4. (b) By definition, the significance level α is the probability of a Type I error; that is, the
probability under H0 that H0 is rejected. Hence, we must find c so that

19
100

= PH0(reject H0) = Pθ=1(max{Y1, Y2} > c).

Since Y1, Y2 are independent Uniform(0, θ) random variables, we find

Pθ=1(max{Y1, Y2} ≤ c) = [Pθ=1(Y1 ≤ c)]2 =
[∫ c

0
1 dy

]2

= c2

and so Pθ=1(max{Y1, Y2} > c) = 1− c2. Setting

19
100

= 1− c2 implies c =
9
10

.

By definition, the power of a hypothesis test is the probability under HA that H0 is rejected.
Hence, we find

power = PHA
(reject H0) = Pθ>1

(
max{Y1, Y2} >

9
10

)
= 1− Pθ>1

(
max{Y1, Y2} ≤

9
10

)
= 1−

[
Pθ>1

(
Y1 ≤

9
10

)]2

= 1−

[∫ 9/10

0

1
θ

dy

]2

= 1− 81
100 θ2

.

5. (a) The samplig distribution of this estimator is vital in order to construct confidence intervals
(either exactly by the pivotal method or approximately using the MLE and Fisher information)
and to conduct hypothesis tests (either exactly or using the likelihood ratio test approximation).
The sampling distribution is also needed so that the accuracy (bias, mean-squared error, etc.)
of the estimator can be evaluated.

5. (b) You might want additional pieces of information such as the p-value of the test, the power
(which can be computed exactly since both hypotheses are simple), how the data was collected,
the sampling distribution of the test statistic, how the test was conducted (likelihood ratio test,
CI-HT duality, Z-test, T -test, χ2-test, etc.), and whether or not any approximations were made.



6. (a) By definition, the significance level α is the probability of a Type I error; that is, the
probability under H0 that H0 is rejected. Hence, since 4S2

σ2 ∼ χ2(4),

α = PH0(reject H0) = P (S2 > 1.945|σ2 = 1) = P

(
4S2

1
>

4 · 1.945
1

)
= P (X > 7.78) ≈ 0.10

where X ∼ χ2(4). (This last step follows from Table 6.) Hence, we see that the hypothesis test
does, in fact, have significance level α = 0.10.

6. (b) By definition, the power of an hypothesis test is the probability under HA that H0 is
rejected. Hence, when σ = 2.7, we find

power = PHA
(reject H0) = P (S2 > 1.945|σ2 = 2.72) = P

(
4S2

2.72
>

4 · 1.945
2.72

)
≈ P (X > 1.067) ≈ 0.90

where X ∼ χ2(4). (The last step follows from Table 6.) Hence, the power of this test when
σ = 2.7 is 0.90.

7. THIS PROBLEM IS NOT APPLICABLE THIS SEMESTER.


