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(9.73) If Y1, . . . , Yn are iid exponential(θ), then each Yi has common density

f(y|θ) =
1
θ
e−y/θ, y > 0.

Therefore, the likelihood function is

L(θ) =
n∏

i=1

f(yi|θ) =
n∏

i=1

1
θ
e−yi/θ = θ−n exp

(
−1

θ

n∑
i=1

yi

)
.

The maximum likelihood estimator θ̂MLE is obtained by maximizing L(θ), or equivalently, by
maximizing the log-likelihood function `(θ) given by

`(θ) = −n log θ − 1
θ

n∑
i=1

yi.

Since

`′(θ) = −n

θ
+

1
θ2

n∑
i=1

yi

we find `′(θ) = 0 when

−n

θ
+

1
θ2

n∑
i=1

yi = 0 or θ =
1
n

n∑
i=1

yi.

Finally

`′′(θ) =
n

θ2
− 2

θ3

n∑
i=1

yi

so that

`′′
(

1
n

∑
yi

)
= − n3

(
∑

yi)
2 < 0.

By the second derivative test we conclude,

θ̂MLE =
1
n

n∑
i=1

Yi = Y .

Since θ > 0, we see that the function T (θ) = θ2 is one-to-one. Therefore, the maximum likelihood
estimator of θ2 is

θ̂2
MLE = Y

2
.

(9.74) (b) If Y1, . . . , Yn are a random sample from the density function

f(y|θ) =
1
θ
ryr−1e−yr/θ, y > 0

where θ > 0 is a parameter, then the likelihood function is

L(θ) =
n∏

i=1

f(yi|θ) =
n∏

i=1

1
θ
ryr−1

i e−yr
i /θ = θ−n · rn ·

(
n∏

i=1

yi

)r−1

· exp

(
−1

θ

n∑
i=1

yr
i

)
.



The maximum likelihood estimator θ̂MLE is obtained by maximizing L(θ), or equivalently, by
maximizing the log-likelihood function `(θ) given by

`(θ) = −n log θ + n log r + (r − 1)
n∑

i=1

log yi −
1
θ

n∑
i=1

yr
i .

Since

`′(θ) = −n

θ
+

1
θ2

n∑
i=1

yr
i

we find `′(θ) = 0 when

−n

θ
+

1
θ2

n∑
i=1

yr
i = 0 or θ =

1
n

n∑
i=1

yr
i .

Finally

`′′(θ) =
n

θ2
− 2

θ3

n∑
i=1

yr
i

so that

`′′
(

1
n

∑
yr

i

)
= − n3

(
∑

yr
i )

2 < 0.

By the second derivative test we conclude,

θ̂MLE =
1
n

n∑
i=1

Y r
i .

(9.75) (a) Suppose that Y1, . . . , Yn are iid uniform[0, 2θ+1] so that each Yi has density function

f(y|θ) =
1

2θ + 1
, 0 ≤ y ≤ 2θ + 1.

The likelihood function is

L(θ) =
n∏

i=1

f(yi|θ) = (2θ + 1)−n

provided that 0 ≤ yi ≤ 2θ + 1 for each i = 1, . . . , n. In other words,

L(θ) =

{
(2θ + 1)−n, 0 ≤ max{y1, . . . , yn} ≤ 2θ + 1,

0, otherwise.

The maximum likelihood estimator θ̂MLE is obtained by maximizing L(θ). Since (2θ + 1)−n

is strictly decreasing in θ provided that 0 ≤ max{y1, . . . , yn} ≤ 2θ + 1, we see that the
maximum value is obtained when θ is chosen as small as possible subject to the constraint
max{y1, . . . , yn} ≤ 2θ + 1. Thus, the maximum likelihood estimator is

θ̂MLE =
max{Y1, . . . , Yn} − 1

2
.

(9.76) (a) Suppose that Y1, Y2, Y3 are iid Gamma(2, θ) random variables so that each has density

f(y|θ) =
1
θ2

ye−y/θ, y > 0



Therefore, the likelihood function is

L(θ) =
3∏

i=1

f(yi|θ) =
3∏

i=1

1
θ2

yie
−yi/θ = θ−6 ·

3∏
i=1

yi · exp

(
−1

θ

3∑
i=1

yi

)
.

The maximum likelihood estimator θ̂MLE is obtained by maximizing L(θ), or equivalently, by
maximizing the log-likelihood function `(θ) given by

`(θ) = −6 log θ +
3∑

i=1

log yi −
1
θ

3∑
i=1

yi.

Since

`′(θ) = −6
θ

+
1
θ2

3∑
i=1

yi

we find `′(θ) = 0 when

−6
θ

+
1
θ2

3∑
i=1

yi = 0 or θ =
1
6

3∑
i=1

yi =
y

2
.

Finally

`′′(θ) =
6
θ2

− 2
θ3

3∑
i=1

yi

so that

`′′
(

1
6

∑
yi

)
= − 63

(
∑

yi)
2 < 0.

By the second derivative test we conclude,

θ̂MLE =
1
6

3∑
i=1

Yi =
Y

2
.

Based on the observed data, we find that the maximum likelihood estimate of θ is

θ̂MLE =
120 + 130 + 128

6
= 63.

(b) Since each Y1, Y2, Y3 are iid Gamma(2, θ), and since

θ̂MLE =
1
6

3∑
i=1

Yi =
Y

2

we conclude

E(θ̂MLE) =
1
6

3∑
i=1

E(Yi) =
3 · 2θ

6
= θ

and

Var(θ̂MLE) =
1
62

3∑
i=1

Var(Yi) =
3 · 2θ2

62
=

θ2

6
.



(c) If θ = 130, then an approximate bound for the error of estimation is given by

2
√

Var(θ̂MLE) = 2

√
θ2

6
= 2

√
1302

6
≈ 106.14.

(d) Since the variance of Y is Var(Y ) = 2θ2, we conclude that the MLE of Var(Y ) is

ˆVar(Y )MLE = 2θ̂2
MLE = 2(63)2 = 7938.

(9.77) (a) Suppose that Y1, . . . , Yn are a random sample from the density function

f(y|θ) =
1

Γ(α)θα
yα−1e−y/θ, y > 0

where α > 0 is known. Therefore, the likelihood function is

L(θ) =
n∏

i=1

f(yi|θ) =
n∏

i=1

1
Γ(α)θα

yα−1
i e−yi/θ = θ−nα · Γ(α)−n ·

(
n∏

i=1

yi

)α−1

· exp

(
−1

θ

n∑
i=1

yi

)
.

The maximum likelihood estimator θ̂MLE is obtained by maximizing L(θ), or equivalently, by
maximizing the log-likelihood function `(θ) given by

`(θ) = −nα log θ − n log Γ(α) + (α − 1)
n∑

i=1

log yi −
1
θ

n∑
i=1

yi.

Since

`′(θ) = −nα

θ
+

1
θ2

n∑
i=1

yi

we find `′(θ) = 0 when

−nα

θ
+

1
θ2

n∑
i=1

yi = 0 or θ =
1

nα

n∑
i=1

yi =
y

α
.

Finally

`′′(θ) =
nα

θ2
− 2

θ3

n∑
i=1

yi

so that

`′′
(

1
nα

∑
yi

)
= − n3α3

(
∑

yi)
2 < 0

since α > 0. By the second derivative test we conclude,

θ̂MLE =
1

nα

n∑
i=1

Yi =
Y

α
.


