Stat 252.01 Winter 2006 Assignment #4 Solutions

(8.10) (a) If $\hat{\theta} = \max(Y_1, \dots, Y_n)$, then its distribution function is

$$F(t) = \theta^{-n\alpha} t^{n\alpha}, \quad 0 \le t \le \theta.$$

so that

$$f(t) = n \alpha \theta^{-n\alpha} t^{n\alpha-1}, \quad 0 < t < \theta$$

We easily calculate that

$$\mathbb{E}(\hat{\theta}) = \int_0^{\theta} n \,\alpha \,\theta^{-n\alpha} \,t^{n\alpha} \,dt = \frac{n \,\alpha \,\theta^{-n\alpha} \,\theta^{n\alpha+1}}{n\alpha+1} = \frac{n \,\alpha}{n \,\alpha+1} \,\theta.$$

Thus, we conclude $\hat{\theta}$ is a biased estimator of θ .

(b) Clearly, the estimator

$$\frac{n\alpha+1}{n\alpha}\hat{\theta} = \frac{n\alpha+1}{n\alpha} \max(Y_1, \dots, Y_n)$$

is an unbiased estimator of θ .

(c) In order to calculate $MSE(\hat{\theta})$ we must find $Var(\hat{\theta})$. We find

$$\mathbb{E}(\hat{\theta}^2) = \int_0^\theta n \,\alpha \,\theta^{-n\alpha} \,t^{n\alpha+1} \,dt = \frac{n \,\alpha \,\theta^{-n\alpha} \,\theta^{n\alpha+2}}{n\alpha+2} = \frac{n \,\alpha}{n \,\alpha+2} \,\theta^2.$$

Thus,

$$\operatorname{Var}(\hat{\theta}) = \mathbb{E}(\hat{\theta}^2) - [\mathbb{E}(\hat{\theta})]^2 = \frac{n \alpha}{n \alpha + 2} \theta^2 - \left[\frac{n \alpha}{n \alpha + 1} \theta\right]^2 = \frac{n \alpha}{(n\alpha + 1)^2 (n\alpha + 2)} \theta^2.$$

Finally,

$$MSE(\hat{\theta}) = Var(\hat{\theta}) + [B(\hat{\theta})]^2 = \left[\frac{n\alpha}{(n\alpha+1)^2(n\alpha+2)} + \frac{1}{(n\alpha+1)^2}\right]\theta^2 = \frac{2\theta^2}{(n\alpha+1)(n\alpha+2)}.$$

(8.15) If $Y_{(1)} = \min(Y_1, \dots, Y_n)$, then its distribution function is

$$F(t) = 1 - e^{-tn/\theta}, \quad t > 0$$

so that

$$f(t) = \frac{n}{\theta}e^{-tn/\theta}, \quad t > 0.$$

We easily calculate (use integration by parts) that

$$\mathbb{E}(Y_{(1)}) = \int_0^\infty \frac{n}{\theta} t e^{-tn/\theta} dt = \frac{\theta}{n}$$

so that if $\hat{\theta} = nY_{(1)}$, then $\mathbb{E}(\hat{\theta}) = n\mathbb{E}(Y_{(1)}) = \theta$ so that $\hat{\theta}$ is an unbiased estimator of θ .

In order to calculate $MSE(\hat{\theta})$ we must find $Var(\hat{\theta})$. Notice, however, that $Y_{(1)}$ is an exponential random variable with parameter θ/n . Thus,

$$Var(\hat{\theta}) = Var(nY_{(1)}) = n^2 Var(Y_{(1)}) = n^2 \frac{\theta^2}{n^2} = \theta^2.$$

This gives

$$MSE(\hat{\theta}) = Var(\hat{\theta}) + [B(\hat{\theta})]^2 = \theta^2 + 0 = \theta^2.$$

(8.30) If $\hat{\lambda} = \overline{Y}$, then $\mathbb{E}(\hat{\lambda}) = \mathbb{E}(\overline{Y}) = \lambda$ so that \overline{Y} is an unbiased estimator of λ . Since the standard error of $\hat{\lambda}$ is

$$\sigma_{\widehat{\lambda}} = \sqrt{V(\overline{Y})} = \sqrt{\frac{\lambda}{n}},$$

a natural guess for the estimated standard error is

$$\hat{\sigma}_{\hat{\lambda}} = \sqrt{\frac{\hat{\lambda}}{n}}.$$

(8.32) If $\hat{\theta} = \overline{Y}$, then $\mathbb{E}(\hat{\theta}) = \mathbb{E}(\overline{Y}) = \theta$ so that \overline{Y} is an unbiased estimator of θ . The standard error of $\hat{\theta}$ is

$$\sigma_{\hat{\theta}} = \sqrt{V(\overline{Y})} = \frac{\theta}{\sqrt{n}}.$$

Thus, if the estimated standard error is

$$\hat{\sigma}_{\hat{\theta}} = \frac{\hat{\theta}}{\sqrt{n}},$$

then

$$\mathbb{E}(\hat{\sigma}_{\hat{\theta}}) = \frac{\mathbb{E}(\hat{\theta})}{\sqrt{n}} = \frac{\theta}{\sqrt{n}} = \sigma_{\hat{\theta}}$$

so that $\hat{\sigma}_{\hat{\theta}}$ is an unbiased estimator of the standard error.