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(7.38) Suppose that W; = X; —Y;. Since X1, Xs,..., X, and Y1,Y>,...,Y,, are all independent
and identically distributed, so too are Wy, Ws, ..., W,,. Thus we find E(W;) = E(X; - Y;) =
E(Xi) — E(Y;) = p1 — p2 and

Var(W;) = Var(X; — Y;) = Var(X;) + Var(Y;) — 2Cov(X;,Y;) = 0% + 05

using Theorem 5.12 and the fact that Cov(X;,Y;) = 0 since X; and Y; are independent. If

then since the W; are iid, we conclude
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E(W) =pu; —ps and Var(W) = m.

n

Hence, we can now apply Theorem 7.4 to the normalized random variables

U, — W—EW) W—(um—p) X-Y—(u—p)

Var(W) (0f +03)/n (of +03)/n

and conclude that the distribution of U,, converges to N(0,1).

(7.40) Using the same notation as in (7.38), we find that if the sample sizes differ, then
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Var(W) = 91, %
ni no
Therefore, if
X-Y - —
U, = = (Mlg : p2)
e T 7

then U,, again converges in distribution to N'(0,1). In order to compute the required probability,
we simply normalize to obtain a random variable which is (approximately) a standard normal
so that we can use Table 4. That is,
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where Z ~ N(0,1).



(7.41) If ny = ny = n, then we are trying to find the value of n such that
P([(X =Y) — (1 — p2)| £0.04) = 0.90.

Now, if we normalize (and write Z ~ N (0,1)), then we obtain

0.04
Pz < ———— | =0.90.
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But from Table 4 we find that P(|Z| < 1.645) = 0.90, which implies that

0.04

0.01 0.02
KR

= 1.645.

Solving for n gives n ~ 50.74. Thus, we need each sample to contain at least 51 data points.



