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(1.1) If the population mean is µ, then E(Yi) = µ, i = 1, . . . , n. Hence,

E
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Y
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1
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Yi

)
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1
n

n∑
i=1

E(Yi) =
n · µ
n

= µ

so that Y is an unbiased estimator of µ. In order to show that S2 is an unbiased estimator of
σ2, we begin by expanding (Yi − Y )2 = Y 2

i − 2YiY + Y
2. This gives
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)

=
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2 + nY
2

)
=

1
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(
n∑
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Y 2
i − nY

2

)
where we used the fact that

n∑
i=1

Yi = nY .

If the population variance is σ2, then Var(Yi) = σ2, i = 1, . . . , n, so that E(Y 2
i ) = Var(Yi) +

(E(Yi))2 = σ2 + µ2. Hence,

E(S2) =
1

n− 1

(
n∑

i=1

E(Y 2
i )− nE(Y 2)

)
=

1
n− 1

(
n∑

i=1

(σ2 + µ2)− nE(Y 2)

)

=
1

n− 1

(
n(σ2 + µ2)− nE(Y 2)

)
=

n

n− 1

(
σ2 + µ2 − E(Y 2)

)
.

However, we still must compute E(Y 2). As above, E(Y 2) = Var(Y ) + (E(Y ))2 = Var(Y ) + µ2

which leaves us with Var(Y ) to compute. It is common to assume that the data were collected
independently of each other; that is, if i 6= j, then Cov(Yi, Yj) = 0. Therefore, from Theorem 5.12
(that’s Stat 251 material)

Var(Y ) = Var

(
1
n

n∑
i=1

Yi

)
=

1
n2

 n∑
i=1

Var(Yi) + 2
∑∑
1≤i<j≤n

Cov(Yi, Yj)

 =
1
n2

n∑
i=1

Var(Yi)

=
n · σ2

n2
=

σ2

n
.

Finally, we conclude that E(Y 2) = σ2/n + µ2 so

E(S2) =
n

n− 1

(
σ2 + µ2 − E(Y 2)

)
=

n

n− 1

(
σ2 + µ2 −

(
σ2

n
+ µ2

))
=

n

n− 1
· (n− 1)σ2

n
= σ2

meaning that S2 is an unbiased estimator of σ2 as required.



(4.3) It is a simple matter to compute:

• E(X) = 1 · P (X = 1) + 0 · P (X = 0) = 1 · p + 0 · (1− p) = p;

• E(X2) = 12 · P (X = 1) + 02 · P (X = 0) = 12 · p + 02 · (1− p) = p;

• E(eθX) = eθ·1P (X = 1) + eθ·0P (X = 0) = eθ · p + 1 · (1− p) = 1− p(1− eθ).

(4.4) In order to solve this problem, we will need to compute several integrals. Since the density
function for any random variable integrates to 1, we have

1√
2π

∫ ∞

−∞
e−y2/2dy = 1.

After substituting u = y2/2, and carefully handling the infinite limits of integrations, we find

1√
2π

∫ ∞

−∞
ye−y2/2dy = 0.

Finally, using parts with u = y, dv = ye−y2/2dy, and carefully handling the infinite limits of
integration,

1√
2π

∫ ∞

−∞
y2e−y2/2dy = 1.

In fact, it is also straightforward to show that for n = 1, 2, 3, 4, 5, 6, . . .,

1√
2π

∫ ∞

−∞
yne−y2/2dy = (n− 1) · (n− 3) · (n− 5) · · · 3 · 1 ·

(
1 + (−1)n

2

)
.

As for the expected moments, we apply the Law of the Unconscious Statistician.

• By definition,

E(X) =
1

σ
√

2π

∫ ∞

−∞
xe−

(x−µ)2

2σ2 dx.

Substituting y = x−µ
σ so that x = σy + µ, σdy = dx transforms the integral into

1√
2π

∫ ∞

−∞
(σy + µ)e−y2/2dy = σ

1√
2π

∫ ∞

−∞
ye−y2/2dy + µ

1√
2π

∫ ∞

−∞
e−y2/2dy

= σ · 0 + µ · 1 = µ

using the integrals above.

• By definition,

E(X2) =
1

σ
√

2π

∫ ∞

−∞
x2e−

(x−µ)2

2σ2 dx.

Substituting y = x−µ
σ so that x = σy + µ, σdy = dx transforms the integral into

1√
2π

∫ ∞

−∞
(σy + µ)2e−y2/2dy =

1√
2π

∫ ∞

−∞
(σ2y2 + 2σµy + µ2)e−y2/2dy.

As in the previous part, splitting up the integral into the three separate pieces, and using
the integrals computed above, we find

E(X2) = σ2 · 1 + 2σµ · 0 + µ2 · 1 = σ2 + µ2.



• By definition,

E(eθX) =
1

σ
√

2π

∫ ∞

−∞
eθxe−

(x−µ)2

2σ2 dx.

The first step is to combine and simplify the integrand, namely

eθxe−
(x−µ)2

2σ2 = exp
(

θx− (x− µ)2

2σ2

)
= exp

(
θ2σ4 + 2µθσ2 − (x− θσ2 − µ)2

2σ2

)
= exp

(
µθ +

θσ2

2

)
exp

(
−(x− θσ2 − µ)2

2σ2

)
where the last equality was obtained by completing the square. Substituting this back into
the original integral gives

E(eθX) = exp
(

µθ +
θσ2

2

)
· 1
σ
√

2π

∫ ∞

−∞
exp

(
−(x− θσ2 − µ)2

2σ2

)
dx.

To compute this final integral we make the substitution y = x−θσ2−µ
σ so that σdy = dx.

This gives

1
σ
√

2π

∫ ∞

−∞
exp

(
−(x− θσ2 − µ)2

2σ2

)
dx =

1√
2π

∫ ∞

−∞
e−y2/2 dy = 1,

so that

E(eθX) = exp
(

µθ +
θσ2

2

)
.

(5.2) If the density of X is

f(x) =
1
π
· 1
1 + x2

,

then
E(|X|) =

∫ ∞

−∞
|x| f(x) dx =

1
π

∫ ∞

−∞

|x|
1 + x2

dx =
1
π

∫ ∞

0

x

1 + x2
dx

where the last equality follows since the integrand is even. Now, we must be extra careful with
the improper integral:∫ ∞

0

x

1 + x2
dx = lim

N→∞

∫ N

0

x

1 + x2
dx = lim

N→∞

∫ 1+N2

1

1
2u

du = lim
N→∞

1
2
(ln |1 + N2| − ln |1|) = ∞.

Thus, X 6∈ L1.

(5.12) If X and Y are independent, then E(XY ) = E(X)E(Y ). Hence,

Cov(X, Y ) = E(XY )− E(X)E(Y ) = 0,

so that X and Y are uncorrelated.



(5.13)

• We find the density of Y simply using the Law of Total Probability :

P (Y = 0)
= P (Y = 0|X = 1)P (X = 1) + P (Y = 0|X = 0)P (X = 0) + P (Y = 0|X = −1)P (X = −1)
= 0 · 1/4 + 1 · 1/2 + 0 · 1/4
= 1/2,

P (Y = 1)
= P (Y = 1|X = 1)P (X = 1) + P (Y = 1|X = 0)P (X = 0) + P (Y = 1|X = −1)P (X = −1)
= 1 · 1/4 + 0 · 1/2 + 1 · 1/4
= 1/2.

• The joint density of (X, Y ) is given by

P (X = 0, Y = 0) = P (Y = 0|X = 0)P (X = 0) = 1 · 1/2 = 1/2;
P (X = 0, Y = 1) = P (Y = 1|X = 0)P (X = 0) = 0 · 1/2 = 0;
P (X = 1, Y = 0) = P (Y = 0|X = 1)P (X = 1) = 0 · 1/4 = 0;
P (X = 1, Y = 1) = P (Y = 1|X = 1)P (X = 1) = 1 · 1/4 = 1/4;
P (X = −1, Y = 0) = P (Y = 0|X = −1)P (X = −1) = 0 · 1/4 = 0;
P (X = −1, Y = 1) = P (Y = 1|X = −1)P (X = −1) = 1 · 1/4 = 1/4.

Since, for example, P (X = 0, Y = 0) = 1/2, but P (X = 0)P (Y = 0) = 1/2 · 1/2 = 1/4,
we see that X and Y cannot be independent.

• The possible values of XY are 0, 1, −1. Hence,

P (XY = 0) = P (X = 0, Y = 0) = 1/2

and
P (XY = 1) = P (X = 1, Y = 1) = 1/4

using the computations above. By the law of total probability,

P (XY = −1) = 1/4.

(Equivalently, P (XY = −1) = P (X = −1, Y = 1) = 1/4.) Thus,

E(XY ) = 0 · P (XY = 0) + 1 · P (XY = 1) + (−1) · P (XY = −1) = 0 + 1/4− 1/4 = 0.

Since E(X) = 0 and E(Y ) = 0, we see that

Cov(X, Y ) = E(XY )− E(X)E(Y ) = 0− 0 = 0;

whence X and Y are uncorrelated.



Textbook

(1.1(c)) Briefly: The parameter of interest is the weekly water consumption for single-family
dwelling units in the city. The population, obviously, consists of all single-family dwelling units
in the city. The inferential objective of the city engineer is to determine the average weekly
water consumption for single-family dwelling units in the city This can be done by collecting a
random sample from among all single-family dwelling units in the city, and either constructing
a confidence interval or conducting a hypothesis test. As city engineer, it should be relatively
straightforward to obtain a map of city water lines, and the locations of all single-family dwellings
that receive city water. Note, however, that he may not have access to their names.

(1.5(c)) Reading the histogram, we find that ehe proportion of students who had GPAs less
that 2.65 is

3
30

+
3
30

+
3
30

+
7
30

=
16
30

.

(1.9) By definition,

s2 =
1

n− 1

n∑
i=1

(yi − y)2 where y =
1
n

n∑
i=1

yi.

Notice that (yi − y)2 = y2
i − 2yyi + y2. Thus,

n∑
i=1

(yi − y)2 =
n∑

i=1

y2
i +

n∑
i=1

(−2)yyi +
n∑

i=1

y2 (using c)

=
n∑

i=1

y2
i − 2y

n∑
i=1

yi +
n∑

i=1

y2 (using a)

=
n∑

i=1

y2
i − 2y

n∑
i=1

yi + ny2 (using b).

But,
n∑

i=1

yi = ny

so we can substitute that into the above to conclude
n∑

i=1

y2
i − 2y

n∑
i=1

yi + ny2 =
n∑

i=1

y2
i − 2ny2 + ny2 =

n∑
i=1

y2
i − ny2.

Substituting back into this for y gives

s2 =
1

n− 1

[
n∑

i=1

y2
i − ny2

]
=

1
n− 1

 n∑
i=1

y2
i − n

(
1
n

n∑
i=1

yi

)2
 =

1
n− 1

 n∑
i=1

y2
i −

1
n

(
n∑

i=1

yi

)2
 .

(1.10) If our data consists of {1, 4, 2, 1, 3, 3}, then we trivially compute

6∑
i=1

yi = 1 + 4 + 2 + 1 + 3 + 3 = 14



and
6∑

i=1

y2
i = 12 + 42 + 22 + 12 + 32 + 32 = 40.

Thus,

s2 =
1

6− 1

 6∑
i=1

y2
i −

1
6

(
6∑

i=1

yi

)2
 =

1
5

[
40− 1

6
· 142

]
=

22
15

.

Note that writing garbage with decimals is unacceptable here!

(1.30) Suppose that there is a set of n measurements, namely y1, y2, . . . , yn. For each measure-
ment, calculate |yi − y| and determine whether or not |yi − y| ≥ ks for a given k > 1. Thus, we
can write

{y1, y2, . . . , yn} = {yi : |yi − y| ≥ ks} ∪ {yi : |yi − y| < ks}.

Suppose that there are n′ of the measurements for which |yi − y| ≥ ks. (Note that 0 ≤ n′ ≤ n.)
This means that n− n′ of the measurements fall within ks of the mean, so that the fraction of
the measurements which do so is

n− n′

n
= 1− n′

n
.

Our goal, therefore, is to show

1− n′

n
≥ 1− 1

k2
.

Suppose that
A = {yi : |yi − y| ≥ ks} and B = {yi : |yi − y| < ks}.

Hence,

s2 =
1

n− 1

n∑
i=1

(yi − y)2 =
1

n− 1

(∑
A

(yi − y)2 +
∑
B

(yi − y)2
)
≥ 1

n− 1

∑
A

k2s2 =
n′k2s2

n− 1
.

The first inequality follows since
∑

B(yi − y)2 ≥ 0 and since (yi − y)2 ≥ k2s2 if yi ∈ A. (Note
that there are n′ points in A.) Therefore, we conclude

s2 ≥ n′k2s2

n− 1
.

Smplifying gives

1 ≥ n′k2

n− 1
which implies

1
k2

≥ n′

n− 1
.

But, notice that n′/(n− 1) ≥ n′/n. Therefore, 1/k2 ≥ n′/n which implies the result.

(1.33) Briefly: Lead content readings must be non-negative. Since 0 is only 0.33 standard
deviations below the mean, the population can only extend 0.33 standard deviations below the
mean. This radically skews the distribution so that it cannot be normal. (If this is unclear,
draw a picture.)


