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Mathematics 
and the Cosmos
Introduction and Brief History
The mathematical study of the cosmos has its roots
in antiquity with early attempts to describe the
motions of the Sun, Moon, stars, and planets in pre-
cise mathematical terms, allowing predictions of
future positions. In modern times many of the
greatest mathematical scientists turned their at-
tention to the subject. Building on Kepler’s dis-
covery of the three basic laws of planetary motion,
Newton invented the subjects of “celestial me-
chanics” and dynamics. He studied the “n-body
problem” of describing the motion of a number of
masses, such as the Sun and the planets and their
moons, under the force of mutual gravitational at-
traction. He was able to derive improved versions
of Kepler’s laws, one of whose consequences yielded
dramatic results just in the past decade when it was
used to detect the existence of planets circling
other stars.

The two leading mathematicians of the eigh-
teenth century, Euler and Lagrange, both made
fundamental contributions to the subject, as did
Gauss at the turn of the century, spurred by the dis-
covery of the first of the asteroids, Ceres, on Jan-
uary 1, 1801. The nineteenth century was framed

by the publication of Laplace’s Méchanique Céleste in five volumes
from 1799 to 1825 and Poincaré’s Les Méthodes Nouvelles de la
Méchanique Céleste in three volumes from 1892 to 1899. The
mid-nineteenth century produced further important contribu-
tions from Jacobi and Liouville, among others, as well as two
groundbreaking new directions that were to provide the basic tools
leading to the two revolutionary breakthroughs of twentieth-cen-
tury physics; Hamilton’s original approach to dynamics became
the springboard for quantum mechanics and the general subject
of dynamical systems, while Riemann’s 1854 “Habili-
tationsschrift” introduced curved spaces of three and more di-
mensions as well as the general notion of an n-dimensional man-
ifold, thus ushering in the modern subject of cosmology leading
to Einstein and beyond.

The twentieth century saw a true flowering of the subject, as
new mathematical methods combined with new physics and
rapidly advancing technology. One might single out three main
areas, with many overlaps and tendrils reaching out in multiple
directions.

First, cosmology became ever more intertwined with astro-
physics, as discoveries were made about the varieties of stars and
their life histories, as well as supernovae and an assortment of
previously unknown celestial objects, such as pulsars, quasars,
dark matter, black holes, and even galaxies themselves, whose ex-
istence had been suspected but not confirmed until the twenti-
eth century. Most critical was the discovery at the beginning of
the century of the expansion of the universe, with its concomi-
tant phenomenon of the Big Bang, and then at the end, the recent
discovery of the accelerating universe, with its associated con-
jectural “dark energy”.

Second, the subject of celestial mechanics evolved into that of
dynamical systems, with major advances by mathematicians
G. D. Birkhoff, Kolmogorov, Arnold, and Moser. Many new dis-
coveries were made about the n-body problem, both general ones,
such as theorems on stability and instability, and specific ones, such
as new concrete solutions for small values of n. Methods of chaos
theory began to play a role, and the theoretical studies were both
informed by and applied to the profusion of new discoveries of
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planets, their moons, asteroids, comets, and other
objects composing the increasingly complex struc-
ture of the solar system.

Third, the advent of actual space exploration,
sending artificial satellites and space probes to
the furthest reaches of the solar system, as well as
the astronaut and cosmonaut programs for nearby
study, transformed our understanding of the ob-
jects in our solar system and of cosmology as a
whole. The Hubble space telescope was just one of
many viewing devices, operating at all wave lengths,
that provided stunning images of celestial objects,
near and far. The 250-year-old theoretical discov-
eries by Euler and Lagrange of critical points known
as “Lagrange points” saw their practical application
in the stationing of satellites. The 100-year-old 
introduction by Poincaré of stable and unstable
manifolds formed the basis of the rescue of 
otherwise abandoned satellites, as well as the plan-
ning of remarkably fuel-efficient trajectories.

Finally, the biggest twentieth-century innova-
tion of all, the modern computer, played an ever-
increasing and more critical role in all of these ad-
vances. Numerical methods were applied to all
three of the above areas, while simulations and com-
puter graphics grew into a major tool in deepen-
ing our understanding. The ever-increasing speed
and power of computers went hand-in-hand with
the increasingly sophisticated mathematical meth-
ods used to code, compress, and transmit messages
and images from satellites and space probes span-
ning the entire breadth of our solar system.
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Space Exploration
Starting in the twentieth century, the mathemati-
cal exploration of the cosmos became inextricably
entwined with the physical exploration of space. On
one hand, virtually all the methods of celestial me-
chanics that had been developed over the centuries
were transformed into tools for the navigation of

rockets, artificial satellites, and space probes. On
the other hand, almost all of those space vehicles
were equipped with scientific instruments for gath-
ering data about the Earth and other objects in our
solar system, as well as distant stars and galaxies
going back to the cosmic microwave background
radiation. Furthermore, the deviations in the paths
of satellites and probes provide direct feedback on
the gravitational field around the Earth and
throughout the solar system.

Beyond these direct effects, there are many other
areas of interaction between the space program and
mathematics. We list just a few:

• GPS: the global positioning system,
• data compression techniques for transmitting

messages,
• digitizing and coding of images,
• error-correcting codes for accurate transmis-

sions,
• “slingshot” or “gravitational boosting” for 

optimal trajectories,
• exploitation of Lagrange points for strategic

placement of satellites,
• dynamical systems methods for energy-

efficient orbit placing,
• finite element modeling for structures such as

spacecraft and antennas.
Some of the satellites and space probes that

have contributed to cosmology and astrophysics are
• the Hubble space telescope,
• the Hipparcos mission to catalog the posi-

tions of a million stars to new levels of accuracy,
• the COBE and WMAP satellites for studying the

cosmic microwave background radiation,
• the Genesis mission and SOHO satellite for

studying the Sun and solar radiation,
• the ISEE3/ICE space probe to study solar flares

and cosmic gamma rays before going on to visit the
Giacobini-Zimmer comet and Halley’s comet,

• the LAGEOS satellites to test Einstein’s pre-
diction of “frame dragging” around a rotating body.

Rather than trying to cover all or even most of
the mathematical links, we focus on two that 
are absolutely essential and central to the whole
endeavor: first, navigation and the planning of 
trajectories; and second, communication and the
transmission of images.

Navigation, Trajectories, and Orbits
When the U.S. space program was set up in
earnest—a process described in detail in the recent
History Channel documentary Race to the Moon—
a notable feature was the introduction of the 
Mission Control Center. The first row of seats in
mission control was known as “the trench”, and it
is from there that the mathematicians whose spe-
cialty is orbital mechanics kept track of trajecto-
ries and fed in the information needed for 
navigation. Their role is particularly important for
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operations involving rendezvous between two 
vehicles, in delicate operations such as landings on
the Moon and in emergencies that call on all their
skills, the most notable of which was bringing back
alive the crew of Apollo 13 after they had to aban-
don the command module and were forced to use
the lunar landing module—never designed for that
purpose—to navigate back to Earth.

The first thing that an astronaut or former 
astronaut will tell you about navigating in a space-
ship is that no amount of experience piloting a
plane will be of any help. On the contrary, previ-
ous experience may be a hindrance, since it 
reinforces one’s natural intuition that if you want
to catch up with an object ahead, you go faster, and
conversely. But if you are orbiting at a certain speed
and have to rendezvous with something ahead,
then “stepping on the accelerator” (translate as
“applying a forward thrust”) will lift you into a
higher orbit where first of all, the vertical distance
between you and the object orbiting ahead will
increase, and second, your average angular veloc-
ity will decrease, by Kepler's third law, and you will
find yourself getting further and further behind.
In fact, the only way in practice to effect a ren-
dezvous and docking maneuver is to feed the data
on both vehicles into a computer and apply the
methods of orbital mechanics to plan a trajectory
that brings both vehicles to the same place at the
same time at essentially the same velocities. Math-
ematically, such maneuvers are best described by
working in phase space, where each point has six
coordinates: three describing its position and three
describing components of its velocity vector. One
must find paths for the two vehicles that come 
together in phase space.

The ability to navigate started with Isaac New-
ton. Not only did he formulate his laws of motion
and of gravity, but he also developed the calculus
which allowed him to put those laws into the 
language of mathematical equations. Today, our
knowledge of the physics involved has been 
improved with the addition of relativity and other
factors that may play a role, and calculus has been
further developed into many different branches of
mathematics.

What kind of mathematics? Newton’s equations
involve the gravitational forces acting upon one of
the participating bodies, arising from all of the
other bodies. Since force is mass times acceleration
and since acceleration is simply the second deriv-
ative of position with respect to time, it is the 
differential calculus that describes the accelera-
tions. Then, once the accelerations are given, it is
necessary to use integral calculus in order to get
from the second derivatives to the positions.

In a more general context, where the mass may
be changing with time, such as happens with an 
extended application of thrust to a vehicle, with the

gradual reduction of weight as fuel is used up, or
in cases of relativistic speeds, the force is given by
the first derivative of momentum, but the princi-
ple is the same.

In the case of the 2-body problem, where the only
force involved is the gravitational attraction be-
tween the two bodies, it is frequently said that
Newton was able to give a complete solution. That
is not, strictly speaking, the case, if one means by
“a solution” of a differential equation, an expres-
sion for the unknown function whose derivatives
appear in the equation. In this case, it would mean
finding an expression for the position as a func-
tion of time. However, what Newton showed was
that the orbit of each of the bodies lies on a conic
section (in a fixed inertial frame of reference), and
in the case considered by Kepler, where the orbit
is an ellipse, there is an explicit expression for 
the time as a function of the position. Commonly 
known as “Kepler’s equation”, it is of the form
t = x− e sinx , in suitable units of time t , where x
is the polar angle from the center of the ellipse and
e is the eccentricity. What one wants, of course, is
x as a function of t , and much effort and ingenu-
ity have gone into finding effective means of solv-
ing Kepler’s equation for x in terms of t . Lagrange
did extensive work on the problem, in the course
of which he developed both Fourier series and

An all-sky image of the infant universe, 380,000 years
after the Big Bang. In 1992, NASA’s COBE mission first
detected tiny temperature fluctuations (shown as color
variations) in the infant universe, a landmark discovery.
The WMAP image brings the COBE picture into sharp
focus. The new, detailed image provides firm answers
to age-old questions. 

Im
ag

e 
b

y 
N

A
SA

/W
M

A
P

Sc
ie

n
ce

 T
ea

m
.



420 NOTICES OF THE AMS VOLUME 52, NUMBER 4

Bessel functions, named after later mathemati-
cians who investigated these concepts in greater 
detail. Both Laplace and Gauss made major con-
tributions, and succeeding generations continued
to work on the subject.

When there are more than two bodies involved,
the problem cannot be solved analytically; instead,
the integration (positions from accelerations) must
be done numerically: now, with high-speed com-
puters. So, numerical integral calculus is a major
factor of spacecraft navigation.

One may picture navigation as being the mod-
eling of mother nature on a computer. At some
time, with the planets in their orbits, a spacecraft
is given a push outward into the solar system. Its
subsequent orbit is then determined by the gravi-
tational forces upon it due to the Sun and planets.
We compute these, step-by-step in time, seeing
how the (changing) forces determine the motion of
the spacecraft. This is very similar to what one
may picture being done in nature.

How does one get an accurate orbit in the com-
puter? The spacecraft’s orbit is measured as it pro-
gresses on its journey, and the computer model is
adjusted in order to best fit the actual measure-
ments. Here one uses another type of calculus: 
estimation theory. It involves changing the initial
“input parameters” (starting positions and veloci-
ties) in the computer in order to make the “output
parameters” (positions and velocities at subse-
quent times) match what is being measured: 
adjusting the computer model to better fit reality.

Also in navigation, one must “reduce” the 
measurements. Usually, the measurements do 
not correspond exactly with the positions in the
computer; one must apply a few formulae before
a comparison can be made. For instance, the 
positions in the computer represent the centers of
mass of the different planets; a radar echo,
however, measures the path from the radio an-
tenna to the spot on a planet’s surfaces from which
the signal bounces back to Earth. This processing
involves the use of trigonometry, geometry, and
physics.

Finally, there is error analysis, or “covariance”
calculus. In the initial planning stages of a mission,
one is more interested in how accurately we will
know the positions of the spacecraft and its tar-
get, not in the exact positions themselves. With low
accuracy, greater amounts of fuel are required,
and it could be that some precise navigation would
not even be possible. Covariance analysis takes
into account (1) what measurements we will have
of the spacecraft: how many and how good, (2)
how accurately we will be able to compute the
forces, and (3) how accurately we will know the 
position of the target. These criteria are then used
in order to determine how closely we can deliver
the spacecraft to the target. Again, poor accuracy

will require more fuel to correct the trajectory once
the spacecraft starts approaching its final target.

One of the mathematical tools used to optimize
some feature of a flight trajectory, such as fuel con-
sumption or flight time, is a maximum principle 
introduced by Pontryagin in 1962. Pontryagin’s
theorem characterizes the optimum values of 
certain parameters, called the controllers, that 
determine a trajectory.

In recent decades, ingenious new methods have
been developed to extract the maximum effect
from the least amount of fuel. One such method
is known as the “slingshot” or “gravity-assisted
trajectory”. By aiming a space vehicle in a way that
crosses the orbit of another planet or moon just
behind that body, the path of the vehicle will be 
deflected, sending it on its way to the next target
with minimum expenditure of fuel. A number of
space probes, such as Cassini-Huygens, have ben-
efited from carefully calculated trajectories that
make multiple use of the slingshot effect. Gravity-
assist methods are equally important for sending
a probe toward the inner planets: Venus and Mer-
cury. In that case, one sends the probe to a point
on the orbit just in advance of the body it is pass-
ing. In both cases, the effect of the fly-by is to alter
the velocity, changing the direction of flight and
leaving the end speed relative to the body it is pass-
ing unchanged. However, that body will be moving
with considerable momentum relative to the Sun,
and there will be an exchange of momentum in
which the body will be slowed down or speeded up
by an infinitesimal amount, while the probe will be
speeded up or slowed down by a considerable
amount relative to the Sun.

More modern, twentieth-century mathematical
methods of dynamical systems have proved 
invaluable in designing complicated fuel-efficient
orbits. These methods include the theory of stable
and unstable manifolds, pioneered by Poincaré,
leading to the subject now known as chaotic 
dynamics, and the KAM theory, due to Kolmogorov,
Arnold, and Moser, of invariant tori and stability.
One of the first achievements of the new methods
was the 1991 rescue of a Japanese spacecraft Hiten
that was stranded without enough fuel to com-
plete a planned mission when a second satellite, 
intended to work in tandem with the first, failed
to operate. The mathematician Edward Belbruno
had designed highly fuel-efficient orbits using
methods derived from chaos theory, and that
turned out to be just what was needed for this 
rescue operation. Belbruno’s methods were incor-
porated into the design used by Giuseppe Racca and
the European Space Agency in sending “SMART-1”,
their first satellite to the Moon, in 2004. Newspa-
per headlines trumpeted “spacecraft reaches moon
on 5 million miles a gallon” as a dramatic way of
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underlining the astonishing fuel efficiency of the
method.

In the past few years, other applications of the
theory of stable and unstable manifolds have been
invoked in trajectory planning. Martin Lo and his
colleagues at the Jet Propulsion Laboratory devel-
oped ways to apply the theory in order to place satel-
lites such as Genesis in an orbit around the Lagrange
point between Earth and the Sun and then return
it to Earth. More recently, the same group, together
with Jerry Marsden at Caltech, have expanded the
method for use in interplanetary travel, along what
they call the “interplanetary superhighway”, a route
derived from the ever-changing configurations of
stable and unstable manifolds in the phase space
of our solar system or selected parts of it. A beau-
tifully illustrated article by Douglas Smith de-
scribing this work can be found in the journal
Engineering and Science.

Communication and Image Transmission
For space exploration and interplanetary probes,
navigational techniques and orbital mechanics may
get you where you want to go, but it is not worth
much if the data collected cannot be successfully
transmitted back to Earth. In the case of the Cassini
spacecraft at Saturn, signals have to travel dis-
tances on the order of a billion miles or more. Data
transmitted from across the planetary system with
very limited power are received on Earth as a very
faint signal (as low as a billionth of a billionth of
a watt) embedded in noise. Only through miracles
of modern technology operating in tandem with
ever-improving mathematical methods is one able
to receive the striking and detailed images that
are now on display.

Two critical processes come into play for trans-
mitting messages of all sorts. The first is com-
pression, to be able to transmit the maximum
amount of information with the least number of
bits, and the second is the use of error-correcting
codes, to overcome problems of noise and distor-
tion. Basically, one wants to eliminate redundancy
to obtain compression of the data, and then one
has to introduce redundancy in order to catch and
correct errors of transmission. The two operations
may at first seem to cancel each other out, but in
fact the types of redundancies involved in the two
cases are quite different.

A variety of mathematical techniques are used
to compress the spacecraft data into fewer bits prior
to transmission to the ground. A simple one avoids
transmitting all sixteen bits of every data element
of a data stream. The value of the first data element
is sent, but for the rest of the elements, only the
difference from the first is sent. The value of the
first element might require sixteen bits, but the dif-
ferences are so small they might only need two or
three bits. Once on the ground the first value can

be added to all the others to restore the original
content. For a large data stream, techniques such
as this can save hours of transmission time and
much storage capacity.

“Entropy coding” is a technique that takes into
account the probability distribution of different sets
of data in order to encode more probable data with
shorter sequences, just as in Morse code where
the letter “E” is represented by a single dot. Image
data compression techniques rely on mathemati-
cal image probability models that exploit the 
similarities between neighboring small picture 
elements to minimize the number of bytes needed
to describe the image.

The possibility of detecting and even correcting
errors in transmission was first pointed out in a
groundbreaking paper of Richard Hamming in
1950. Since then, an entire field has grown up in
which, on one hand, ever more refined methods
have been devised for practical applications, and
on the other hand, the theory of error-correcting
codes has turned out to have fascinating links with
sphere packing and simple groups, beautifully 
described in the book of Thomas Thompson.

More recent mathematical innovations that have
proved to be of both theoretical interest and great
practical use in this connection are the subjects 
of fractals and wavelets. An excellent survey of all 
aspects of image analysis, transmission, and 
reconstruction is the theme essay on Mathematics
and Imaging on the 1998 Mathematics Awareness
Week website.
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From Black Holes to Dark
Energy: Cosmology in the
Twenty-first Century
Cosmology in the twentieth century was almost in
its entirety the outgrowth of Einstein’s founda-
tional paper in 1915 on general relativity. Two
years later he presented his first model of the 
universe based on general relativity together with
Riemann’s notion of the three-sphere.

Side-by-side with the theoretical advances, ob-
servational astronomy led to great leaps in astro-
physics, as the life cycles of stars were discovered
and elaborated, the existence of other galaxies out-
side our own was confirmed, and the expansion of

the universe was demonstrated to the satisfaction
of nearly all. Einstein was able to use general rela-
tivity on the one hand to explain earlier observa-
tions, such as the amount of precession of the
planet Mercury, and on the other hand to make new
predictions for the observers to confirm or refute.
The first and most widely heralded of those was
the prediction of the bending of light as it passed
close to a large mass such as the Sun. Others, such
as gravitational red-shift, gravitational lensing, and
“frame-dragging” around a rotating body, were
confirmed one by one over the course of the cen-
tury. Still others, like the existence of gravity waves,
remain a high priority for twenty-first-century 
experimentalists.

The Nobel Prize-winning work of Russell Hulse
and Joseph Taylor stemmed from their discovery
in 1974 of a pulsar whose “pulses” varied in a 
regular fashion, leading them to conclude that it
had an invisible companion, the pair forming a 
familiar binary system each one circling the other
(or actually, their common center of gravity) in an 
approximately elliptical orbit. In this case, the pair
consisted of two bodies each as massive as the Sun,
but compressed into a tight ball whose diameter
was the size of a small town, and each completed
its orbit around the other in about eight hours.
Under such extreme conditions, the relativistic 
effects would be considerable. One of those 
effects would be the production of gravity waves,
and Einstein’s equations predicted that those waves
would radiate energy in a way that causes the two
bodies to gradually get closer, which would in turn
speed up the rate that they completed each orbit
by a very precise amount. After observing the 
variations in the pulse rate over a period of four
years, Hulse and Taylor were able to show that 
the speed-up was indeed taking place at the rate
predicted, to within less than 1 percent deviation.

This sequence of images shows one of the first 3D simulations, carried out by members of the
European Union Training Network “Sources of Gravitational Waves”. The sequence shows two spinning

black holes merging in the final stages of a rapidly decaying orbit. The leftmost image shows the two
individual black holes about to merge. The individual horizons are shown in the center of the image

(the larger black hole is just above a smaller one). The developing burst of radiation is shown shooting
out towards the upper left direction and to the lower right. The final image on the right shows the final

black hole, with the two original black hole horizon surfaces still seen inside, and it also shows the
developing and intensifying burst of gravitational waves. Images by Ed Seidel and Werner Benger of
the Albert-Einstein-Institut, the Zuse-Institut-Berlin, and the Center for Computation & Technology at

Louisiana State University. Reproduced with permission of the European Union Training Network
“Sources of Gravitational Waves”.
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That provided the first experimental evidence for
the existence of gravity waves.

That evidence, however, was indirect. In fact, the
strength of the predicted waves in the case of the
binary pulsars was far too weak for any hope of di-
rect detection on Earth. However, the same general
principles would apply to a binary pair of black
holes, and there the calculations indicated that the
strength of the waves could be just within the lim-
its of possible detectability with suitably crafted ap-
paratus. Attempts at detection had already begun
in the late 1950s with Joseph Weber. At that time,
not only was the reality of gravity waves in doubt,
but the existence of black holes was generally
greeted with skepticism.

The idea of black holes (although not the name)
arose very soon after Einstein formulated general
relativity. Karl Schwarzschild, despite the fact that
he was in the German army stationed in Russia 
and that it was in the midst of World War I, read
Einstein’s paper and almost immediately was able
to solve Einstein’s equations for the case of the 
gravitational field surrounding a (nonrotating)
spherically symmetric body. A few weeks later he
was able to solve the equations and describe the
space-time curvature in the interior of the body. One
of the consequences of the Schwarzschild solu-
tion seemed to be that a sufficiently massive body
compressed within a sufficiently small radius
(where “sufficiently” was made precise by the
Schwarzschild equations) would have the property
that no radiation or matter could ever escape.
Oddly, a very similar conclusion was reached by
purely Newtonian methods in 1783 by John Michell
in England and became widely known through
Laplace’s famous five-volume Le Système du Monde.
In both cases, however, the question remained
whether it was possible for a real-world physical
body to exist within those parameters. The first 
theoretical evidence was adduced in a 1939 paper
by Robert Oppenheimer and Hartland Snyder, who
calculated the space-time geometry around an 
imploding massive star, under certain simplifying
assumptions, and concluded that the star would
eventually become invisible.

As for the reality of black holes, it was hard for
the experts, much less the general public, to decide
whether they represented science or science fiction.
Many leaders in the field, from Einstein to John
Wheeler, had serious doubts. It was not until the
advent of X-ray astronomy that the balance was
tilted in favor of science. Since X-rays from outer
space do not penetrate our protective atmosphere,
this research developed hand-in-hand with rocket
science. The big discovery was the existence of a
powerful X-ray source in the constellation Cygnus,
designated Cyg X-1. This discovery was made in a
rocket flight in 1964. The first X-ray satellite, Uhuru,
was launched in 1970, while its successor, Einstein,

launched in 1978, was an X-ray telescope that was
able to make X-ray images as sharp as an optical
telescope. Gradually, the scientific community 
became convinced that Cyg X-1 was indeed a real-
life black hole whose physical characteristics 
corresponded closely to those predicted by the
theory. Evidence has accumulated for other X-ray
sources arising from the vicinity of black holes, as
well as black holes in the center of quasars and 
large galaxies, such as our own.

One tool that has become increasingly more im-
portant in the study of black holes as in the rest
of astronomy and cosmology has been computer
simulations. By 2001, such simulations were able
to predict the nature of the gravitational waves
that we might be able to detect from the collision
and merging of two black holes and to display the
results in dramatic images. The reality of black
holes and, in particular, their role in the produc-
tion of gravity waves are now widely enough 
accepted that large amounts of money are being
invested in experimental devices, such as the LIGO
project, to detect associated gravity waves.

Given the extent to which theoretical predic-
tions about black holes appear to be confirmed by
observations, why the continued hesitancy about
their wholehearted acceptance? One answer is that
each of the predictions is based on certain simpli-
fying assumptions and continuing unknowns. For
example, the early models were for a spherically
symmetric nonrotating body, whereas physical 
reality almost certainly corresponds to rotating
bodies with concomitant bulges at the equator.
But most importantly, what was missing in the
early studies and what is conspicuously absent in
the above discussion is the central role of quantum
effects. That, however, would lead us far afield
and can be found in many of the references given
below. Instead, we indicate briefly two further sub-
jects of particular mathematical interest.

In 1953, a young differential geometer, Eugenio
Calabi, made a study of complex manifolds and was
led to conjecture that under very general conditions
there should be a metric on each manifold of a par-
ticularly symmetric nature. This Calabi conjecture
was a subject of great interest and was finally
proved in 1977 by Shing-Tung Yau. Although of con-
siderable mathematical interest, the Calabi-Yau
manifolds, as they came to be known, had no ob-
vious connection to cosmology until the advent of
string theory introduced a whole new dimension—
or, more precisely, set of dimensions—into play.
What the theory required was that, in addition to
our familiar four-dimensional space-time, there
would be six additional “curled-up” space dimen-
sions. Furthermore, the equations of string theory
imply that this six-dimensional component must
have a very particular structure, and in 1984 it
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was proved that the Calabi-Yau manifolds have
precisely the structure needed.

The gift of mathematics to physics provided by
Calabi-Yau manifolds was amply repaid when physi-
cists discovered what was termed “mirror sym-
metry” between pairs of geometrically distinct but
physically linked pairs of Calabi-Yau manifolds.
Using this link, Philip Candelas and his collabora-
tors were able to suggest precise numerical an-
swers to a problem in algebraic geometry that had
seemed far beyond the capabilities of any known
method to provide: the number of rational curves
of given degree on a fifth-degree algebraic hyper-
surface in projective four-space. Those numbers
that algebraic geometers were able to calculate di-
rectly confirmed the predictions arising from
physics.

The other circle of ideas involves what is known
as “curvature flow”. The simplest example con-
sists of starting with a smooth closed curve in the
plane and defining a “flow” by moving the curve
in a direction orthogonal to itself at each point
and at a speed proportional to the curvature at the
point. Intuition suggests that the curve should be-
come progressively more circular. In 1986, Michael
Gage and Richard Hamilton were able to prove the
result, starting from an arbitrary convex curve and
normalizing the flow to fix the area enclosed. In a
rather different situation, Hamilton was led to 
define and study a “Ricci flow” on an arbitrary 
Riemannian manifold, in which the rate of change
of the metric tensor is proportional to the Ricci 
tensor. After some rather spectacular successes 
in which Hamilton was able to use his method to
prove that under certain assumptions such a 
flow tended toward a constant curvature metric,
Grigori Perelman announced in 2003 that he 
used extensions of the method to give complete 
proofs of Poincaré’s conjecture and the Thurston
“Geometrization Conjecture”. Perelman’s proof is
still under review by the mathematical community
before being fully endorsed by the experts. Possi-
ble cosmological implications relate to character-
izing shapes of three-dimensional manifolds that
may constitute the universe as it evolves in time.

In another direction, the curvature flow for
curves was generalized to higher-dimensional 
hypersurfaces, leading to a proof of the “Rie-
mannian Penrose inequality”, first by Huisken and
Ilmanen in 1997 for a single black hole and then
for multiple black holes in 1999 by Hubert Bray.
Roger Penrose was led to the inequality in 1973 by
a physical argument about the nature of black
holes.

It need hardly be said that the number of 
topics touched upon here represents a minuscule
portion of the activity in recent decades in astro-
physics, cosmology, and related parts of mathe-
matics. In some cases, theory has led the way, 

suggesting observations that might be made 
and what to look for in those observations. In 
others, the results of the observations have forced 
theorists to rethink some of their fundamental 
assumptions. One of the most striking examples
along those lines was the discovery in 1998, in the
course of examining a certain class of supernovae,
that the expansion of the universe, rather than
slowing down under the restraining force of grav-
ity, appeared to be speeding up as a result of some
mysterious, hitherto undreamed of force, dubbed
“dark energy”. One immediate thought was that this
was due to Einstein’s notorious “cosmological con-
stant”. But even if it worked mathematically, that
would be no more of a physical explanation than
when Einstein originally inserted it into his equa-
tion for what turned out to be the wrong reason:
his equations seemed to imply that the universe was
expanding or contracting, rather than static in
time, and this was just before the realization that
the universe actually was expanding. The search 
for a satisfactory explanation of dark energy is
sure to occupy a central place in the mathematics
of cosmology for some time to come.
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