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Assignment #9 Solutions

(11.56) For the quadratic model Y = β0 + β1x+ β2x
2 + ε given in the problem, we know that

the least squares estimators β̂i can be found by solving the matrix equation

β̂ββ = (X′X)−1X′Y

where

Y =



y1

y2

y3

y4

y5

y6

y7


X =



1 x1 x2
1

1 x2 x2
2

1 x3 x2
3

1 x4 x2
4

1 x5 x2
5

1 x6 x2
6

1 x7 x2
7


β̂ββ =

β̂0

β̂1

β̂2



From the data given in the problem, we have

Y =



1
0
0
−1
−1
0
0


, X =



1 −3 9
1 −2 4
1 −1 1
1 0 0
1 1 1
1 2 4
1 3 9


.

Hence,

X′X =

 1 1 1 1 1 1 1
−3 −2 −1 0 1 2 3
9 4 1 0 1 4 9

 ·


1 −3 9
1 −2 4
1 −1 1
1 0 0
1 1 1
1 2 4
1 3 9


=

 7 0 28
0 28 0
28 0 196



so that

(X′X)−1 =

 1/3 0 −1/21
0 1/28 0

−1/21 0 1/84

 .
Furthermore,

X′Y =

 1 1 1 1 1 1 1
−3 −2 −1 0 1 2 3
9 4 1 0 1 4 9

 ·


1
0
0
−1
−1
0
0


=

−1
−4
8

 .

Finally, we can conclude that

β̂ββ = (X′X)−1X′Y =

 1/3 0 −1/21
0 1/28 0

−1/21 0 1/84

 ·
−1
−4
8

 =

−15/21
−1/7
1/7

 .



Hence, the quadratic regression fitted to the data is given by

ŷ = (−15/21)− (1/7)x+ (1/7)x2.

2. (b) Referring to Problem #5 on Midterm #2, we see that

SSE(β0, β1) = E[(Y − Ŷ )2] = (µy − β0 − β1µx)2 + σ2
y + β2

1σ
2
x − 2β1σxy,

from which we compute

∂

∂β0
SSE(β0, β1) = −2(µy−β0−β1µx) and

∂

∂β1
SSE(β0, β1) = −2µx(µy−β0−β1µx)+2β1σ

2
x−2σxy.

Furthermore,
∂2

∂β2
0

SSE(β0, β1) = 2,
∂2

∂β2
1

SSE(β0, β1) = 2µ2
x + 2σ2

x, and

∂2

∂β0β1
SSE(β0, β1) =

∂2

∂β1β0
SSE(β0, β1) = 2µx.

Since we have shown already that the partial derivatives equal zero when

β0 = µy − β1µx

and
β1 =

σxy
σ2
x

,

in order for these to be the minimizing values of SSE(β0, β1) we must check the second derivative
test. (A statement of this result can be found on the handout dated March 10.) Since,

∂2

∂β2
0

SSE(β0, β1) = 2 > 0

and since

∂2

∂β2
0

SSE(β0, β1) · ∂
2

∂β2
1

SSE(β0, β1)−
(

∂2

∂β0β1
SSE(β0, β1)

)2

= 2 · (2µ2
x + 2σ2

x)− (2µx)2 = 4σ2
x > 0,

we conclude by the second derivative test that β0 and β1 as given do minimize SSE.

2. (c) Consider the modified linear regression model described by Problem #5 on Midterm #2
which outlines a method of predicting the random variable Y based on information contained
in another random variable X. In particular, the predictor of Y , called Ŷ , is assumed to be a
linear function of X so that Ŷ = β0 + β1X. The problem discusses one way of selecting the
coefficients βi, namely by choosing them to minimize the mean square error E[(Y − Ŷ )2]. As
shown on the Midterm, and in the exercise above, the minimizing values of βi are given by

β0 = µy − β1µx and β1 =
σxy
σ2
x

.

This implies that
Ŷ = µy −

σxyµx
σ2
x

+
σxy
σ2
x

X.



One thing to immediately notice is that the best linear predictor of Y (in the minimum mean
square error sense) depends not only on the random variable X, but on some ancillary informa-
tion about Y , namely its mean, µy; its variance, σ2

y ; and its covariance with X, σxy. Suppose,
however, that Cov(X,Y ) = 0. Then, in the notation of the problem at hand, σxy = 0 so that

β1 =
σxy
σ2
x

= 0 and β0 = µy − β1µx = µy,

and
Ŷ = µy.

This says that the best linear predictor (in the mean square sense) of Y is now simply µy, the
mean of Y . Notice, in particular, that knowledge of X has no bearing on prediction of Y . It is
in this sense that uncorrelatedness is similar to independence. (Although, of course, dependent
random variables may be uncorrelated.)

(11.81) Suppose that
Y = [Y1 Y2 · · · Yn] and 1 = [1 1 · · · 1]

are both 1× n vectors. Then, we can write

Y =
1
n
1
′Y = [1/n 1/n · · · 1/n]


Y1

Y2
...
Yn

 .
In matrix form, we are interested in the equation

Y = xxx′β̂ββ

where
xxx′ = [x1 x2 · · · xk] and β̂ββ

′
= [β̂1 β̂1 · · · β̂k].

Suppose that Y = Y so that
Y = xxx′β̂ββ = xxx′(X′X)−1X′Y.

This implies
1
n
1
′Y = xxx′(X′X)−1X′Y

so that
1
n
1
′ = xxx′(X′X)−1X′,

or
1
n
1
′X = xxx′(X′X)−1X′X = xxx′.

Hence, we conclude that

xxx′ =
1
n
1
′X = [1x1 x2 · · · xk].

In other words, the point (x1, x2, . . . , xk, Y ) satisfies the equation Y = xxx′β̂ββ so that the least
squares prediction line must pass through this point.


