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(8.9) (a) Let θ = Var(Y ), and θ̂ = n(Y/n)(1 − Y/n). To prove θ̂ is unbiased, we must show
that E(θ̂) 6= θ. Since

E(θ̂) = E(n(Y/n)(1− Y/n)) = E(Y )− 1
n
E(Y 2),

and since Y is Binomial(n, p) so that E(Y ) = np, E(Y 2) = Var(Y ) + [E(Y )]2 = np(1−p) +n2p2,
we conclude that

E(θ̂) = np− np(1− p) + n2p2

n
= (n− 1)p(1− p).

(b) As an unbiased estimator, use

n

n− 1
θ̂ = n

(
Y

n− 1

)(
1− Y

n

)
.

(8.10) (a) If θ̂ = max(Y1, . . . , Yn), then its distribution function is

F (t) = θ−nα tnα

so that
f(t) = nα θ−nα tnα−1, 0 ≤ y ≤ θ.

We easily calculate that

E(θ̂) =
∫ θ

0
nα θ−nα tnα dt =

nα θ−nα θnα+1

nα+ 1
=

nα

nα+ 1
θ.

Thus, we conclude θ̂ is a biased estimator of θ.

(b) Clearly, the estimator

nα+ 1
nα

θ̂ =
nα+ 1
nα

max(Y1, . . . , Yn)

is an unbiased estimator of θ.

(c) In order to calculate MSE(θ̂) we must find Var(θ̂). We find

E(θ̂2) =
∫ θ

0
nα θ−nα tnα+1 dt =

nα θ−nα θnα+2

nα+ 2
=

nα

nα+ 2
θ2.

Thus,

Var(θ̂) = E(θ̂2)− [E(θ̂)]2 =
nα

nα+ 2
θ2 −

[
nα

nα+ 1
θ

]2

=
nα

(nα+ 1)2(nα+ 2)
θ2.

Finally,

MSE(θ̂) = Var(θ̂) + [B(θ̂)]2 =
[

nα

(nα+ 1)2(nα+ 2)
+

1
(nα+ 1)2

]
θ2 =

2θ2

(nα+ 1)(nα+ 2)
.



(8.34) Let θ = V (Y ). If Y is a geometric random variable, then

E(Y 2) = V (Y ) + [E(Y )]2 =
2
p2
− 1
p
.

Now a little thought shows that

E

(
Y 2

2
− Y

2

)
=

1
p2
− 1

2p
− 1

2p
=

1
p2
− 1
p

=
1− p
p2

= θ.

Thus, choose

V̂ (Y ) = θ̂ =
Y 2 − Y

2
.

If Y is used to estimate 1/p, then a two standard error bound on the error of estimation is given
by

2
√
V̂ (Y ) = 2

√
θ̂ = 2

√
Y 2 − Y

2
.

(9.1) Using the results of Exercise 8.4, we find

Var(θ̂1) = θ2, Var(θ̂2) =
θ2

2
, Var(θ̂3) =

5θ2

9
, Var(θ̂5) =

θ2

3
.

Thus,

eff(θ̂1, θ̂5) =
Var(θ̂5)

Var(θ̂1)
=

1
3
, eff(θ̂2, θ̂5) =

Var(θ̂5)

Var(θ̂2)
=

2
3
, eff(θ̂3, θ̂5) =

Var(θ̂5)

Var(θ̂3)
=

3
5
.

(9.4) In Example 9.1, it is shown that

Var(θ̂2) =
θ2

n(n+ 2)
,

and we have as a simple extension of Problem #1 on Assignment #2 that

Var(θ̂1) = (n+ 1)2 Var(Y(1)) = (n+ 1)2

[
2θ2

(n+ 1)(n+ 2)
− θ2

(n+ 1)2

]
=

nθ2

n+ 2
.

Thus we conclude,

eff(θ̂1, θ̂2) =
Var(θ̂2)

Var(θ̂1)
=

1
n2
.

Notice that this result implies that

Var(θ̂1) = n2 Var(θ̂2).

As n increases, the variance of θ̂1 increases very quickly relative to the variance of θ̂2. In other
words, the larger n, the bigger the variance of θ̂1 relative to variance θ̂2. Thus, θ̂2 is a markedly
superior (unbiased) estimator.

(9.7) If MSE(θ̂1) = θ2, then Var(θ̂1) = MSE(θ̂1) = θ2 since θ̂1 is unbiased. If θ̂2 = Y , then since
the Yi are exponential, we conclude E(Y ) = θ and Var(Y ) = θ2/n. Thus,

eff(θ̂1, θ̂2) =
Var(θ̂2)

Var(θ̂1)
=

1
n
.



(9.62) If Y has a Poisson distribution, then E(Y ) = λ. Hence, the method of moments implies
that µ1 = µ̂1 or

λ̂MOM = Y .

(9.64) If Y has a normal distribution, then E(Y ) = µ and E(Y 2) = µ2 + σ2. (Think back to
Assignment #1.) Hence, the method of moments implies that µ1 = µ̂1 and µ2 = µ̂2 so that

µ = Y and µ2 + σ2 =
1
n

∑
Y 2
i .

Solving this system of equation gives

µ̂MOM = Y and σ̂2
MOM =

1
n

∑
Y 2
i − Y

2 =
1
n

∑
(Yi − Y )2 =

n− 1
n

S2.

(9.66) (a) If Y has density f(y|θ) = 2θ−2(θ − y) for 0 ≤ y ≤ θ, then

E(Y ) =
∫ θ

0
2θ−2y(θ − y) dy =

θ

3
.

Thus, the method of moments implies that µ1 = µ̂1 or

θ̂MOM = 3Y .

2. (a) It is highly unlikely that the iid assumption is reasonable. In order to postulate iid
Bin(k, p), she is assuming that each animal has the same probability of being trapped. This is
doubtful both within a species and between species. (Are some animals “dumber” and others
“smarter”? What about different species? Are some more cautious than others?) This is also
doubtful because animals are likely to get “smarter” after being trapped once. (Think of any
Pavlovian experiment.) The independent trials assumption is also dubious. Is it reasonable to
assume that animals do not warn others of the danger of the trap? Probably not.

(b) For a Bin(k, p) random variable Y , we have E(Y ) = kp and E(Y 2) = Var(Y ) + [E(Y )]2 =
kp(1−p)+k2p2. The method of moments system implies that µ̂1 = kp and µ̂2 = kp(1−p)+k2p2.
Solving gives

p̂MOM = 1− µ̂2 − (µ̂1)2

µ̂1

and
k̂MOM =

µ̂1

p̂MOM
.

The data yield µ̂1 = 12.6 and µ̂2 = 163. Thus,

p̂MOM =
209
315
≈ 0.663 and k̂MOM =

3969
209

≈ 19.

(c) In this case the data yield µ̂1 = 11.2 and µ̂2 = 139.2 which give

p̂MOM =
−8
35
≈ −0.229 and k̂MOM = −49.

These are nonsensical estimates since we require p ∈ [0, 1] and k > 0. Clearly if these were
the data observed, the postulate of a binomial distribution would definitely be cast into serious
doubt!


