
Solutions

1. (a) Observe that f(x) � 0 for all x 2 R and that
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so that f is, in fact, a legitimate density.

1. (b) By definition,
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1. (c) We find
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so that
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1. (d) Note that if x < 1, then F (x) = 0, while if x > 2, then F (x) = 1. However, if
1  x  2, then
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In summary,
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1. (e) The median of X is that value a for which
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or equivalently, that value of a for which F (a) = P (X  a) = 1/2. Thus, since we found F
in (d), we conclude that a satisfies
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2. (a) If x � 0, then
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2. (b) If y � 0, then
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so by the fundamental theorem of calculus, if z � 0, then
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so by the fundamental theorem of calculus, if z � 0, then
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3. By the law of total probability,
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(Note that this final integral equals 1 since it represents the total area under a density
curve—the density for X, in fact.)

4. By the law of the unconscious statistician, we have

E[F (X)] =
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If we make the change of variables u = F (x), then du = F 0(x) dx. But we know that F 0 = f
so that du = f(x) dx. Now for the limits of integration. Since F (x) ! 1 as x ! 1 and
since F (x) ! 0 as x ! �1, we find
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as required.


