Statistics 251-Introduction to Probability
 Fall 2015 (201530)
 Final Exam Solutions

Instructor: Michael Kozdron

1. (a) By definition, $F_{X}(x)=\mathbf{P}(X \leq x)$. Note that if $x<1$, then $F_{X}(x)=0$. If $1 \leq x \leq 2$, then

$$
F_{X}(x)=\int_{1}^{x}(4-2 t) \mathrm{d} t=\left.\left(4 t-t^{2}\right)\right|_{1} ^{x}=4 x-x^{2}-3
$$

If $x>2$, then $F_{X}(x)=1$. In summary,

$$
F_{X}(x)= \begin{cases}0, & x<1 \\ 4 x-x^{2}-3, & 1 \leq x \leq 2 \\ 1, & x \geq 2\end{cases}
$$

1. (b) We find

$$
\mathbb{E}(X)=\int_{1}^{2}\left(4 x-2 x^{2}\right) \mathrm{d} x=\left.\left(2 x^{2}-\frac{2}{3} x^{3}\right)\right|_{1} ^{2}=8-\frac{16}{3}-2+\frac{2}{3}=6-\frac{14}{3}=\frac{4}{3} .
$$

1. (c) We find

$$
\mathbb{E}\left(X^{2}\right)=\int_{1}^{2}\left(4 x^{2}-2 x^{3}\right) \mathrm{d} x=\left.\left(\frac{4}{3} x^{3}-\frac{2}{4} x^{4}\right)\right|_{1} ^{2}=\frac{32}{3}-\frac{32}{4}-\frac{4}{3}+\frac{2}{4}=\frac{28}{3}-\frac{30}{4}=\frac{56}{6}-\frac{45}{6}=\frac{11}{6}
$$

and so

$$
\operatorname{Var}(X)=\mathbb{E}\left(X^{2}\right)-[\mathbb{E}(X)]^{2}=\frac{11}{6}-\left(\frac{4}{3}\right)^{2}=\frac{11}{6}-\frac{16}{9}=\frac{33}{18}-\frac{32}{18}=\frac{1}{18} .
$$

1. (d) Note that $m=\operatorname{Med}(X)$ if $F_{X}(m)=0.5$. That is, m satisfies

$$
4 m-m^{2}-3=\frac{1}{2}, \quad \text { or equivalently, } \quad m^{2}-4 m+\frac{7}{2}=0
$$

Solving for m implies that

$$
m \in\left\{\frac{4 \pm \sqrt{16-14}}{2}\right\}=\left\{2-\frac{1}{\sqrt{2}}, 2+\frac{1}{\sqrt{2}}\right\}
$$

Since $\mathbf{P}(1 \leq X \leq 2)=1$, it is clear that the smaller of the two roots of the quadratic satisfied by m is the median; that is,

$$
\operatorname{Med}(X)=2-\frac{1}{\sqrt{2}}
$$

1. (e) Note that $\mathbf{P}(X \geq 1)=1$ implying that

$$
\mathbf{P}(X \leq 1.5 \mid X \geq 1)=\mathbf{P}(X \leq 1.5)=F_{X}(1.5)=4 \cdot \frac{3}{2}-\left(\frac{3}{2}\right)^{2}-3=\frac{3}{4}
$$

2. Note that $X Y=0$ if and only if at least one of X or Y equals 0 . That is,

$$
\{X Y=0\}=\{X=0\} \cup\{Y=0\}
$$

and so

$$
\begin{aligned}
\mathbf{P}(X Y=0)=\mathbf{P}(\{X=0\} \cup\{Y=0\}) & =\mathbf{P}(X=0)+\mathbf{P}(Y=0)-\mathbf{P}(\{X=0\} \cap\{Y=0\}) \\
& =\mathbf{P}(X=0)+\mathbf{P}(Y=0)-\mathbf{P}(X=0) \mathbf{P}(Y=0)
\end{aligned}
$$

where the last equality uses the fact that X and Y are independent.
3. Note that $B \subset A \cup B$ so that $0.4=\mathbf{P}(B) \leq \mathbf{P}(A \cup B)$. Moreover,

$$
\mathbf{P}(A \cup B)=\mathbf{P}(A)+\mathbf{P}(B)-\mathbf{P}(A \cap B) \leq \mathbf{P}(A)+\mathbf{P}(B)=0.4+0.2=0.6
$$

implying that $0.4 \leq \mathbf{P}(A \cup B) \leq 0.6$. (Note that there are no tighter bounds possible using only the given information. In particular, if you use $A \subset A \cup B$ to conclude $0.2=\mathbf{P}(A) \leq \mathbf{P}(A \cup B)$, then, although it is a true statement, it is not the largest possible lower bound using the given information.)
4. Let A_{i} be the event that Andrew opens the lock on the i th try. Therefore, the probability that Andrew opens the lock on the third try is

$$
\mathbf{P}\left(A_{1}^{c} \cap A_{2}^{c} \cap A_{3}\right)=\mathbf{P}\left(A_{1}^{c}\right) \cdot \mathbf{P}\left(A_{2}^{c} \mid A_{1}^{c}\right) \cdot \mathbf{P}\left(A_{3} \mid A_{1}^{c} \cap A_{2}^{c}\right)=\frac{9}{10} \cdot \frac{8}{9} \cdot \frac{1}{8}=\frac{1}{10} .
$$

5. Let A denote Alice's number and let B denote Bob's number. Clearly $\mathbf{P}(A=B)=\frac{6}{36}$ implying that $\mathbf{P}(A \neq B)=\frac{30}{36}$. By symmetry, $\mathbf{P}(A<B)=\mathbf{P}(B<A)=\frac{15}{36}$. Therefore if X denotes Alice's winnings, then
$\mathbb{E}(X)=10 \cdot \mathbf{P}(X=10)-5 \cdot \mathbf{P}(X=5)=10 \mathbf{P}(A>B)-5 \mathbf{P}(A \geq B)=10 \cdot \frac{15}{36}-5 \cdot \frac{21}{36}=\frac{45}{36}=\frac{5}{4}$.
6. The distribution function of Y is
$F_{Y}(y)=\mathbf{P}(Y \leq y)=\mathbf{P}\left(2+\frac{2}{X} \leq y\right)=\mathbf{P}\left(\frac{2}{X} \leq y-2\right)=\mathbf{P}\left(X \geq \frac{2}{y-2}\right)=1-\mathbf{P}\left(X \leq \frac{2}{y-2}\right)$
implying that the density function of Y is

$$
\begin{aligned}
f_{Y}(y)=\frac{\mathrm{d}}{\mathrm{~d} y} F_{Y}(y)=-f_{X}\left(\frac{2}{y-2}\right) \cdot \frac{\mathrm{d}}{\mathrm{~d} y} \frac{2}{y-2} & =\frac{2}{(y-2)^{2}} f_{X}\left(\frac{2}{y-2}\right) \\
& =\frac{2}{(y-2)^{2}} \cdot 168 \cdot\left(\frac{2}{y-2}\right)^{5}\left(1-\frac{2}{y-2}\right)^{2} \\
& =10752 \frac{(y-4)^{2}}{(y-2)^{9}}
\end{aligned}
$$

provided that $y>4$.
7. Let $X_{i}=1$ if the i th flip is heads and let $X_{i}=0$ if the i th flip is tails. The total number of heads is $S=X_{1}+\cdots+X_{400}$. Note that $\mathbb{E}\left(X_{i}\right)=1 / 2$ and $\operatorname{Var}\left(X_{i}\right)=1 / 4$ so that

$$
\mathbb{E}(S)=\mathbb{E}\left(X_{1}+\cdots+X_{400}\right)=\mathbb{E}\left(X_{1}\right)+\cdots+\mathbb{E}\left(X_{400}\right)=400 \cdot \frac{1}{2}=200
$$

Furthermore, since X_{1}, \ldots, X_{400} are independent,

$$
\operatorname{Var}(S)=\operatorname{Var}\left(X_{1}+\cdots+X_{400}\right)=\operatorname{Var}\left(X_{1}\right)+\cdots+\operatorname{Var}\left(X_{400}\right)=400 \cdot \frac{1}{4}=100
$$

Therefore, Chebychev's inequality implies

$$
\mathbf{P}(185 \leq S \leq 215)=\mathbf{P}(-15 \leq S-200 \leq 15)=\mathbf{P}(|S-200| \leq 15) \geq 1-\frac{\operatorname{Var}(S)}{15^{2}}=1-\frac{100}{225}=\frac{5}{9}
$$

8. Using the fact that X and Y are independent, we conclude that the moment generating function for Z is

$$
\begin{aligned}
m_{Z}(t)=\mathbb{E}\left(e^{t Z}\right)=\mathbb{E}\left(e^{t(X+Y)}\right)=\mathbb{E}\left(e^{t X} e^{t Y}\right)=\mathbb{E}\left(e^{t x}\right) \mathbb{E}\left(e^{t Y}\right)=m_{X}(t) m_{Y}(t) & =(1-2 t)^{-3}(1-2 t)^{-2} \\
& =(1-2 t)^{-5}
\end{aligned}
$$

Since

$$
m_{Z}^{\prime}(t)=10(1-2 t)^{-6}, \quad m_{Z}^{\prime \prime}(t)=120(1-2 t)^{-7}, \quad m_{Z}^{\prime \prime \prime}(t)=1680(1-2 t)^{-8}
$$

we conclude that

$$
\mathbb{E}\left(Z^{3}\right)=m_{Z}^{\prime \prime \prime}(0)=1680
$$

9. (a) The probability that motor i operates for at least 5 months is

$$
P\left(X_{i} \geq 5\right)=\int_{5}^{\infty} e^{-x} \mathrm{~d} x=e^{-5}
$$

Therefore, the probability that at least 3 motors operate for at least 5 months is

$$
\begin{aligned}
& \mathbf{P} \text { (at least } 3 \text { of the } 5 \text { motors operate for at least } 5 \text { months) } \\
& =\mathbf{P}(\text { exactly } 3 \text { of the } 5 \text { motors operate for at least } 5 \text { months) } \\
& \quad+\mathbf{P}(\text { exactly } 4 \text { of the } 5 \text { motors operate for at least } 5 \text { months) } \\
& \quad \quad \quad \mathbf{P}(\text { exactly } 5 \text { of the } 5 \text { motors operate for at least } 5 \text { months }) \\
& =\binom{5}{3}\left(e^{-5}\right)^{3}\left(1-e^{-5}\right)^{2}+\binom{5}{4}\left(e^{-5}\right)^{4}\left(1-e^{-5}\right)^{1}+\binom{5}{5}\left(e^{-5}\right)^{5}\left(1-e^{-5}\right)^{0} \\
& =10 e^{-15}\left(1-e^{-5}\right)^{2}+5 e^{-20}\left(1-e^{-5}\right)+e^{-25} \\
& =e^{-25}\left(10 e^{-10}-15 e^{-5}-6\right) \\
& \doteq 0.0000030281
\end{aligned}
$$

9. (b) By definition, the distribution function of Y is $F_{Y}(y)=\mathbf{P}(Y \leq y)$. Clearly, if $y \leq 0$, then $F_{Y}(y)=0$. However, if $y>0$, then

$$
\begin{aligned}
\mathbf{P}(Y \leq y)=1-\mathbf{P}(Y>y) & =1-\mathbf{P}\left(\min \left\{X_{1}, X_{2}, X_{3}, X_{4}, X_{5}\right\}>y\right) \\
& =1-\mathbf{P}\left(X_{1}>y, X_{2}>y, X_{3}>y, X_{4}>y, X_{5}>y\right) \\
& =1-\mathbf{P}\left(X_{1}>y\right) \mathbf{P}\left(X_{2}>y\right) \mathbf{P}\left(X_{3}>y\right) \mathbf{P}\left(X_{4}>y\right) \mathbf{P}\left(X_{5}>y\right) \\
& =1-\left[\mathbf{P}\left(X_{1}>y\right)\right]^{5} \\
& =1-\left(e^{-y}\right)^{5} \\
& =1-e^{-5 y} .
\end{aligned}
$$

In summary,

$$
F_{Y}(y)= \begin{cases}0, & y \leq 0 \\ 1-e^{-5 y}, & y>0\end{cases}
$$

Thus, the density function of Y is

$$
f_{Y}(y)=\frac{\mathrm{d}}{\mathrm{~d} y} F_{Y}(y)= \begin{cases}0, & y \leq 0, \\ 5 e^{-5 y}, & y>0,\end{cases}
$$

and so

$$
\mathbb{E}(Y)=\int_{0}^{\infty} 5 y e^{-5 y} \mathrm{~d} y=\frac{1}{5} \int_{0}^{\infty} u e^{-u} \mathrm{~d} u=\frac{1}{5} \cdot \Gamma(2)=\frac{1}{5}
$$

10. We observe that $\mathbf{P}(0 \leq X \leq 1)=1$ and so if $Y>1$, then Y is necessarily greater than X. That is, $\mathbf{P}(X>Y \mid Y>1)=0$. Hence, using the law of total probability, we obtain

$$
\begin{aligned}
\mathbf{P}(X & >Y)=\int_{-\infty}^{\infty} \mathbf{P}(X>Y \mid Y=y) f_{Y}(y) \mathrm{d} y=\int_{-\infty}^{\infty} \mathbf{P}(X>y) f_{Y}(y) \mathrm{d} y=\frac{1}{2} \int_{0}^{2} \mathbf{P}(X>y) \mathrm{d} y \\
& =\frac{1}{2} \int_{0}^{1} \mathbf{P}(X>y) \mathrm{d} y+\frac{1}{2} \int_{1}^{2} \mathbf{P}(X>y) \mathrm{d} y=\frac{1}{2} \int_{0}^{1} \mathbf{P}(X>y) \mathrm{d} y+0=\frac{1}{2} \int_{0}^{1}\left[\int_{y}^{1} \mathrm{~d} x\right] \mathrm{d} y \\
& =\frac{1}{2} \int_{0}^{1}(1-y) \mathrm{d} y=\frac{1}{2}\left(1-\frac{1}{2}\right)=\frac{1}{4} .
\end{aligned}
$$

11. (a) If X_{t} denotes the number of pairs of shoes that Jessica has bought up to time t (measured in weeks), then X_{t} has a Poisson distribution with parameter λt. Since she is assumed to buy shoes at a rate of 1 pair per week, we know $\lambda=1$. Therefore, the expected number of shoes that she buys in one year is $\mathbb{E}\left(X_{52}\right)=52$.
12. (b) The probability that she bought 6 pairs of shoes in February 2015 is

$$
\mathbf{P}\left(X_{4}=6\right)=\frac{4^{6}}{6!} e^{-4} .
$$

11. (c) Using properties of conditional probability and the Poisson process, we find

$$
\begin{aligned}
\mathbf{P}\left(X_{1}=2 \mid X_{4}=6\right)=\frac{\mathbf{P}\left(X_{4}=6 \mid X_{1}=2\right) \mathbf{P}\left(X_{1}=2\right)}{\mathbf{P}\left(X_{4}=6\right)}=\frac{\mathbf{P}\left(X_{3}=4\right) \mathbf{P}\left(X_{1}=2\right)}{\mathbf{P}\left(X_{4}=6\right)} & =\frac{\frac{3^{4}}{4!} e^{-3} \frac{1^{2}}{2!} e^{-1}}{\frac{4^{6}}{6!} e^{-4}} \\
& =\frac{1215}{4096} .
\end{aligned}
$$

