Math 26L. 04
Normal Distributions

For $-\infty<t<\infty$, the normal density function is

$$
p(t)=\frac{1}{\sqrt{2 \pi} \sigma} e^{-\frac{(t-\mu)^{2}}{2 \sigma^{2}}}
$$

where μ is the mean and $\sigma>0$ is the standard deviation (or spread).

This first graph shows three normal density curves. All three have $\sigma=1$, but one has $\mu=0$, one has $\mu=1$, and one has $\mu=-1$.

This second graph shows three normal density curves. All three have $\mu=0$, but one has $\sigma=2$, one has $\sigma=1 / 2$, and one has $\sigma=1 / 4$.

This third graph also shows three normal density curves. However, the first curve has $\mu=0$ and $\sigma=2$, the second curve has $\mu=-1$ and $\sigma=1 / 2$, and the third curve has $\mu=1$ and $\sigma=1 / 4$.

