Math 26L.04 Normal Distributions

For $-\infty < t < \infty$, the normal density function is

$$p(t) = \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{(t-\mu)^2}{2\sigma^2}}$$

where μ is the mean and $\sigma > 0$ is the standard deviation (or spread).

This first graph shows three normal density curves. All three have $\sigma = 1$, but one has $\mu = 0$, one has $\mu = 1$, and one has $\mu = -1$.

This second graph shows three normal density curves. All three have $\mu = 0$, but one has $\sigma = 2$, one has $\sigma = 1/2$, and one has $\sigma = 1/4$.

This third graph also shows three normal density curves. However, the first curve has $\mu = 0$ and $\sigma = 2$, the second curve has $\mu = -1$ and $\sigma = 1/2$, and the third curve has $\mu = 1$ and $\sigma = 1/4$.

