Math 026L. 04 Spring 2002
January 23, 2002

1. Page 50 \#35

The depth of water in a tank oscillates sinusoidally once every 6 hours. If the smallest depth is 5.5 feet and the largest depth is 8.5 feet, find a possible formula for the depth in terms of time in hours.

2. Page $51 \# 39$

(a) Use a graphing calculator or computer to estimate the period of $2 \sin (\theta)+3 \cos (2 \theta)$.
(b) Explain your answer, given that the period of $\sin (\theta)$ is 2π and the period of $\cos (2 \theta)$ is π.

3. Page 161 \#73

The depth of water, y, in meters, in the Bay of Fundy is given as a function of time, t, in hours after midnight, by the function

$$
y=10+7.5 \cos (0.507 t)
$$

How quickly is the tide rising or falling (in m / h) at each of the following times?
(a) 6:00 am
(b) 9:00 am
(c) Noon
(d) 6:00 pm

4. Page 159 \#65

The graphs of $\sin x$ and $\cos x$ intersect once between 0 and $\pi / 2$. What is the angle between the two curves at the point where they intersect? (You need to think about how the angle between two curves should be defined.)

5. Page $159 \# 57$

Assuming y is a differentiable function of x, find $\frac{d y}{d x}$ if

$$
\sin (a y)+\cos (b x)=x y
$$

6. For each part below, compute the derivative of the given function.
(a) Page $159 \# 6$

$$
z=\sin ^{3} \theta
$$

(b) Page 159 \#14

$$
s(x)=\arctan (2-x)
$$

