## The Definition of the Sine Function

The function $\sin \theta$ is a function assigning to each angle $\theta$ some real number $\sin \theta$. In the case when $\theta$ is an acute angle, we can define $\sin \theta$ as the ratio of the side lengths of an associated right triangle, as follows. Given an acute angle $\theta$, consider the right triangle that has $\theta$ as one of its angles. The value of $\sin \theta$ is then defined to be the ratio of the length of the side opposite to $\theta$ to the length of the hypotenuse.

If the angle $\theta$ is not an acute angle, the definition above will not work; there will be no right triangle including $\theta$ as an angle. We can make a more general definition of $\sin \theta$ as follows. Consider the angle $\theta$ as a point on the unit circle, measuring counterclockwise from the positive $x$-axis. We then define $\sin \theta$ to be $y$-coordinate of this point.

In the case when $\theta$ is an acute angle, these two definitions coincide. Given an acute angle $\theta$, the point $P$ on the unit circle corresponding to $\theta$ will be in the first quadrant. Consider the right triangle formed by the segment between the origin and $P$, the vertical segment between $P$ and the $x$-axis, and the horizontal segment from there to the origin. This right triangle contains $\theta$ as one of its angles, so we can use it to define $\sin \theta$ as in the first definition above. The length of the hypotenuse of this triangle is 1 (since $P$ is on the unit circle), and the length of the side opposite to $\theta$ is given by the $y$-coordinate of $P$. Thus the ratio of the length of the opposite side to the length of the hypotenuse is equal to the $y$-coordinate of the point on the unit circle corresponding to $\theta$, so the two definitions coincide.

