Math 103.01 Summer 2000
June 12, 2001

1. Use a triple integral to find the volume of the tetrahedron T bounded by the planes $x+2 y+z=2, x=2 y, x=0$, and $z=0$.
2. Express the integral

$$
\iiint_{T} f(x, y, z) d V
$$

as an iterated integral in six different ways, where T is the solid bounded by the given surfaces:
a. $\quad z=0, x=0, y=2, z=y-2 x$
b. $\quad 9 x^{2}+4 y^{2}+z^{2}=1$
3. Evaluate

$$
\iiint_{T} \sqrt{x^{2}+z^{2}} d V
$$

where T is the region bounded by the paraboloid $y=x^{2}+z^{2}$ and the plane $y=4$.
4. Evaluate

$$
\iiint_{T} x+2 y d V
$$

where T is the region bounded by the parabolic cylinder $y=x^{2}$ and the planes $x=z, x=y$, and $z=0$.

