- 1. Each year a company must send 3 officials to a meeting in China and 5 officials to a meeting in France. Airline ticket prices vary from time to time. Past experience has shown that tickets to China have a mean price of \$1000 with standard deviation \$150, while the mean airfare to France is \$500 with standard deviation \$100.
- a) (6%) Define random variables and use them to express the total amount the company will have to spend to send these delegates to the two meetings.
 - b) (9%) Find the mean and standard deviation of this total cost.
- c) (9%) Find the mean and standard deviation of the difference in price of a ticket to China and a ticket to France.
- d) (4%) Do you need to make any extra assumptions in calculating these means? How about the standard deviation?
- 2. A psychology department at a university finds that the scores of its applicants on SAT math are approximately normal with mean 544 and standard deviation 103.
 - a) (8%) Find the approximate percentage of applicants having 544 or higher.

- b) (8%) Find the approximate percentage of applicants having scores lower than 444.
- c) (8%) An applicant's score is better than 90% of the applicants. What is her score?
- 3. It is known that 49% of new born babies are girls. A random sample of 800 babies have been chosen.
- a) (4%) What is the approximate distribution of the sample proportion of girls with what mean and standard deviation?
- b) (8%) What is the approximate probability that the sample proportion of girls is higher than 50%?
- c) (8%) What is the approximate probability of the sample proportion of girls lying in (48%, 52%)?
- 4. (12%) Samuel Pepys wrote to Isac Newton: "What is more likely (a) at least one 6 in 6 rolls; (b) at least two 6's in 12 rolls? Calculate these two probabilities and answer Pepys' question.
- 5. Two couples are invited to go to dinner. The probability that couple A shows up is 0.9 and for couple B 0.8. Assume they show up independently.
- a) (8%) What is the probability that both show up? What is the probability that nobody shows up?
- b) (8%) Let X be the number of couples that will show up. What is P(X = 1)? What is the expectation and the standard deviation of X?

Math 171 Birst prelim

Fd. 20" 2003

MATH 171 - PRELIM 1 - SOLUTIONS

b)
$$E(A) = E(3C + 5F) = E(3C) + E(5F) =$$

= $3E(C) + 5E(F) = 3(1000) + 5(500)$
= 45500

$$Var(A) = Var(3c) + Var(5F) =$$

= $3^2 Var(c) + 5^2 Var(F)$
= $9 \cdot 150^2 + 25 \cdot 100^2$

$$SD(A) = \sqrt{452500} = $672.68$$

c) Let
$$D = deference in price $D = C - F$
 $E(D) = E(C) - E(F) = $\frac{8}{500}$
 $Var(D) = Var(C) + Var(F) =$$$

$$= 150^2 + 100^2 = 32500$$

$$50(0) = \sqrt{32500} = 4180.28$$

e) No extra assumption needled for expectation Independence assuption of X ad Y is Welded for Atandard devication

a) P(X > 544) = .5 by symmetry of normal

6)
$$p(x<444) = p(x-544<444-544)$$

= $p(x<444) = p(x-544)$

=
$$p(X < q)$$
 where q is the answer = $p(X - 544 < q - 544) = $p(Z < q - 544)$$

$$\frac{9-544}{103} = 1.28$$

3 a) Let P be the sample proportion P appro. N(P, (P4/n) = N (149, \(\frac{(491(151)}{\varepsilon_{00}}) = 0.0177) b) P(P >50) = P(P-149 > 15-149) = p (7 > .5658) = 1- .7157=.285

c)
$$p(.48 < \vec{p} < .52) = p(\frac{.48 - .49}{.0177} < z < \frac{.52 - .49}{.0177})$$

= $p(-.56 < z < 1.69)$
= .9545 - .2877 = .6668

4. Let x be the number of 6's a) $P(X \ge 1) = 1 - V(X = 0)$ $\times \sim B(6,t)$ Hence P(X=0)=(6)(5)6=,3349

$$=) P(XZI) = P(at least one 6)$$

= 1-.3349=.6651

b)
$$\times \sim B(12, \frac{1}{6})$$

 $p(\text{at least 2 sixes}) = P(X \ge 2)$
 $= 1 - P(X = 0) - P(X = 1)$
 $= 1 - {\binom{12}{6}} {\binom{1}{6}}^{(\frac{1}{6})^{1/2}} - {\binom{12}{6}}^{(\frac{1}{6})^{1/2}} = .6187$

Edici for Atandard deviation =) Conclude a) is larger (of
$$\times$$
 be the SAT of a randomly chosen applicant | 5. (a) $P(both show up) = (.9)(.8) = .72$
 $X > 544) = .5$ by symmetry of normal $P(both show up) = (0.1)(0.2) = 0.02$

b)
$$\frac{1}{2}$$
 0 1 2
 $\frac{1}{2}$ $\frac{1}{2}$ 0 2 0.26 0.72
=> $\frac{1}{2}$ $\frac{1}{2$

SD(x)= O.S.