Math 111.01 Summer 2003
Assignment, #5 Solutions

1.
2.

I hope you did!

Practice problems.

Solutions may be found in the back of the text, or in the Student Solutions Manual.

3.

Problems to hand in.

Section 4.5

#4.

#10.
#14.

#34.

#44.

Type [00] indeterminate form.
lim, . [f(z)]P®) = 0.

Type [1%°] indeterminate form.

B o T P

Type [ooo] indeterminate form.
e. limzﬁa[p(a:)]q(x) = o0.

f. lim, ., ““/p(z) = limg_q[p(2)]/9®), so this is a type [00”] indeterminate form.

lim,_,, ©B0% — % = 0, by continuity. (L’Hopital’s rule does NOT apply here!)

xT

limg, 00 ;—z is an indeterminate form of type [%] , so we may apply L’Hopital’s rule. In fact,
we must apply it three times:

limy 0o (1 + %)bm is a [1°°] type indeterminate form. We thus note that lim, (1 + %)bm =

elime—co brI(1+3) " Byt lim,_, o bz In(1+ ) is a [00 - 0] type indeterminate form, so we com-
pute

1 —za
1+3 a2

In(1 + ¢
lim brln(l+ %) = b im 202
X

T—00 T—00 1/x T—00 —1/1’2 - x—>ool—|—%

Thus,
a\ bx
lim (1 + 7> = ¢,
T—00 x
Note first that ze~2" has no vertical asymptotes because it is continuous for all x. To find
horizontal asymptotes, we must compute lim, o ze~®" and lim,_._ re~®". These are
both [co - 0] forms. Using L’Hépital’s rule, we find that

. a2 . x . 1
lim ze™” = lim — = lim —— =0
r—+00 r—+o00 ¥ r—+o0 Q2re—T

Thus the line y = 0 is the horizontal asymptote.



#54.

a. limy oo v = im0 =2 (1 — e*Ct/m) = 24 since lim; .o, —ct/m = —oo. This means
that the limiting velocity as time goes on is %.
b. limy, oo v = limy, 0o 22(1 — e~/™) = ™4 is a [00 - 0] type indeterminate form. We
a . . —e—ct/m
use L’Hopital’s rule to compute limy, . =2(1 — e~ct/m) = 4 limyy— oo (li/im)
9% —ct/m2e—ct/m : —ct/m i
= im0 — 7 = gtlim,, € = gt. Thus for very heavy objects, the

velocity increases approximately linearly with time and is not dependent on mass.

Section 4.6

#4.

#8.

Let  be any number in (0,00), i.e., z is any positive number. The sum of z and its
reciprocal is f(z) = = + %, so we seek to minimize f. We will have to apply the first
derivative test for absolute minima. We first compute f'(z) =1 — ;12 Setting f'(z) = 0,
we find that 1 — %2 =0,0r 1= x%, or x = 1. (We can ignore the root x = —1 since we
only care about positive values of z.) We easily find that f/(z) <0 for all 0 < x < 1, so f
is decreasing for 0 < x < 1. Since f/'(z) > 0 for x > 1, f is increasing for x > 1. By the
first derivative test, f(1) is thus an absolute minimum of f on (0,00), and 1 is thus our

desired positive number.

a. Each of the boxes in Figure 1 can be constructed by cutting four z x z corners out
of a 3 x 3 piece of cardboard. Box 1 has volume 2 X 2 x .5 = 2, Box 2 has volume
1 x1x1=1,and Box 3 has volume .5 x .5 x 2 = .5. It appears that the maximum
volume will be achieved by taking a short, flat box, so we try a few more possibilities:
1.5 x 1.5 x .75 = 1.68...; 2.5 x 2.5 x .25 = 1.56...; 2.25 x 2.25 x .375 = 1.89.... Thus
we guess that the maximum volume will be around 2.
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Figure 1: figure for #8 a
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See Figure 2 on the following page.

V(z,z) = 2%2.

r+2z2=3,s0x=3—2z.

Vi(z) = (3—-22)%2 = (9 — 122+ 42%)z = 92 — 1222 + 423,

f. We first note that 0 < z < 1.5, so we shall use the closed interval method to find
the minimum of V on this interval. V’(z) = 9 — 24z + 1222 = 3(42? — 82 + 3) =

& o

e



#10.

#12.

#16.

Figure 2: figure for #8 b

3(2z — 3)(2z — 1), which has zeros at z = 1/2 and z = 3/2. We thus compute
V(0) =0, V(1/2) =22-.5 =2, and V(3/2) = 0. By the closed interval method, the
maximum volume is V' (1/2) = 2 ft3.

Let x represent the length and width of the square base of the box, and let z be its height
as in the previous problem. The volume is 32,000 cm® = 22z, and the amount of material
used is the surface area, that is, S(z, z) = 2 + 422. Using the volume constraint, we find

that z = 3250 50 we may eliminate z in S to find S(z) = 2? + 128000 e also note

€T
that x may be any positive number, so we will use the first derivative test for absolute
maxima and minima to minimize S. S’(x) = 2z — %. Setting S(x) = 0, we find that

2 = 121’300, or 3 = 64,000 or = 40 cm. We see that S’ (z) < 0 for z < 40 and S’(z) > 0
for x > 40, so that S(40) is an absolute minimum by the first derivative test for absolute
extrema. To complete the problem, we find z = 32099 — 20 c¢m, so the base should be 40

402
cm on each side and the height 20 cm.

Let x be the length of the shorter side of the base, so the other side of the base has length
2z. Also, let z be the height of the box. The volume is given by 2z -z -2z = 10 m?. Also, to
get the cost, we add 10 times the surface area of the bottom and 6 times the total surface
area of the sides. That is, C(z,2) = 10(2x - ) + 6(2 - 2v2 + 2 - v2) = 202% + 36xz. We
then solve for z in our volume constraint to find that z = % Substituting into the cost
equation, we find that C(z) = 2022 + %. x may be any positive number here, so we will
use the first derivative test for absolute extrema. C’'(z) = 40x — %0. Setting C' = 0, we

find that 40x = %, or 3 = % = %. Thus x = i’/g is a critical point of C. We see that

C'(z) <0ifzr < i/g and C'(z) > 0 if z > {/3, so the absolute minimum of C(z) is about
$§/§ —§163.54 by the first derivative test.

See Figure 3 on the following page for a diagram. The rectangle displayed has an area of
A(z,y) = 2zy. Since y = 8 — 2, we substitute to find A(x) = 2x(8 — 22) = 162 — 223,
We also note that since we require the rectangle to be above the z-axis, we must have
0 < 2 < /8. Thus we can use the closed interval method to find the absolute minimum

of A. A'(x) = 16 — 622, which is 0 when 16 = 622 or x = \/g. A(0) = A(V8) = 0, and
A(\/g) ~ 17.4, so the absolute maximum occurs at x = \/g. At this point, y =8 —8/3 =
16/3, so the rectangle giving the largest area is 2\/§ x 16/3.



#32.
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Figure 3: figure for #16

We first note that we can find the fuel consumption per mile at a given speed by dividing
the fuel consumption per hour by the speed: G(v) = £. In order to optimize G, we should

edv
take its first derivative and set it equal to 0, that is, G'(v) = C‘”Tc‘i” = 0. Multiplying
through by v? and noting that % =1, we have v% —c=0,o0r % = =. We next note that
the slope of a line passing through the origin and through any point (v,c) on the graph

given in the book is £. Since we are looking for a point where ¢ = %, we may equivalently

look for a point where the line passing through (v,c) and the origin (which has slope ¢,
recall) is one and the same as the tangent line to the curve ¢ = ¢(v) at the point (v, c).

Doing this approximately and graphically gives us v ~ 53 mph.

pde

Section 4.8

#4.

#6.

a. If z; = 0, then x5 is negative, and x3 is even more negative. The sequence of
approximations does not converge, so Newton’s method fails.

b. If 1 = 1, then the tangent line is horizontal and Newton’s method fails.

c. If z; = 3, then z9 = 1, and we have the same situation as in (b). Newton’s method
fails again.

d. If 1 = 4, then the tangent line is horizontal and Newton’s method fails.
e. If x1 = 5, then x5 is greater than 6, x3 gets closer to 6, and the sequence of approxi-

mations converges to 6. Newton’s method succeeds!

If f(z) = 2% — 22 — 1, then f'(z) = 322 — 2z, so that

. f(xn)_ x%—x%—l
Fnt1 = &n f(zn) n 322 — 2z,
Now, if 1 = 1, then
1-1-1
Tro = 1-— 372 = 2,
and 05 021
r3 =2 = 1.625.

0 3.22-2.2



#16. From the graph below, we see that the only root of this equation is near 0.6. Since
f(z) = cos®(2? + 1) — 23, we have f'(x) = —2zxsin(2? + 1) — 322, so that
cos3(22 +1) — a2
—2xpsin(22 + 1) — 322
Taking x1 = 0.6, we get x2 =~ 0.58688855, x3 ~ 0.59698777 ~ x4. To eight decimal places,
the root of the equation is 0.59698777.

Tp4+1 = Tn —

X3

3 2 1,0 1 2 3
cos(x"2+1)

#20. (a) If f(z) =1 —a, then f'(z) = —% so that

T, —a
Tpt1 = Tp — — ) Zl‘—n—i-xn—a:x%:Zx—n—ami.

_xn

(b) Using (a) with @ = 1000 and z; = 1/2 = 0.5, we get xo2 = 0.5754, 3 ~ 0.588485, and
x4 ~ 0.588789 ~ x5. Thus,

~ 0.588789.

1.6984

#24. If f(z) = 22 +sinz, then f/(z) = 2x +cosz. f'(x) exists for all x, so to find the minimum
of f we can examine the zeroes of f’. From the graph of f’, we see that a good choice for
x1isx—1=—0.5. Use g(x) = 2x+ cosz and ¢'(x) = 2 —sinx to obtain z9 ~ —0.450627,
x3 ~ —0.450184 =~ x4. Since f"(x) =2 —sinx > 0 for all z, f(—0.450184) ~ —0.232466 is

the absolute minimum.

1/x?

4. To show liH[l) (secx) = /e we proceed as follows:
T—

. 2 . 1/12
lim (sec z)/%" = lim em(sec®)
z—0 z—0

_ 6lim,c_,o In(sec x)l/z2

. 1
_ ellmmﬁo = In(sec x)

. In(sec x)
_ ellmx_m —



In(secx
Now, we must compute lim ( )
xTr—

5 which is indeterminant [%], so that we can use L’Hopital’s
T
rule.
. In(secx | secztang . tanxz . osec’z 1
hm%zhmM: lim = lim = —,
z—0 T z—0 2z z—0 2T z—0 2 2
Hence,
. 2
lim (sec z)/* 1/2

) =2 = e
5.

. sinx
To compute lim <

1/(z—a)
: > which is indeterminant [1°°], we proceed as above
z—a \ sina

i 1/(z—a)
. S T . sinz \1/(z—a)
lim | — = lim e(5R%)
z—a \ sina

sina
r—a

_ ehmzﬂa ln( sin )1/(1*‘1)

sina

_ elimzﬂa (a:iia) ln(smz)

sina

ln( sin x )
limg_,q —sina)

T—a

=€

In (sin T )
Now, we must compute lim

sin a
z—a T —a
rule.

which is indeterminant [%], so that we can use L’Hopital’s

: : cos T
~ lim In(sinz) — In(sin a) _ iy sz _ C0S@
T—a T —a T—a r—a z—a 1 sina
since sina # 0.
Hence,
) sinz\ Y/~ cosa
hm " — @sina ,
z—a \ sina

(a) Let f(z) = 23 + 32 — 2k. Then Newton’s method tells us

S

f(@n)
Since f'(r) = 322 + 3, substituting yields

o (z3 + 3z, — 2Kk)
mH (322 + 3)
(322 4 3)wy — (2 4 3, — 2K)
B (322 + 3)

Sw

o + k

+1

|
Wl

X

S



(b) Use the above formula with & = 1, z9 = 1, to conclude

.T():l
2 1341 2
x1_§.712+1_§~0.66667

x2 ~ 0.59829
x3 ~ 0.59607
x4 ~ 0.59607

.. Accurate to 5 decimal places, 23 4+ 3z — 2 = 0 has a root at 0.59607.

7. (a) Notice that f(0) is not defined. However, f(1) = —=2 < 0, f(e) = e —2 > 0, and
f is continuous on [1,e]. Thus, by the Intermediate Value Theorem, f has a root in (1,e) [and
therefore has a root in (0, e)].

(b) If f(z) = xlnxz — 2, then f’(z) =Inz + 1. Hence, Newton’s method tells us that

f(xn) _xnln;rn—Q

Tntl = Tp — f/(xn) In ln T + 1

Thus, zg = 2, 11 ~ 2.362464, xo ~ 2.345783, x3 ~ 2.345751, x4 ~ 2.345751.
Accurate to six decimal places f has a root of 2.345751.

(c) Since f'(z) =Inz+1 and f”(z) = 1/x, if x is near 2 [in fact, if z > 0], then both f'(x) > 0
and f”(x) > 0 so that f is concave up and increasing. Thus, all tangent lines lie under the graph
of f, and intersect the z-axis at points larger than the root. This implies that in the Newton’s
method scheme, all approximations will be bigger than the actual solution. [This would not be
true if f were concave up and decreasing, instead.]



