Math 111.17 Fall 2002
October 9, 2002
Exercise: Suppose $x y+\sin (x+y)=3$. Compute y^{\prime} and $y^{\prime \prime}$.
Solution: We do this implicitly:

$$
\begin{aligned}
\frac{d}{d x}(x y)+\frac{d}{d x}(\sin (x+y)) & =\frac{d}{d x}(3) \\
y \frac{d x}{d x}+x \frac{d y}{d x}+\cos (x+y) \cdot \frac{d}{d x}(x+y) & =0 \\
y+x \frac{d y}{d x}+\cos (x+y) \cdot\left(1+\frac{d y}{d x}\right) & =0
\end{aligned}
$$

We now gather terms with $\frac{d y}{d x}$, and factor.

$$
\begin{aligned}
x \frac{d y}{d x} & +\cos (x+y) \frac{d y}{d x}=-y-\cos (x+y) \\
\frac{d y}{d x} & =\frac{-y-\cos (x+y)}{x+\cos (x+y)}
\end{aligned}
$$

Thus,

$$
y^{\prime}=\frac{-y-\cos (x+y)}{x+\cos (x+y)}
$$

In order to compute $y^{\prime \prime}$, we use the quotient rule. Therefore,

$$
\begin{aligned}
y^{\prime \prime} & =\frac{\frac{d}{d x}(-y-\cos (x+y))(x+\cos (x+y))-\frac{d}{d x}(x+\cos (x+y))(-y-\cos (x+y))}{(x+\cos (x+y))^{2}} \\
& =\frac{\left(-y^{\prime}+\sin (x+y) \cdot\left(1+y^{\prime}\right)\right)(x+\cos (x+y))-\left(1-\sin (x+y) \cdot\left(1+y^{\prime}\right)\right)(-y-\cos (x+y))}{(x+\cos (x+y))^{2}}
\end{aligned}
$$

Since we know y^{\prime} we can substitute that into the above.
[Please, please do not simplify.]

