Math 111.17 Fall 2002
Assignment \#11 Solutions
3. (a) Let $f(x)=x^{3}+3 x-2 k$. Then Newton's method tells us

$$
x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)} .
$$

Since $f^{\prime}(x)=3 x^{2}+3$, substituting yields

$$
\begin{aligned}
x_{n+1} & =x_{n}-\frac{\left(x_{n}^{3}+3 x_{n}-2 k\right)}{\left(3 x_{n}^{2}+3\right)} \\
& =\frac{\left(3 x_{n}^{2}+3\right) x_{n}-\left(x_{n}^{3}+3 x_{n}-2 k\right)}{\left(3 x_{n}^{2}+3\right)} \\
& =\frac{2}{3} \cdot \frac{x_{n}^{3}+k}{x_{n}^{2}+1}
\end{aligned}
$$

(b) Use the above formula with $k=1, x_{0}=1$, to conclude

$$
\begin{aligned}
& x_{0}=1 \\
& x_{1}=\frac{2}{3} \cdot \frac{1^{3}+1}{1^{2}+1}=\frac{2}{3} \approx 0.66667 \\
& x_{2} \approx 0.59829 \\
& x_{3} \approx 0.59607 \\
& x_{4} \approx 0.59607
\end{aligned}
$$

$\therefore$ Accurate to 5 decimal places, $x^{3}+3 x-2=0$ has a root at 0.59607 .
4. (a) Notice that $f(0)$ is not defined. However, $f(1)=-2<0, f(e)=e-2>0$, and $f$ is continuous on $[1, e]$. Thus, by the Intermediate Value Theorem, $f$ has a root in $(1, e)$ [and therefore has a root in $(0, e)]$.
(b) If $f(x)=x \ln x-2$, then $f^{\prime}(x)=\ln x+1$. Hence, Newton's Method tells us that

$$
x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}=x_{n}-\frac{x_{n} \ln x_{n}-2}{\ln x_{n}+1} .
$$

Thus, $x_{0}=2, x_{1} \approx 2.362464, x_{2} \approx 2.345783, x_{3} \approx 2.345751, x_{4} \approx 2.345751$.
Accurate to six decimal places $f$ has a root of 2.345751.
(c) Since $f^{\prime \prime}(x)=1 / x$, if $x$ is near 2 [in fact, if $x>0$ ], then $f^{\prime \prime}(x)>0$ so that $f$ is concave up. Thus, all tangent lines lie under the graph of $f$. This implies that in the Newton's Method scheme, all approximations will be bigger than the actual solution.

