Notes from A Random Look at Brownian Motion

Michael Kozdron
November 13, 2002
http://www.math. cornell.edu/~kozdron/

Normal Distribution

The formula

$$
n(x)=\frac{1}{\sigma \sqrt{2 \pi}} \exp \left(-\frac{(x-\mu)^{2}}{2 \sigma^{2}}\right)
$$

describes a "bell-curve" centred at μ with variance σ^{2} (or spread σ).
A random variable N is normally distributed with mean μ and variance σ^{2}, written $\mathcal{N}\left(\mu, \sigma^{2}\right)$, if N has this density.

That is, if

$$
\operatorname{Pr}\{N \leq x\}=\int_{-\infty}^{x} n(y) d y=\frac{1}{\sigma \sqrt{2 \pi}} \int_{-\infty}^{x} \exp \left(-\frac{(y-\mu)^{2}}{2 \sigma^{2}}\right) d y .
$$

Central Limit Theorem

$$
\frac{X_{1}+X_{2}+\cdots+X_{n}}{\sqrt{n}}=\frac{S_{n}}{\sqrt{n}} \xrightarrow{D} \mathcal{N}(0,1)
$$

That is, the distribution of our random walk, normalized by \sqrt{n}, converges to the distribution of a normal random variable.

If $A \subseteq \mathbb{R}$ open interval, then

$$
\lim _{n \rightarrow \infty} \operatorname{Pr}\left\{\frac{S_{n}}{\sqrt{n}} \in A\right\}=\frac{1}{\sqrt{2 \pi}} \int_{A} \exp \left(-\frac{y^{2}}{2}\right) d y
$$

Brownian Motion

A one-dimensional real-valued stochastic process $\left\{B_{t}, t \geq 0\right\}$ is a Brownian motion if

- $B_{0}=0$ and the function $t \mapsto B_{t}$ is continuous (with probability one),
- for any $t_{0}<t_{1}<\ldots<t_{n}$ the increments $B_{t_{0}}, B_{t_{1}}-B_{t_{0}}, \ldots, B_{t_{n-1}}-B_{t_{n}}$ are independent
- for any $s, t \geq 0$, the increment $B_{t+s}-B_{s} \sim \mathcal{N}(0, t)$ is normally distributed.

Online Resources

Eric Weisstein's World of Mathematics

- http://scienceworld.wolfram.com/physics/BrownianMotion.html
- http://mathworld.wolfram.com/RandomWalk1-Dimensional.html
- http://mathworld.wolfram.com/WeierstrassFunction.html

Brownian motion applets illustrating various distributional properties

- http://www.stat.umn.edu/~charlie/Stoch/brown.html
- http://www.ms.uky.edu/~mai/java/stat/brmo.html

Some information about Robert Brown

- http://dbhs.wvusd.k12.ca.us/Chem-History/Brown-1829.html

A Brownian motion video! from the BBC

- http://www.bbc.co.uk/science/scienceshack/backcat/multimedia/vibrownianmotion.shtml Math Talks for Undergraduates (Nam-Gyu Kang)
- http://www.math.yale.edu/~nk36/bm.html

References

[1] Martin Baxter and Andrew Rennie. Financial Calculus: An Introduction to Derivative Pricing. Cambridge University Press, 1996.
[2] William E. Boyce and Richard C. DiPrima. Elementary Differential Equations and Boundary Value Problems, Sixth Edition. Wiley, 1997.
[3] Kai Lai Chung. Green, Brown, and Probability. World Scientific, 1995.
[4] Albert Einstein. Investigations on the Theory of the Brownian Movement. Dover, 1956. (Translated from German by A. D. Cowper.)
[5] G.R. Grimmett and D.R. Stirzaker. Probability and Random Processes, Second Edition. Oxford University Press, 1992.
[6] Gregory F. Lawler. Introduction to Stochastic Processes. Chapman \& Hall, 1995.
[7] Walter Rudin. Principles of Mathematical Analysis, Third Edition. Wiley, 1976.

