Notes from Stirling's Formula: An Application of Calculus

Michael Kozdron November 4, 2005

http://www.math.uregina.ca/~kozdron/

Recall that for $N \in \mathbb{N}$, $\Gamma(N) = \int_0^\infty e^{-t} t^{N-1} dt$ which can be extended to any $x \in \mathbb{R}^+$ as

$$\Gamma(x) = \int_0^\infty e^{-t} t^{x-1} dt.$$

Laplace's method tells us that for appropriate f

$$\int_{-\infty}^{\infty} e^{Nf(x)} dx \simeq \frac{\sqrt{2\pi} e^{Nf(x_0)}}{\sqrt{-Nf''(x_0)}}.$$

Stirling's formula says

$$\lim_{N \to \infty} \frac{N!}{\sqrt{2\pi} \ e^{-N} \ N^{N+\frac{1}{2}}} = 1.$$

Online Extensions

There are many different proofs of Stirling's Formula. Others which also requires only first-year calculus may be found at:

http://www.sosmath.com/calculus/sequence/stirling/stirling.html http://140.122.140.53/~yclin/02a/cx/cx22.pdf

For an interesting discussion about extended Stirling Formulas, and for those with a background in computer science, an interesting discussion of numerically approximating the Gamma function, check out: http://www.rskey.org/gamma.htm

Homework!

- 1. Check over the double integral calculation $\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} e^{(-x^2-y^2)/2} dx dy = 2\pi$. Don't forget about the Jacobian for polar coordinates.
- 2. Check the computation that $N! = \Gamma(N+1)$.
- 3. Carefully show that $\int_0^\infty e^{-t} t^{x-1} dt$ converges for $0 < x < \infty$.
- 4. By changing variables, show $\Gamma(x+1) = x \Gamma(x)$.
- 5. By changing variables, show $\Gamma(1/2) = \int_{-\infty}^{\infty} e^{-x^2} dx$.
- 6. Demonstrate that $\Gamma(1/2) = \sqrt{\pi}$ is equivalent to $\int_{-\infty}^{\infty} e^{-x^2/2} dx = \sqrt{2\pi}$.
- 7. Check using Laplace's method that $\int_0^{\pi} x^N \sin x \, dx \simeq \pi^{N+2} N^{-2}$.
- 8. Check using Stirling's formula that for even N,

$$\frac{N!}{(N/2)!} \simeq 2^N \sqrt{\frac{2}{\pi N}}.$$

(This is basically the deMoivre-Laplace local central limit theorem.)