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Abstract

Percolation was introduced by S. Broadbent and J. Hammersley in 1957 as a model

of fluid flow through a disordered, porous medium. While percolation has existed

for over half a century as a well-defined mathematical model, and although there is

a significant amount of heuristic and experimental evidence for many remarkable

phenomenon, percolation has turned out to be much more difficult than expected

to analyze rigorously, and it wasn’t until 1980 that H. Kesten proved the first

spectacular result in percolation theory. Kesten, combined with work of T. Harris

from the 1960’s, proved the “obvious result” that the critical probability for bond

percolation on Z2 is 1/2. Recently there has been an increased interest in

two-dimensional percolation mainly due to the fact that critical percolation on the

triangular lattice is now completely understood thanks to the introduction of the

stochastic Loewner evolution (SLE) by O. Schramm and the work of S. Smirnov

and W. Werner, among others. In this talk, we will introduce the mathematical

model of percolation, and discuss some of the known results for critical percolation

on the two-dimensional triangular lattice including Cardy’s formula for crossing

probabilities, and the convergence of the discrete percolation exploration process to

SLE with parameter 6.
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Motivation from Statistical Mechanics

Disclaimer: (Essentially) everything we do will be two-dimensional: C ∼= R2

A number of simple models introduced in statistical mechanics have proven to be

notoriously difficult to analyze in a rigorous mathematical way. These include the

self-avoiding walk, the Ising model, and percolation.

The focus of this talk will be percolation.
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The Basic Setup

Suppose that Λ is a graph consisting of edges and vertices, and assume that the

edges are undirected.

Assume that Λ is connected, infinite, and locally finite (each vertex has finite

degree). Later we will assume that all sites of Λ are equivalent; that is, the

symmetry group of Λ acts transitively on the vertices.

Think of Λ as lattice-like, e.g., Λ = Z2.
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The Basic Setup

For percolation, we say bonds instead of edges and sites instead of vertices.

Obtain a random subgraph of Λ by selecting bonds/sites independently with the

same probability p.

The bonds/sites which are kept are called open, otherwise they are called closed.

We call the components of the random subgraph the (open) clusters.

Let x ∈ V (Λ) be a site. We define Cx to be the open cluster containing x.

If x is not open, then we take Cx = ∅ (site percolation) or Cx = {x} (bond

percolation).
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Example: Bond Percolation on Z
2

The open subgraph consists of all sites and the open bonds (as indicated by black

line segments.)
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In this picture, there are 10 open clusters.

Note that Cx 6= ∅ for each x ∈ V (Z2).
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Example: Site Percolation on Z
2

Begin by selecting the open sites. The open subgraph is then the subgraph of Z2

induced by these.
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Example: Site Percolation on Z
2 (continued)
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In this picture, there are 4 open clusters.

Note that there are some x ∈ V (Z2) for which Cx = ∅.

Note: Visualize water flowing through the open channels. This is why we use the

word open and take the bonds to be undirected.

7



The Percolation Probability

Recall that for a site x ∈ V (Λ) we define Cx to be the open cluster containing x.

Let |Cx| = |V (Cx)|.

Let θx(p) = Pp(|Cx| = ∞) = Pp(x ↔ ∞).

(Note that θx(p) also depends on the graph and on the type of percolation.)

We now assume that all sites of Λ are equivalent and so θx(p) is the same for all x.

We distinguish x = 0 and write θ(p) = θ0(p) and C = C0.

We call θ(p) the percolation probability.
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The Critical Probability

If x and y are at a distance d, then θx(p) ≥ pdθy(p).

Therefore, either θx(p) = 0 for every site x, or θx(p) > 0 for every x.

Furthermore, θ(p) is increasing in p.

It now follows that there exists a critical probability pc with 0 ≤ pc ≤ 1 such that

• p < pc =⇒ θ(p) = 0 (i.e., θx(p) = 0 ∀ x),

• p > pc =⇒ θ(p) > 0 (i.e., θx(p) > 0 ∀ x).
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The Critical Probability

Using Kolmogorov’s 0-1 Law, this is equivalent to

• p < pc =⇒ P(there exists an infinite open cluster) = 0,

• p > pc =⇒ P(there exists an infinite open cluster) = 1.

We say that percolation occurs if θ(p) > 0, or equivalently, if

P(there exists an infinite open cluster) = 1.

In other words, water can flow randomly/percolate from 0 to ∞.

Question: What happens at pc?

Question: What does the graph of p vs. θ(p) look like (for p > pc)?
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The Expected Cluster Size

Let χ(p) = Ep(|C|) denote the expected size of the cluster containing the origin.

Clearly χ(p) = ∞ if p > pc.

Question: What happens at pc?

Question: What does the graph of p vs. χ(p) look like (for p < pc)?
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Critical Exponents for Percolation

Notation: f(p) ≈ g(p) as p ↑↓ pc means

lim
p↑↓pc

log f(p)

log g(p)
= 1.

Definition/Conjecture/Prediction/Open Problem

Critical Probability: As p ↓ pc,

θ(p) ≈ (p − pc)
β

for some β > 0. Furthermore, it is believed that θ(pc) = 0 in general.

Expected Cluster Size: As p ↑ pc,

χ(p) ≈ (p − pc)
−γ

for some γ > 0.
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Summary of Some Known Results

Bond Percolation on the binary tree

Easy to show pc = 1/2, β = 1, and γ = 1.

Site Percolation on Z2

The value of pc and the existence of β and γ are still open problems. Numerical

simulations show pc = 0.592746.

Bond Percolation on Z2

Kesten (1980) combined with Harris (1960) showed that pc = 1/2. The existence

of β and γ is still an open problem.

Bond Percolation on Zd, d ≥ 19

Hara and Slade (1994) proved that β = γ = 1.

Site Percolation on the triangular lattice

(Essentially) everything is known! In particular, pc = 1

2
(Kesten and Wierman,

1980s) β = 5

36
, and γ = 43

18
(Smirnov and Werner, 2001).
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The Conformal Invariance Prediction

In 1994, Aizenman, Langlands, Pouliot, and Saint-Aubin conjectured, roughly, that

if Λ is a planar lattice with suitable symmetry, and we perform critical percolation

on Λ, then as the lattice spacing tends to 0, certain limiting probabilities are

invariant under conformal transformations.

There is a crude analogy to simple random walk here. Simple random walk on any

suitable lattice converges to Brownian motion.

The prediction has only been proved for site percolation on the triangular lattice.
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Example: Site Percolation on the Triangular Lattice

Site percolation on the triangular lattice can be identified with “face percolation”

on the hexagonal lattice (which is dual to the triangular lattice).
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The Discrete Percolation Exploration Path

Consider a simply connected, bounded hexagonal domain with two distinguished

external vertices x and y.

Colour all the hexagons on one half of the boundary from x to y white, and colour

all the hexagons on the other half of the boundary from y to x red.

For all remaining interior hexagons colour each hexagon either red or white

independently of the others each with probability 1/2 (i.e., perform critical site

percolation on the triangular lattice).

There will be an interface separating the red cluster from the white cluster.

One way is to draw the interface always keeping a red hexagon on the right and a

white hexagon on the left.

Another way to visualize the interface is to swallow any islands so that the domain

is partitioned into two connected sets.
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Crossing Probabilities for the Discrete Domain

Consider a simply connected, bounded hexagonal domain D with four distinguished

external vertices z1, z2, z3, z4 ordered counterclockwise. This divides the boundary

into four arcs, say A1, A2, A3, A4.

For all hexagons in D colour each hexagon either red or white independently of the

others each with probability 1/2 (i.e., perform critical site percolation on the

triangular lattice).

There will necessarily be either a red (open) crossing from A1 to A3 or a white

crossing from A2 to A4.
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Approximating the Continuous

Suppose that D ⊂ C is a simply connected, bounded Jordan domain containing the

origin, and let z1, z2, z3, z4 be four points ordered counterclockwise around ∂D.

This divides ∂D into 4 arcs, say A1, A2, A3, A4.

Overlay a suitable lattice with spacing δ over D and consider the resulting

lattice-domain Dδ . Identity the original arcs with lattice-domain arcs

Aδ
1
, Aδ

2
, Aδ

3
, Aδ

4
.

Perform critical percolation on Dδ .

Goal: To understand what happens as δ ↓ 0?

Question 1: What is the probability that there is a red crossing from Aδ
1

to Aδ
3
?

Call this P (D; δ) = P (D, z1, z2, z3, z4; δ).

Question 2: What is the law or distribution of the scaling limit of the discrete

interface?

22



John Cardy’s formula

Cardy’s Prediction/Formula (1992):

lim
δ→0

P (D; δ) =
Γ(2/3)

Γ(4/3)Γ(1/3)
η1/3

2F1(1/3, 2/3; 4/3; η)

where 2F1 is the hypergeometric function and

η =
(w1 − w2)(w3 − w4)

(w1 − w3)(w2 − w4)

is the cross-ratio with wj = ϕ(zj) where ϕ : D → D is the unique conformal

transformation with ϕ(0) = 0, ϕ′(0) > 0.

φ : D→ D

D
D

w1

w2

w3

w4

z1

z2

z3

z4
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Lennart Carleson’s observation

Using properties of the hypergeometric function one can write

Γ(2/3)

Γ(4/3)Γ(1/3)
z1/3

2F1(1/3, 2/3; 4/3; z) =
Γ(2/3)

Γ(1/3)2

Z z

0

w−2/3(1 − w)−2/3 dw

Furthermore, the function

z 7→ Γ(2/3)

Γ(1/3)2

Z z

0

w−2/3(1 − w)−2/3 dw

is the Schwarz-Christoffel transformation of the upper half plane onto the

equilateral traingle with vertices at 0, 1, and (1 + i
√

3)/2.
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Lennart Carleson’s observation

Hence, if D is this equilateral triangle, then Cardy’s prediction takes the

particularly nice form

lim
δ→0

P (D; δ) = x (∗)

where x is the following:

z1 = 1

z2 = (1 + i
√

3)/2

z3 = 0
z4 = x

A1A2

A3
A4

Theorem: (Smirnov 2001) Cardy’s prediction holds for critical site percolation on

the trianglular lattice. Smirnov proved (∗) and conformal invariance gave it for all

Jordan domains D.
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The Scaling Limit of the Exploration Process

Thanks to the work of Smirnov and Werner, there is now a precise description of

the scaling limit of the interface (i.e., the exploration process).

Suppose that (D, a, b) is a Jordan domain with distinguished boundary points a

and b.

Let (Dδ , aδ , bδ) be a sequence of hexagonal lattice-domains with spacing δ which

approximate (D, a, b).

(Technically, (Dδ , aδ , bδ) converges in the Carathéodory sense to (D, a, b) as δ ↓ 0.)

Let γδ = γδ(Dδ , aδ, bδ) denote the spacing δ exploration path.

As δ ↓ 0, the sequence γδ converges in distribution to SLE6 in D from a to b.
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What is SLE?

The stochastic Loewner evolution with parameter κ ≥ 0 is a one-parameter family

of random conformally invariant curves in the complex plane C invented by

Schramm in 1999.

Let γ : [0,∞) → H be a simple curve (no self intersections) with γ(0) = 0,

γ(0,∞) ⊆ H, and γ(t) → ∞ as t → ∞. e.g., no “spirals”

For each t ≥ 0 let Ht := H \ γ[0, t] be the slit half plane and let gt : Ht → H be

the corresponding Riemann map.

We normalize gt and parametrize γ in such a way that as z → ∞,

gt(z) = z +
2t

z
+ O

„

1

z2

«

.

Theorem: (Loewner 1923)

For fixed z, gt(z) is the solution of the IVP

∂

∂t
gt(z) =

2

gt(z) − Ut
, g0(z) = z.
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0

γ[0, t]
gt : Ht → H

Ut = gt(γ(t))

• The curve γ : [0,∞) → H evolves from γ(0) = 0 to γ(t).

• Ht := H \ γ[0, t], gt : Ht → H

• Ut := gt(γ(t)), the image of γ(t).

• By the Carathéodory extension theorem, gt(γ[0, t]) ⊆ R.
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Stochastic Loewner Evolution (aka Schramm-Loewner Evolution)

The natural thing to do is to start with Ut and solve the Loewner equation.

Solving the Loewner equation gives gt which conformally map Ht to H where

Ht = {z : gt(z) is well-defined} = H \ Kt.

Ideally, we would like g−1

t (Ut) to be a well-defined curve so that we can define

γ(t) = g−1

t (Ut).

Schramm’s idea: let Ut be a Brownian motion!

SLE with parameter κ is obtained by choosing Ut =
√

κBt where Bt is a standard

one-dimensional Brownian motion.

Definition: SLEκ in the upper half plane is the random collection of conformal

maps gt obtained by solving the Loewner equation

∂tgt(z) =
2

gt(z) −√
κBt

, g0(z) = z.
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It is not obvious that g−1

t is well-defined at Ut so that the curve γ can be defined.

The following theorem establishes this.

Think of γ(t) = g−1

t (
√

κBt).

SLEκ is the random collection of conformal maps gt (complex analysts) or the

curve γ[0, t] being generated in H (probabilists)!

Although changing the variance parameter κ does not qualitatively change the

behaviour of Brownian motion, it drastically alters the behaviour of SLE.
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What does SLE look like?

Theorem: With probability one,

• 0 < κ ≤ 4: γ(t) is a random, simple curve avoiding R.

• 4 < κ < 8: γ(t) is not a simple curve. It has double points, but does not cross

itself! These paths do hit R.

• κ ≥ 8: γ(t) is a space filling curve! It has double points, but does not cross

itself. Yet it is space-filling!!

Theorem: With probability one, the Hausdorff dimension of the SLEκ trace is

min
n

1 +
κ

8
, 2

o

.
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