
Investigating the Hitting Distribution of the Unit
Circle by Chordal SLE in the Upper Half Plane

Michael J. Kozdron

University of Regina

http://stat.math.uregina.ca/∼kozdron/

Canadian Mathematical Society Winter Meeting 2015

December 5, 2015



Schramm-Loewner Evolution

It is well-known that the Schramm-Loewner evolution (SLE) is a powerful tool for

studying two-dimensional statistical mechanics models at criticality.

In fact, SLE results have given new insights into many lattice models including

percolation, the Ising model and related random cluster models, uniform spanning

trees, self-avoiding walk, and the Gaussian free field.

However, it is also interesting to study properties of SLE as a stochastic process.

While several results are known about path properties of SLE, there are still many

unasked questions.

For example, when we study stochastic processes, it is natural to study first hitting

times and exit distributions.

Compare to the Handbook of Brownian Motion – Facts and Formulae by Andrei N.

Borodin and Paavo Salminen which contains 685 pages and over 2500 formulas.
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The Picture That Says It All!

0

γ[0, t]
gt : Ht → H

Ut = gt(γ(t))

• The simple curve γ : [0,∞) → H evolves from γ(0) = 0 to γ(t).

• The curve γ never re-visits R; that is, γ(0, t) ⊂ H.

• Ht := H \ γ(0, t] denotes the slit plane.

• gt : Ht → H is a conformal map;

• Ut := gt(γ(t)) is the unique point on R that is the image of the tip, γ(t).

• t 7→ Ut is continuous.
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What is SLE?

The evolution of the curve γ(t), or more precisely, the evolution of the conformal

transformations gt : Ht → H, can be described by the Loewner equation.

0

γ[0, t]
gt : Ht → H

Ut = gt(γ(t))

We (uniquely) normalize gt and (re-)parametrize γ in such a way that as z → ∞,

gt(z) = z +
2t

z
+O

(

|z|−2
)

.

Theorem. (Loewner 1923)

If z ∈ H with z 6∈ γ[0,∞], then the conformal transformations {gt(z), t ≥ 0}
satisfy the IVP

∂

∂t
gt(z) =

2

gt(z)− Ut
, g0(z) = z.
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Schramm-Loewner Evolution

The natural thing to do is to start with a continuous function t 7→ Ut and solve the

Loewner equation.

Solving the Loewner equation gives gt which conformally maps Ht to H where

Ht = {z : gt(z) is well-defined} = H \Kt.

Ideally, we would like g−1
t (Ut) to be a well-defined curve so that we can define

γ(t) = g−1
t (Ut) and Kt = γ(0, t].

While studying loop-erased random walk, Schramm’s idea was to let Ut be a

Brownian motion! (In retrospect, it is natural.)

SLE with parameter κ is obtained by choosing Ut =
√
κBt where Bt is a standard

one-dimensional Brownian motion.
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Stochastic Loewner Evolution (aka Schramm-Loewner Evolution)

Definition. SLEκ in the upper half plane is the random collection of conformal

maps gt = g(t, ·) obtained by solving the Loewner equation

∂

∂t
g(t, z) =

2

g(t, z)−√
κBt

, g(0, z) = z.

It is not obvious that g−1(t, ·) is well-defined at Ut so that the curve γ can be

defined. A deep theorem due to Rohde and Schramm proves this is true.

Think of γ(t) = g−1(t,
√
κBt).

SLEκ is the random collection of conformal maps g(t, ·) (complex analysts) or the

curve γ[0, t] being generated in H (probabilists)!

Although changing the variance parameter κ does not qualitatively change the

behaviour of Brownian motion, it drastically alters the behaviour of SLE.
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What does SLE look like?

Theorem. (Rohde-Schramm 2001; Lawler-Schramm-Werner 2004)

With probability one,

• 0 < κ ≤ 4: γ(t) is a random, simple curve avoiding R.

• 4 < κ < 8: γ(t) is not a simple curve. It has double points, but does not cross

itself! These paths do hit R.

• κ ≥ 8: γ(t) is a space filling curve! It has double points, but does not cross

itself. Yet it is space-filling!!

Theorem. (Beffara 2004, 2008)

With probability one, the Hausdorff dimension of the SLEκ trace is

min
{

1 +
κ

8
, 2

}

.
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κ = 1 κ = 2
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κ = 8
3 κ = 3
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Goal: To study the hitting distribution of the first visit to the circle of radius 1 by

chordal SLEκ from 0 to ∞ in H.

Let γκ : [0,∞) → H be a chordal SLEκ from 0 to ∞ in H.

• ∂

∂t
gκ(t, z) =

2

gκ(t, z)−
√
κB(t)

, gκ(0, z) = z,

• gκ(t, γκ(t)) =
√
κB(t) ∼ B(κt)

Let τκ = inf{t > 0 : |γκ(t)| = 1} denote the first time that the SLEκ trace hits the

disk of radius 1 centred at the origin.

Let Θκ = arg(γκ(τκ)) denote the argument of γκ(τκ).

Note that the symmetry of SLE about the imaginary axis immediately implies that

P{Θκ ∈ [0, π/2]} = P{Θκ ∈ [π/2, π]} =
1

2
.
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The κ = 0 degenerate case

If κ = 0, then the chordal Loewner equation is

∂

∂t
g0(t, z) =

2

g0(t, z)
, g0(0, z) = z,

which implies that

g0(t, z) =
√

z2 + 4t.

Since γ0(t) satisfies g0(t, γ0(t)) = 0 for all t ≥ 0 we conclude that

γ0(t) = 2i
√
t

so that Θ0 is exactly equal to π/2.
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The κ → ∞ degenerate case

The basic idea is that as κ → ∞, the diameter of the SLE trace is large although

the amount of time needed for the diameter to become large is small.

That is, ℑγκ(t) → 0 as κ → ∞ so that

Θ∞ ∈ {0, π}

each with probability 1/2.
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κ = 6: locality and an exact calculation

Observe that for 0 ≤ θ < π, the event that

{Θ6 ∈ [θ, π]}

is the same as the event that there is a “crossing” from the interval [0, 1] to the

(counterclockwise) arc [eiθ, eiπ ] in the domain U = D ∩ H.

The locality property of SLE6 implies that the probability of this event is given by

Cardy’s formula.
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Let U = D ∩ H denote the upper half disk and consider the conformal

transformation ϕ : U → H.

10−1

e
iθ

−1 7→ ∞

1 7→ 10 7→ 0 e
iθ

7→
2

1+cos θ

ϕ(z) = 4z

(z+1)2U

H
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Let T denote the equilateral triangle with vertices at 0, eiπ/3, and e2iπ/3 and

consider the Schwarz-Christoffel transformation of the upper half-plane onto T

given by

F (w) = − Γ(2/3)

Γ(1/3)2

∫ w

0
ζ−2/3(ζ − 1)−2/3dζ.

−1 7→ ∞

1 7→ 10 7→ 0 e
iθ

7→
2

1+cos θ

H

F (w)

T

0 7→ 0

∞ 7→ −
1

2
+

√

3

2
i 1 7→

1

2
+

√

3

2
i

2

1+cos θ
7→ x −

1

2
+

√

3

2
i

After several lines of calculations, it can be shown that

x = 1− Γ(2/3)

Γ(1/3)2

∫ 2
1+cos θ

1
ζ−2/3(ζ − 1)−2/3dζ ∈ (0, 1).
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Stated in terms of the equilateral triangle T, Cardy’s formula takes the form

P
{

∃ crossing from the side [0, eiπ/3] to the line

segment
[

− 1
2
+

√
3

2
i, x− 1

2
+

√
3
2
i
]

in T

}

= x.

The conformal invariance of SLE implies that

P
{

∃ crossing from the the interval [0, 1] to the arc [eiθ, eiπ ] in U.
}

= P
{

∃ crossing from the side [0, eiπ/3] to the line

segment
[

− 1
2
+

√
3

2
i, x− 1

2
+

√
3
2
i
]

in T

}

and so we conclude that for 0 ≤ θ ≤ π,

P{Θ6 ≤ θ} = 1− x =
Γ(2/3)

Γ(1/3)2

∫ 2
1+cos θ

1
ζ−2/3(ζ − 1)−2/3dζ.
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Making the change-of-variables

z =
ζ − 1

ζ
, ζ =

1

1− z
, ζ − 1 =

z

1− z
, dζ =

dz

(1− z)2

implies that

P{Θ6 ≤ θ} =
Γ(2/3)

Γ(1/3)2

∫ 1−cos θ

2

0
z−2/3(1− z)−2/3dz.

If the random variable X is defined by

X =
1− cos(Θ6)

2
,

then the distribution of X is given by

P{X ≤ x} = P

{

1− cos(Θ6)

2
≤ x

}

= P{Θ6 ≤ cos−1(1− 2x)}

=
Γ(2/3)

Γ(1/3)2

∫ x

0
z−2/3(1− z)−2/3dz.

In other words, X ∼ β(1/3, 1/3).
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This suggests that the random variable

Xκ =
1− cos(Θκ)

2

might be the one to study. In fact, there might be some function α = α(κ) such

that

Xκ ∼ β(α, α).

The corresponding density is

f(x) =
Γ(2α)

Γ(α)2
xα−1(1− x)α−1

for 0 ≤ x ≤ 1.

• X0 ∼ β(∞,∞) (As α → ∞, the support of the density converges to {1/2}.)

• X6 ∼ β(1/3, 1/3)

• X∞ ∼ β(0, 0) (As α → 0+, the support of the density converges to {0, 1}.)
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Simulations of SLE(κ) for κ = 1, 2, 3, 4, 5, 6, 7, 7.9 stopped when reaching the disk

of radius 1

n = 1000 trials for each value of κ

Measured angle Θ = arg(γ(τ)) and plotted histogram of X =
1−cos(Θ)

2
∈ [0, 1]

Histogram of (1 − cos(angle1))/2

(1 − cos(angle1))/2
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Histogram of (1 − cos(angle3))/2
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Histogram of (1 − cos(angle5))/2
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Histogram of (1 − cos(angle6))/2
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Histogram of (1 − cos(angle7))/2
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Simulations with n = 1, 000, 000 trials. These took time and are several years old.

I have since changed my notation. Instead of theta in the title, it should be X.

Histogram of Theta for kappa=0.5
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Histogram of Theta for kappa=1.5
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Histogram of Theta for kappa=2
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Histogram of Theta for kappa=2.5
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Some Simulations

Simulations of SLEκ for values of κ from 0.1 to 7.9 in increments of 0.1

n = 1000 trials for each value of κ

Measured angle Θ = arg(γ(τ)) and considered random variable

X = Xκ =
1− cos(Θ)

2
∈ [0, 1]

Assuming that Xκ ∼ β(α(κ), α(κ)), estimated α(κ) by method-of-moments

estimator

α̂(κ) = x

(

x(1− x)

s2
− 1

)

where x is sample mean and s2 is sample variance.
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Plot of κ vs. α̂(κ)
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Plot of log(κ) vs. − log(α̂(κ))
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> cor(log(kappa),-log(alpha)) 0.9949292
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What about working with Θ instead of X?

If the random variable Y has density function

f(y) =

√
π Γ(α+ 1/2)

Γ(α)
sin2α−1(πy)

for 0 ≤ y ≤ 1, then it is a standard exercise to show that

X =
1− cos(πY )

2
∼ β(α, α).

I am comfortable working with beta random variables, but I am not sure how best

to analyze the random variable Y = Θ/π.
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