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Some historical highlights

Stochastic Loewner Evolution (SLE) introduced in 1999 by O. Schramm while
considering possible scaling limits of 2-d LERW

Developed by G. Lawler, O. Schramm, and W. Werner: proved dimension of
boundary of Brownian island is 4/3, proved LERW converges to SLE2, proved
UST Peano curve converges to SLEg, limit of SAW must be SLEg 3.

S. Rohde and O. Schramm established basic properties of SLE, e.g., it is
generated by a curve a.s.

V. Beffara established Hausdorff dimension

S. Smirnov proved Cardy’s formula and that percolation exploration path
converges to SLEg (for site percolation on triangular lattice)

O. Schramm and S. Sheffield proved harmonic explorer converges to SLE4;
contour lines of discrete GFF converges to SLE4

Many other path properties under investigation: duality, reversibility, etc.

Exciting links between SLE/CLE and Conformal Field Theory (CFT)/other
stat mech models: percolation, O(n)-model/Ising model /Potts model,
turbulence, spin glasses




Review of SLE

Let H= {z € C: 3(z) > 0} denote the upper half plane, and consider a simple
(non-self-intersecting) curve ~ : [0, 00) — H with v(0) = 0 and (0, c0) C H.

For every fixed t > 0, the slit plane H¢ := H \ ~(0, t] is simply connected and so by
the Riemann mapping theorem, there exists a conformal transformation
gt - Ht — H.

The map g: is not unique, but we choose the unique one satisfying the

hydrodynamic normalization g¢(z) — 2z — 0 as z — oc.

It then follows that g+ can be expanded as

b(t)

z

+0 (]2|7%), z— oo,

gt(z) = z +
where b(t) = hcap(v(0,t]) is the half-plane capacity of ~ up to time ¢.

The half-plane capacity is related to how likely a Brownian motion starting from
infinity is to hit the curve before hitting the real line R.




Review of SLE (cont)

For a slit plane such as H¢ = H \ (0, t], the map g: can be extended continuously
to the boundary point «(t) of OH ;.

With no additional assumptions on the simple curve ~, it can be shown that there
is a unique point Uy € R for all t > 0 with Uy := g¢(~(t)) and that the function

t — Uy Is continuous.




Review of SLE (cont)

The evolution of the curve ~(t), or more precisely, the evolution of the conformal
transformations g; : H; — H, can be described by a differential equation involving
Ut.

This is due to C. Loewner who showed in 1923 that if v is a curve as above such
that its half-plane capacity b(t) is C! and b(t) — oo as t — oo, then for z € H
with z & ~[0, 00), the conformal transformations {g:(z),t > 0} satisfy the partial
differential equation

0 b(t)

a gt(z) = 9t(2) — U

, go(z) = =. (LE)

Note that if b(t) € C! is an increasing function, then we can reparametrize the
curve v so that hcap(v(0,t]) = b(t). This is the so-called parametrization by
capacity.




Review of SLE (cont)

The obvious thing to do now is to start with a continuous function ¢t — U; from
[0,00) to R and solve the Loewner equation for g.

|deally, we would like to solve (LE) for g, define simple curves y(t), t > 0, by
setting y(t) = gt_l(Ut), and have g; map H \ (0, t] conformally onto H.

Although this is the correct intuition, it is not quite precise because we see from the
denominator on the right-side of (LE) that problems can occur if g:(z) — U = 0.

Formally, if we let T, be the supremum of all ¢ such that the solution to (LE) is
well-defined up to time ¢t with g+(z) € H, and we define Hy = {z : T, > t}, then g4
is the unique conformal transformation of H; onto H with g¢(2) — 2z — 0 as t — oo.




Review of SLE (cont)

The novel idea of Schramm was to take the continuous function U; to be a

one-dimensional Brownian motion starting at O with variance parameter x > 0.

The chordal Schramm-Loewner evolution with parameter « > 0 with the
standard parametrization (or simply SLE, ) is the random collection of conformal
maps {g+, t > 0} obtained by solving the initial value problem

PN —
g = gt(z) = VEW

z) = z, LE
Y go(z) (LE)
where W} i1s a standard one-dimensional Brownian motion.




Review of SLE (cont)

The question is now whether there exists a curve associated with the maps g;.

o If 0 < k < 4, then there exists a random simple curve v : [0, 00) — H with
v(0) = 0 and v(0,00) C H, i.e., the curve v(t) = g; ' (v/kBt) never re-visits R.
As well, the maps g: obtained by solving (LE) are conformal transformations of
H \ v(0, t] onto H. For this range of k, our intuition matches the theory!

For 4 < k < 8, there exists a random curve ~ : [0,00) — H. These curves have
double points and they do hit R, but they never cross themselves! As such,

H \ (0, t] is not simply connected. However, H \ v(0, t] does have a unique
connected component containing co. This is H+ and the maps g; are
conformal transformations of H+ onto H. We think of H; = H \ K¢ where K,
is the hull of ~(0, t] visualized by taking (0, t] and filling in the holes.

For k > 8, there exists a random curve v : [0, 00) — H which is space-filling!
Furthermore, it has double points, but does not cross itself! As in the case

4 < Kk < 8, the maps g: are conformal transformations of H; = H \ K¢ onto H
where K} is the hull of (0, ¢].

As a result, we also refer to the curve « as chordal SLE,. SLE paths are extremely
rough: the Hausdorff dimension of a chordal SLE,; path is min{l 4 /8, 2}.










Review of SLE (cont)

Since there exists a curve v associated with the maps g¢, it is possible to
reparametrize it.

It can be shown that if U; is a standard one-dimensional Brownian motion, then
the solution to the initial value problem

égt(z) _ 2/k a
gt (

go(z) = z,

ot Z)—Ut - gt(z)—Ut’

is chordal SLE,, parametrized so that hcap(v(0,t]) = 2t/k = at.

Finally, chordal SLE as we have defined it can also be thought of as a measure on
paths in the upper half plane H connecting the boundary points 0 and oc.

SLE is conformally invariant and so we can define chordal SLE, in any simply
connected domain D connecting distinct boundary points z and w to be the image
of chordal SLE. in H from O to oo under a conformal transformation from H onto

D sending 0 — z and oo — w.




The main result

Theorem. Let > 0 bereal, 0 < r < 1/3, and C(x;rz) = {x +rze? : 0 < 0 < 7}
denote the semicircle of radius rx centred at x in the upper half plane, and
suppose that v : [0,00) — H is a chordal SLE, in H from 0 to co.

88—k

(a) If 0 < k < 8, then P{v¥[0,00) NC(z;7z) 0} <X r =

(b) If kK = 8/3, then P{~[0,00) NC(z;7rz) # 0} =1 — (1 —r2)%/8 ~ %TQ.




An equivalent formulation

Corollary. Let > 0 be real, R > 3, and C(0; Rx) = {Rxze’® : 0 < § < 7} denote
the circle of radius Rx centred at O in the upper half plane, and suppose that
v’ :[0,1] — H is a chordal SLE in H from 0 to =.

K—8

(a) If 0 < k <8, then P{7/[0,1]NC(0; Rx) #0} < R =

(b) If k =8/3, then P{y/[0,1]NC(0; Rx) # 0} =1— (1 — R"2)5/8 ~ 3 R™2,




Derivation of the corollary

The idea is to determine the appropriate sequence of conformal transformations
and use the conformal invariance of chordal SLE.

Suppose that 7/ : [0,1] — H is an SLE, in H from 0 to = > 0. Note that we are not
interested in the parametrization of the SLE path, but only in the points visited
by its trace. Suppose that R > 3, and consider C(0; Rx) = {Rxze'® : 0 < 6 < 7}.
For z € H, let
R? z
R2—-1x—=z
so that h: H — H is a conformal (Mobius) transformation with h(0) = 0 and
h(x) = oco. It is straightforward (though tedious) to verify that

h(z) =

h(C(0; Rz)) = C (-1; }i{) |




Derivation of the corollary (cont.)

If v:[0,00) — H is a chordal SLE,; in H from 0 to oo, then the conformal
invariance of SLE implies that

P{~'[0,1] N C(0; Rx) # 0} = P{h(~'[0,1]) N h(C(0; Rx)) # 0}

= P{v[O,oo) ne (—1, E) 4 (Z)}.

By the symmetry of SLE about the imaginary axis,

P {’y[O, o) N C (-1, %) £ (2)} By {’y[O, ) N C (1,

X

7[0, o0)




The k = 8/3 case

The key fact that is needed is the restriction property of chordal SLEg 3.

Proposition. [Lawler-Schramm-Werner] If 7 : [0,00) — H is a chordal SLEg /3 in
H from 0 to oo, and A is a bounded subset of H such that H \ A is simply
connected, A=HN A, and 0 & A, then

P{~[0,00) N A =} = [#,(0)]*®

where ® 4 : H\ A — H is the unique conformal transformation of H \ A to H with
®4(0) =0and Py(z) ~ 2z as z — .




The k = 8/3 case (cont.)

This implies that
P{~[0,00) N C(z;rx) =0} = [@’(O)P/S

where @ = & ;... (2) is the conformal transformation from H \ D(z;rz) onto H
with ®(0) = 0 and ®(z) ~ z as z — 0.
H\ D(x;rx)

N

‘ ¢ :H\D(r;rz) — H
®

0 r—rr x T+ rx

In fact, the exact form of ®(z) is given by

7,2332

d(z) =2+ + r?x.

z— X

Note that ®(0) = 0, ®(c0) = 0o, and ®’(co0) = 1. We calculate ®’(0) = 1 — r?
and therefore conclude that

P{7[0,00) NC(z;rx) = 0} = (1 — r?)5/8,




The lower bound for 4 < Kk < 8

Theorem. Let 0 < r <1/3and x > 0. If y:[0,00) — H is a chordal SLE in H
from 0 to co with 4 < kK < 8 and a = 2/k, then there exists a constant ¢, such that

P{~v[0,00) N C(x;7z) # O} > cqr*®™ 1.

Proof. It is clear that if [0, co) intersects the interval [z — rx, x + rz] then it also
intersects the semicircle C(z;rx).

C(x,rx)

VAN ' Sl

0 r—rx x-+rx




The lower bound for 4 < k < 8 (cont.)

By a result of Rohde and Schramm (a generalized Cardy's formula) and the scale
invariance of SLE,

P{~[0,0) N[z —rz,xz + rx] # 0}

B I'(2a) /% dt
C T(1—2a)(4a—1) Jo t2—4a(1 — t)2a

['(2a) 12+Tr dt
= I'(1—2a)'(4a — 1) /0 t2—4a(1/2)2a
['(2a)22¢
>
— I'(1 — 4a)T'(4a)

(2T)4a—1 .

The first and second inequalities use 0 < r < 1/3.

Note: 4 < Kk <8iff0 <2 —-4a <1




The lower bound for 0 < kK < 4

Theorem. Let 0 <7 < 1and > 0. If v:[0,00) — H is a chordal SLE, in H from
0 to oo with 0 < kK < 4 and a = 2/k, then there exists a constant ¢, such that

P{~[0,00) N C(x;7z) # O} > cqr*®™ 1.

To prove the result, we recall the probability that a fixed point z € H lies to the left
of [0, 00). The version that we include may be found in Garban and Trujillo
Ferreras and is equivalent to the one given by Schramm.

Proposition. [Schramm] Let z = pe!® cH and f(z)=P{z is to the left of v[0,00)}.
By scaling, the function f only depends on 6 and is given by

fOQ (sina)*?=2? do

Jo (sina)te=2 da

f(0) =




The lower bound for 0 < k < 4 (cont.)

Proof. The figure clearly shows that

P{~[0,00) NC(x;rx) # O} > P{x + irx is to the left of [0, c0)}.

710, 00)




The lower bound for 0 < k < 4 (cont.)

Since arg(x + irx) = arctan(r) and since 2sint > t for 0 < ¢t < w/4, we conclude

from the Proposition that

P{x + irx is to the left of y[0,00)} - / (sin@)** 2 da
0

arctan(r) o
/ (sin a)** ™ “ da
0

1 arctan(r)
= / Oé4a_2 do
0

2
arctan®®—1(r)
(+)
8a — 2

Since 8arctant > wt for 0 <t < 1, we see that (*) implies that there exists a

constant c,, namely

7.‘.4a—1

a 46a=1(4a — 1) [ (sina)*e—2 da’

Ca

such that P{x + irz is to the left of v[0,00)} > core—1.




The upper bound

Theorem. Let 0 < r <1/3and x > 0. If y:[0,00) — H is a chordal SLE in H
from 0 to co with 0 < kK < 8 and a = 2/k, then there exists a constant ¢, such that

P{~[0,00) NC(x;7z) # 0} < cqrte™1.

The tool we need to establish the upper bound is due to Beffara.

Proposition. [Beffara] If z € H, 0 < ¢ < ${z}/2, and
B(z;e) = {w € C: |z — w| < €} denotes the ball of radius € centred at z, then

P{7[0,00) N B(z;¢€) # 0} < ( € >1ﬁ (g{z}>4a1

3{z} E

where the constants implied by < may depend on a.

Remark. We would like to stress that the Proposition holds for all a > 1/4
(equivalently, all 0 < k < 8).




The upper bound (cont.)

Our general strategy will be to cover the semicircle C(x; rx) with a sequence of
balls and then apply the Proposition to each ball.




The upper bound (cont.)

Proof. Set zo =z +trz and form=1,2,..., let 2z, = x L+ rx + ire2—1ml+1
Using the Proposition,

Sz} _ oot (e e
P{’Y[O,OO)QB(Zin;T> 75@} X 24a ( Ztn]  9(4a—1)[n|

since |z4n| <X for 0 < r < 1/3. Hence,

5 p (o000 (2 2n) o) i

2

nN=—oo

But if [0, co) intersects C(x;rx), then it also must intersect (at least) one of
C\
B (zin; %) as is clear from the Figure. Hence, (x) implies that there exists

a constant ¢, such that

Pri0,00) (i) 0} < 3 P {310,005 (s 222 ) 20} < carte

nN=—oo




Rephrasing the main result

Theorem. Let x > 0 be a fixed real number, and suppose 0 < ¢ < z/3. If
7 : [0,00) — H is a chordal SLE, in H from 0 to co with 0 < k < 8 and a = 2/,

then
€

P{~[0,00) NC(x;€) # 0} < (;)4a_1

where C(z;€) is the semicircle of radius € centred at x in the upper half plane.

Written in this form, it is seen to generalize the result of Rohde and Schramm who
prove that for 4 < Kk < 8,

P{y[0,00) N[z — €,z + €] # 0} < (:z:




An application

Let 0 < r < 1/3, and suppose that 7 : [0,00) — H is a chordal SLE,; in H from 0
to oo with 4 < Kk < 8 and a = 2/k.

Theorem. There exist constants ¢/, and ¢!/ such that

1—c rteml < inf P{T, =Ty} < sup P{T, =T} <1—¢/r*o~1
2elyr z€Cy

where

Cr = (1—7“;%)

denotes the circle of radius /2 centred at 1 — r in the upper half plane.

~[0, 00)

Corollary. There exist constants ¢/, and ¢, such that

1—cr* < P{T, =T forall z€C.} <1—¢/r*o 1,




Proof of the application

The proof follows by combining the main result with a method due to Dubédat.

Suppose that 0 < r < 1/3 and consider the two semicircles

cT:c(1—7~;f)

2




Proof of the application (lower bound)

It follows from the rephrased main result that
P{y[0,00) NC.. # 0} =< rta—1
and so there exists a constant ¢/, such that
1 —criel < P{~[0,00) N C. = 0}.
However, it clearly follows that

P{~[0,00)NC, =0} < incf P{T. =T}
z€Cqp
where T, is the swallowing time of the point z € H (and the infimum is over all
z € Cy not z € Cl). From this we conclude that there exists a constant ¢, such
that

1—c il < inf P{T, =T1}.




Proof of the application (upper bound)

In order to derive an upper bound, we use a method due to Dubédat.

Let g+ denote the solution to the chordal Loewner equation with driving function
U: = —B: where By is a standard one-dimensional Brownian motion with Bg = 0.
For t < T, the swallowing time of the point 1, consider the conformal
transformation g; : H\ K; — H given by

gi(z) = gil) + By
gt(1) + Bt

Note that g:(y(t)) =0, g«(1) = 1, gt(00) = 00, and that g:(z) satisfies the
stochastic differential equation

go(z) = z.

a dt d B
dg:(z =|:~ + (1 —a)ge —1:| + |1 — g¢(2 :
S T R R T e

If we now perform a time-change and also denoted the time-changed flow by

{G+(z), t > 0}, then then g:(2) satisfies the SDE

@4@=[%i)+u—amwa—@dwul—aunﬂ%

Dubédat shows that for all kK > 0, this does not explode in finite time (wpl).




Proof of the application (upper bound) (cont.)

Therefore, if F'is an analytic function on H such that {F'(g:(z)), t > 0} is a local
martingale, then 1t6’'s formula (at ¢ = 0) implies that F' must be a solution to the
differential equation

w(l —w)F"(w) + [2a — (2 — 2a)w]F' (w) = 0.

An explicit solution is given by

2 Yo .
Fw) = S 2 r@a =1 /0 QTR

which is normalized so that F(0) =0 and F'(1) = 1.

Note that this is a Schwarz-Christoffel transformation of the upper half plane onto
the isosceles triangle whose interior angles are (1 — 2a)m, (1 — 2a)m, and (4a — 1)m.




Proof of the application (upper bound) (cont.)

o) T .
Fw) = s 2ar@a =1 /O =g

then the vertices of the traingle are at F'(0) =0, F'(1) =1, and

['(2a)I'(1 — 2a) o(1—2a)mi
I'(2 — 4a)'(4a — 1) '

F(oo) =




Proof of the application (upper bound) (cont.)

Apply the optional sampling theorem to the martingale F(gian7, a1y (2)) to find
that for z € H,

F(z) = FO)P{T, < T\} + F(1)P{T, = T1} + F(co)P{T, > T1}
— P{T, =T1} + F(c0)P{T. > T\ }. (%)

Consequently, identifying the imaginary and real parts of (x) implies that
R{F(z2)} = P{T, =T1} + R{F(oc0)} P{T> > T1}.

Since R{F(c0)} > 0, we conclude P{T, =T1} < R{F(2)} < |F(2)|.

But now integrating along the straight line from 0 to z gives

OISz OO [ e pyte=2,
|

I'(1 —2a)l'(4a — 1)

z|

which relied on the fact that 4a — 2 < 0.




Proof of the application (upper bound) (cont.)

If € Crsothat 0 <1 — 2L < |z] <1— L <1 by definition, then

b, da—2 2l—de 1
/lp_a(l—p)a’_ dp > T

2| ~ 4a —1

P{T, =T} < |F(2)| < 1—cjrte!

,  2174a I'(2a)
Cq = :
“ 4a—-1T(1—-2a)'(4a —1)

Taking the supremum of the previous expression over all z € C,- gives us the

required upper bound.




Fin.
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