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Some historical highlights

• Stochastic Loewner Evolution (SLE) introduced in 1999 by O. Schramm while

considering possible scaling limits of 2-d LERW

• Developed by G. Lawler, O. Schramm, and W. Werner: proved dimension of

boundary of Brownian island is 4/3, proved LERW converges to SLE2, proved

UST Peano curve converges to SLE8, limit of SAW must be SLE8/3.

• S. Rohde and O. Schramm established basic properties of SLE, e.g., it is

generated by a curve a.s.

• V. Beffara established Hausdorff dimension

• S. Smirnov proved Cardy’s formula and that percolation exploration path

converges to SLE6 (for site percolation on triangular lattice)

• O. Schramm and S. Sheffield proved harmonic explorer converges to SLE4;

contour lines of discrete GFF converges to SLE4

• Many other path properties under investigation: duality, reversibility, etc.

• Exciting links between SLE/CLE and Conformal Field Theory (CFT)/other

stat mech models: percolation, O(n)-model/Ising model/Potts model,

turbulence, spin glasses
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Review of SLE

Let H = {z ∈ C : ℑ(z) > 0} denote the upper half plane, and consider a simple

(non-self-intersecting) curve γ : [0,∞) → H with γ(0) = 0 and γ(0,∞) ⊂ H.

For every fixed t ≥ 0, the slit plane H t := H \ γ(0, t] is simply connected and so by

the Riemann mapping theorem, there exists a conformal transformation

gt : H t → H.

The map gt is not unique, but we choose the unique one satisfying the

hydrodynamic normalization gt(z) − z → 0 as z → ∞.

It then follows that gt can be expanded as

gt(z) = z +
b(t)

z
+ O

`

|z|−2
´

, z → ∞,

where b(t) = hcap(γ(0, t]) is the half-plane capacity of γ up to time t.

The half-plane capacity is related to how likely a Brownian motion starting from

infinity is to hit the curve before hitting the real line R.
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Review of SLE (cont)

For a slit plane such as H t = H \ γ(0, t], the map gt can be extended continuously

to the boundary point γ(t) of ∂H t.

With no additional assumptions on the simple curve γ, it can be shown that there

is a unique point Ut ∈ R for all t ≥ 0 with Ut := gt(γ(t)) and that the function

t 7→ Ut is continuous.H t H

(0) = 0 Ut := gt((t))gt[0; t℄ �!(t)

gt([0; t℄) � R
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Review of SLE (cont)

The evolution of the curve γ(t), or more precisely, the evolution of the conformal

transformations gt : H t → H, can be described by a differential equation involving

Ut.

This is due to C. Loewner who showed in 1923 that if γ is a curve as above such

that its half-plane capacity b(t) is C1 and b(t) → ∞ as t → ∞, then for z ∈ H

with z 6∈ γ[0,∞), the conformal transformations {gt(z), t ≥ 0} satisfy the partial

differential equation

∂

∂t
gt(z) =

ḃ(t)

gt(z) − Ut
, g0(z) = z. (LE)

Note that if b(t) ∈ C1 is an increasing function, then we can reparametrize the

curve γ so that hcap(γ(0, t]) = b(t). This is the so-called parametrization by

capacity.
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Review of SLE (cont)

The obvious thing to do now is to start with a continuous function t 7→ Ut from

[0,∞) to R and solve the Loewner equation for gt.

Ideally, we would like to solve (LE) for gt, define simple curves γ(t), t ≥ 0, by

setting γ(t) = g−1
t (Ut), and have gt map H \ γ(0, t] conformally onto H.

Although this is the correct intuition, it is not quite precise because we see from the

denominator on the right-side of (LE) that problems can occur if gt(z) − Ut = 0.

Formally, if we let Tz be the supremum of all t such that the solution to (LE) is

well-defined up to time t with gt(z) ∈ H, and we define H t = {z : Tz > t}, then gt

is the unique conformal transformation of H t onto H with gt(z)− z → 0 as t → ∞.
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Review of SLE (cont)

The novel idea of Schramm was to take the continuous function Ut to be a

one-dimensional Brownian motion starting at 0 with variance parameter κ ≥ 0.

The chordal Schramm-Loewner evolution with parameter κ ≥ 0 with the

standard parametrization (or simply SLEκ) is the random collection of conformal

maps {gt, t ≥ 0} obtained by solving the initial value problem

∂

∂t
gt(z) =

2

gt(z) −√
κ Wt

, g0(z) = z, (LE)

where Wt is a standard one-dimensional Brownian motion.
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Review of SLE (cont)

The question is now whether there exists a curve associated with the maps gt.

• If 0 < κ ≤ 4, then there exists a random simple curve γ : [0,∞) → H with

γ(0) = 0 and γ(0,∞) ⊂ H, i.e., the curve γ(t) = g−1
t (

√
κBt) never re-visits R.

As well, the maps gt obtained by solving (LE) are conformal transformations of

H \ γ(0, t] onto H. For this range of κ, our intuition matches the theory!

• For 4 < κ < 8, there exists a random curve γ : [0,∞) → H. These curves have

double points and they do hit R, but they never cross themselves! As such,

H \ γ(0, t] is not simply connected. However, H \ γ(0, t] does have a unique

connected component containing ∞. This is H t and the maps gt are

conformal transformations of H t onto H. We think of H t = H \ Kt where Kt

is the hull of γ(0, t] visualized by taking γ(0, t] and filling in the holes.

• For κ ≥ 8, there exists a random curve γ : [0,∞) → H which is space-filling!

Furthermore, it has double points, but does not cross itself! As in the case

4 < κ < 8, the maps gt are conformal transformations of H t = H \ Kt onto H

where Kt is the hull of γ(0, t].

As a result, we also refer to the curve γ as chordal SLEκ. SLE paths are extremely

rough: the Hausdorff dimension of a chordal SLEκ path is min{1 + κ/8, 2}.
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κ = 1 κ = 2
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κ = 8
3 κ = 3
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Review of SLE (cont)

Since there exists a curve γ associated with the maps gt, it is possible to

reparametrize it.

It can be shown that if Ut is a standard one-dimensional Brownian motion, then

the solution to the initial value problem

∂

∂t
gt(z) =

2/κ

gt(z) − Ut
=

a

gt(z) − Ut
, g0(z) = z,

is chordal SLEκ parametrized so that hcap(γ(0, t]) = 2t/κ = at.

Finally, chordal SLE as we have defined it can also be thought of as a measure on

paths in the upper half plane H connecting the boundary points 0 and ∞.

SLE is conformally invariant and so we can define chordal SLEκ in any simply

connected domain D connecting distinct boundary points z and w to be the image

of chordal SLEκ in H from 0 to ∞ under a conformal transformation from H onto

D sending 0 7→ z and ∞ 7→ w.
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The main result

Theorem. Let x > 0 be real, 0 < r ≤ 1/3, and C(x; rx) = {x + rxeiθ : 0 < θ < π}
denote the semicircle of radius rx centred at x in the upper half plane, and

suppose that γ : [0,∞) → H is a chordal SLEκ in H from 0 to ∞.

(a) If 0 < κ < 8, then P{γ[0,∞) ∩ C(x; rx) 6= ∅} ≍ r
8−κ

κ .

(b) If κ = 8/3, then P{γ[0,∞) ∩ C(x; rx) 6= ∅} = 1 − (1 − r2)5/8 ∼ 5
8
r2.

C(x; rx)

0 x − rx x + rx

γ[0,∞)
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An equivalent formulation

Corollary. Let x > 0 be real, R ≥ 3, and C(0; Rx) = {Rxeiθ : 0 < θ < π} denote

the circle of radius Rx centred at 0 in the upper half plane, and suppose that

γ′ : [0, 1] → H is a chordal SLEκ in H from 0 to x.

(a) If 0 < κ < 8, then P{γ′[0, 1] ∩ C(0; Rx) 6= ∅} ≍ R
κ−8

κ .

(b) If κ = 8/3, then P{γ′[0, 1] ∩ C(0; Rx) 6= ∅} = 1 − (1 − R−2)5/8 ∼ 5
8
R−2.

0 x Rx

C(0;Rx)

γ′[0, 1]
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Derivation of the corollary

The idea is to determine the appropriate sequence of conformal transformations

and use the conformal invariance of chordal SLE.

Suppose that γ′ : [0, 1] → H is an SLEκ in H from 0 to x > 0. Note that we are not

interested in the parametrization of the SLE path, but only in the points visited

by its trace. Suppose that R ≥ 3, and consider C(0; Rx) = {Rxeiθ : 0 < θ < π}.
For z ∈ H, let

h(z) =
R2

R2 − 1

z

x − z

so that h : H → H is a conformal (Möbius) transformation with h(0) = 0 and

h(x) = ∞. It is straightforward (though tedious) to verify that

h (C(0; Rx)) = C
„

−1;
1

R

«

.

0 x Rx

C(0;Rx)

γ′[0, 1]

h : H→ H
C

(

−1; 1

R

)

0−1 + 1

R
−1 −

1

R

γ[0,∞)
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Derivation of the corollary (cont.)

If γ : [0,∞) → H is a chordal SLEκ in H from 0 to ∞, then the conformal

invariance of SLE implies that

P{γ′[0, 1] ∩ C(0; Rx) 6= ∅} = P{h(γ′[0, 1]) ∩ h(C(0; Rx)) 6= ∅}

= P



γ[0,∞) ∩ C
„

−1,
1

R

«

6= ∅
ff

.

By the symmetry of SLE about the imaginary axis,

P



γ[0,∞) ∩ C
„

−1,
1

R

«

6= ∅
ff

= P



γ[0,∞) ∩ C
„

1,
1

R

«

6= ∅
ff

≍ R1−4a.

C
(

−1; 1

R

)

0−1 + 1

R
−1 −

1

R

γ[0,∞)

⇔ C
(

1; 1

R

)

0 1 + 1

R
1 −

1

R

γ[0,∞)
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The κ = 8/3 case

The key fact that is needed is the restriction property of chordal SLE8/3.

Proposition. [Lawler-Schramm-Werner] If γ : [0,∞) → H is a chordal SLE8/3 in

H from 0 to ∞, and A is a bounded subset of H such that H \ A is simply

connected, A = H ∩ A, and 0 6∈ A, then

P{γ[0,∞) ∩ A = ∅} =
ˆ

Φ′
A(0)

˜5/8

where ΦA : H \ A → H is the unique conformal transformation of H \ A to H with

ΦA(0) = 0 and ΦA(z) ∼ z as z → ∞.

H \ A H

0 0

A
ΦA : H \ A → H
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The κ = 8/3 case (cont.)

This implies that

P{γ[0,∞) ∩ C(x; rx) = ∅} =
ˆ

Φ′(0)
˜5/8

where Φ = ΦD(x;rx)(z) is the conformal transformation from H \ D(x; rx) onto H

with Φ(0) = 0 and Φ(z) ∼ z as z → ∞.

H \ D(x; rx) H

0 0

Φ : H \ D(r; rx) → HD(x; rx)

xx − rx x + rx

In fact, the exact form of Φ(z) is given by

Φ(z) = z +
r2x2

z − x
+ r2x.

Note that Φ(0) = 0, Φ(∞) = ∞, and Φ′(∞) = 1. We calculate Φ′(0) = 1 − r2

and therefore conclude that

P{γ[0,∞) ∩ C(x; rx) = ∅} = (1 − r2)5/8.
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The lower bound for 4 < κ < 8

Theorem. Let 0 < r ≤ 1/3 and x > 0. If γ : [0,∞) → H is a chordal SLEκ in H

from 0 to ∞ with 4 < κ < 8 and a = 2/κ, then there exists a constant ca such that

P{γ[0,∞) ∩ C(x; rx) 6= ∅} ≥ car4a−1.

Proof. It is clear that if γ[0,∞) intersects the interval [x − rx, x + rx] then it also

intersects the semicircle C(x; rx).

0 x − rx x + rx

C(x, rx)
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The lower bound for 4 < κ < 8 (cont.)

By a result of Rohde and Schramm (a generalized Cardy’s formula) and the scale

invariance of SLE,

P {γ[0,∞) ∩ [x − rx, x + rx] 6= ∅}

=
Γ(2a)

Γ(1 − 2a)Γ(4a − 1)

Z 2r

1+r

0

dt

t2−4a(1 − t)2a

≥ Γ(2a)

Γ(1 − 2a)Γ(4a − 1)

Z 2r

1+r

0

dt

t2−4a(1/2)2a

≥ Γ(2a)22a

Γ(1 − 4a)Γ(4a)
(2r)4a−1.

The first and second inequalities use 0 < r ≤ 1/3.

Note: 4 < κ < 8 iff 0 < 2 − 4a < 1
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The lower bound for 0 < κ ≤ 4

Theorem. Let 0 < r < 1 and x > 0. If γ : [0,∞) → H is a chordal SLEκ in H from

0 to ∞ with 0 < κ ≤ 4 and a = 2/κ, then there exists a constant ca such that

P{γ[0,∞) ∩ C(x; rx) 6= ∅} ≥ car4a−1.

To prove the result, we recall the probability that a fixed point z ∈ H lies to the left

of γ[0,∞). The version that we include may be found in Garban and Trujillo

Ferreras and is equivalent to the one given by Schramm.

Proposition. [Schramm] Let z = ρeiθ ∈H and f(z)=P{z is to the left of γ[0,∞)}.
By scaling, the function f only depends on θ and is given by

f(θ) =

R θ
0 (sin α)4a−2 dα

R π
0 (sin α)4a−2 dα

.
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The lower bound for 0 < κ ≤ 4 (cont.)

Proof. The figure clearly shows that

P{γ[0,∞) ∩ C(x; rx) 6= ∅} ≥ P{x + irx is to the left of γ[0,∞)}.

x − rx x + rx

x + irx

0

γ[0,∞)
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The lower bound for 0 < κ ≤ 4 (cont.)

Since arg(x + irx) = arctan(r) and since 2 sin t ≥ t for 0 ≤ t ≤ π/4, we conclude

from the Proposition that

P{x + irx is to the left of γ[0,∞)} ·
Z π

0
(sin α)4a−2 dα

=

Z arctan(r)

0
(sin α)4a−2 dα

≥ 1

2

Z arctan(r)

0
α4a−2 dα

=
arctan4a−1(r)

8a − 2
. (∗)

Since 8 arctan t ≥ πt for 0 ≤ t ≤ 1, we see that (∗) implies that there exists a

constant ca, namely

ca =
π4a−1

46a−1(4a − 1)
R π
0 (sin α)4a−2 dα

,

such that P{x + irx is to the left of γ[0,∞)} ≥ car4a−1.
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The upper bound

Theorem. Let 0 < r ≤ 1/3 and x > 0. If γ : [0,∞) → H is a chordal SLEκ in H

from 0 to ∞ with 0 < κ < 8 and a = 2/κ, then there exists a constant ca such that

P{γ[0,∞) ∩ C(x; rx) 6= ∅} ≤ car4a−1.

The tool we need to establish the upper bound is due to Beffara.

Proposition. [Beffara] If z ∈ H, 0 < ǫ ≤ ℑ{z}/2, and

B(z; ǫ) = {w ∈ C : |z − w| < ǫ} denotes the ball of radius ǫ centred at z, then

P{γ[0,∞) ∩ B(z; ǫ) 6= ∅} ≍
„

ǫ

ℑ{z}

«1− 1
4a

„ℑ{z}
|z|

«4a−1

where the constants implied by ≍ may depend on a.

Remark. We would like to stress that the Proposition holds for all a > 1/4

(equivalently, all 0 < κ < 8).

22



The upper bound (cont.)

Our general strategy will be to cover the semicircle C(x; rx) with a sequence of

balls and then apply the Proposition to each ball.

xx − rx x + rx

x + irx
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The upper bound (cont.)

Proof. Set z0 = x + irx and for n = 1, 2, . . ., let z±n = x ± rx + irx2−|n|+1.

Using the Proposition,

P



γ[0,∞) ∩ B
„

z±n;
ℑ{z±n}

2

«

6= ∅
ff

≍ 2
1
4a

−1

„ℑ{z±n}
|z±n|

«4a−1

≍ r4a−1

2(4a−1)|n|

since |z±n| ≍ x for 0 < r ≤ 1/3. Hence,

∞
X

n=−∞

P



γ[0,∞) ∩ B
„

zn;
ℑ{zn}

2

«

6= ∅
ff

≍ r4a−1. (∗)

But if γ[0,∞) intersects C(x; rx), then it also must intersect (at least) one of

B
“

z±n;
ℑ{z±n

}

2

”

, as is clear from the Figure. Hence, (∗) implies that there exists

a constant ca such that

P {γ[0,∞) ∩ C(x; rx) 6= ∅} ≤
∞

X

n=−∞

P



γ[0,∞) ∩ B
„

zn;
ℑ{zn}

2

«

6= ∅
ff

≤ car4a−1.

24



Rephrasing the main result

Theorem. Let x > 0 be a fixed real number, and suppose 0 < ǫ ≤ x/3. If

γ : [0,∞) → H is a chordal SLEκ in H from 0 to ∞ with 0 < κ < 8 and a = 2/κ,

then

P{γ[0,∞) ∩ C(x; ǫ) 6= ∅} ≍
“ ǫ

x

”4a−1

where C(x; ǫ) is the semicircle of radius ǫ centred at x in the upper half plane.

Written in this form, it is seen to generalize the result of Rohde and Schramm who

prove that for 4 < κ < 8,

P{γ[0,∞) ∩ [x − ǫ, x + ǫ] 6= ∅} ≍
“ ǫ

x

”4a−1
.
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An application

Let 0 < r ≤ 1/3, and suppose that γ : [0,∞) → H is a chordal SLEκ in H from 0

to ∞ with 4 < κ < 8 and a = 2/κ.

Theorem. There exist constants c′a and c′′a such that

1 − c′ar4a−1 ≤ inf
z∈Cr

P{Tz = T1} ≤ sup
z∈Cr

P{Tz = T1} ≤ 1 − c′′ar4a−1

where

Cr = C
“

1 − r;
r

2

”

denotes the circle of radius r/2 centred at 1 − r in the upper half plane.

11 − r1 −
3r

2

Cr

1 −
r

20

γ[0,∞)

Corollary. There exist constants c′a and c′′a such that

1 − c′ar4a−1 ≤ P{Tz = T1 for all z ∈ Cr} ≤ 1 − c′′ar4a−1.
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Proof of the application

The proof follows by combining the main result with a method due to Dubédat.

Suppose that 0 < r ≤ 1/3 and consider the two semicircles

Cr = C
“

1 − r;
r

2

”

and

C′
r = C

„

1 − 3r

4
;
3r

4

«

.

11 − r
1 −

3r

2

C′

r

Cr

1 −
3r

4
1 −

r

2
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Proof of the application (lower bound)

It follows from the rephrased main result that

P{γ[0,∞) ∩ C′
r 6= ∅} ≍ r4a−1

and so there exists a constant c′a such that

1 − c′ar4a−1 ≤ P{γ[0,∞) ∩ C′
r = ∅}.

However, it clearly follows that

P{γ[0,∞) ∩ C′
r = ∅} ≤ inf

z∈Cr

P{Tz = T1}

where Tz is the swallowing time of the point z ∈ H (and the infimum is over all

z ∈ Cr not z ∈ C′
r). From this we conclude that there exists a constant c′a such

that

1 − c′ar4a−1 ≤ inf
z∈Cr

P{Tz = T1}.
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Proof of the application (upper bound)

In order to derive an upper bound, we use a method due to Dubédat.

Let gt denote the solution to the chordal Loewner equation with driving function

Ut = −Bt where Bt is a standard one-dimensional Brownian motion with B0 = 0.

For t < T1, the swallowing time of the point 1, consider the conformal

transformation g̃t : H \ Kt → H given by

g̃t(z) =
gt(z) + Bt

gt(1) + Bt
, g̃0(z) = z.

Note that g̃t(γ(t)) = 0, g̃t(1) = 1, g̃t(∞) = ∞, and that g̃t(z) satisfies the

stochastic differential equation

dg̃t(z) =

»

a

g̃t(z)
+ (1 − a)g̃t(z) − 1

–

dt

(gt(1) + Bt)2
+ [1 − g̃t(z)]

dBt

gt(1) + Bt
.

If we now perform a time-change and also denoted the time-changed flow by

{g̃t(z), t ≥ 0}, then then g̃t(z) satisfies the SDE

dg̃t(z) =

»

a

g̃t(z)
+ (1 − a)g̃t(z) − 1

–

dt + [1 − g̃t(z)] dBt

Dubédat shows that for all κ > 0, this does not explode in finite time (wp1).
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Proof of the application (upper bound) (cont.)

Therefore, if F is an analytic function on H such that {F (g̃t(z)), t ≥ 0} is a local

martingale, then Itô’s formula (at t = 0) implies that F must be a solution to the

differential equation

w(1 − w)F ′′(w) + [2a − (2 − 2a)w]F ′(w) = 0.

An explicit solution is given by

F (w) =
Γ(2a)

Γ(1 − 2a)Γ(4a − 1)

Z w

0
ζ−2a(1 − ζ)4a−2dζ

which is normalized so that F (0) = 0 and F (1) = 1.

Note that this is a Schwarz-Christoffel transformation of the upper half plane onto

the isosceles triangle whose interior angles are (1− 2a)π, (1− 2a)π, and (4a− 1)π.
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Proof of the application (upper bound) (cont.)

If

F (w) =
Γ(2a)

Γ(1 − 2a)Γ(4a − 1)

Z w

0
ζ−2a(1 − ζ)4a−2dζ,

then the vertices of the traingle are at F (0) = 0, F (1) = 1, and

F (∞) =
Γ(2a)Γ(1 − 2a)

Γ(2 − 4a)Γ(4a − 1)
e(1−2a)πi.

F (0) = 0 F (1) = 1

(1 − 2a)π (4a − 1)π

(1 − 2a)π

F (∞)
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Proof of the application (upper bound) (cont.)

Apply the optional sampling theorem to the martingale F (g̃t∧Tz∧T1
(z)) to find

that for z ∈ H,

F (g̃0(z)) = F (z) = F (0)P{Tz < T1} + F (1)P{Tz = T1} + F (∞)P{Tz > T1}
= P{Tz = T1} + F (∞)P{Tz > T1}. (∗)

Consequently, identifying the imaginary and real parts of (∗) implies that

ℜ{F (z)} = P{Tz = T1} + ℜ{F (∞)}P{Tz > T1}.

Since ℜ{F (∞)} ≥ 0, we conclude P{Tz = T1} ≤ ℜ{F (z)} ≤ |F (z)|.
But now integrating along the straight line from 0 to z gives

|F (z)| ≤ 1 − Γ(2a)

Γ(1 − 2a)Γ(4a − 1)

Z 1

|z|
ρ−2a(1 − ρ)4a−2dρ

which relied on the fact that 4a − 2 < 0.
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Proof of the application (upper bound) (cont.)

If z ∈ Cr so that 0 < 1 − 3r
2

≤ |z| ≤ 1 − r
2

< 1 by definition, then

Z 1

|z|
ρ−2a(1 − ρ)4a−2dρ ≥ 21−4a

4a − 1
r4a−1.

Hence,

P{Tz = T1} ≤ |F (z)| ≤ 1 − c′′ar4a−1

where

c′′a =
21−4a

4a − 1

Γ(2a)

Γ(1 − 2a)Γ(4a − 1)
.

Taking the supremum of the previous expression over all z ∈ Cr gives us the

required upper bound.
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Fin.
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