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The Basic Setup

– D ⊂ C simply connected, ∂D Jordan

– z1, . . . , zn, wn, . . . , w1 distinct points ordered counterclockwise on ∂D

– write z = (z1, . . . , zn), w = (w1, . . . , wn)

– fix a parameter b ∈ R (boundary scaling exponent or boundary conformal weight)

Goal: To define a measure

QD,b,n(z,w)

on mutually avoiding n-tuples (γ1, . . . , γn) of simple paths in D, and satisfying

certain properties:

(1) conformal covariance (2) boundary perturbation

(3) cascade relation (4) Markov property

Note that γi : [0, 1]→ C with γi(0) = zi, γi(1) = wi, γ(0, 1) ⊂ D.
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Conformal Covariance

If D is analytic at z, w, then QD,b,n(z,w) is a non-zero, finite measure supported

on n-tuples (γ1, . . . , γn) where γj is a simple curve in D connecting zj and wj and

γj ∩ γk = ∅, 1 ≤ j < k ≤ n.

Moreover, if f : D → f(D) is a conformal transformation and f(D) is analytic at

f(z), f(w), then

f ◦QD,b,n(z,w) = |f ′(z)|b |f ′(w)|b Qf(D),b,n(f(z), f(w)) (1)

where f(z) = (f(z1), . . . , f(zn)) and f ′(z) = f ′(z1) · · · f ′(zn).
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Figure 1: Conformal Covariance
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Recall: f ◦QD,b,n(z,w) = |f ′(z)|b |f ′(w)|b Qf(D),b,n(f(z), f(w)) (1)

Write

QD,b,n(z,w) = HD,b,n(z,w) µ#
D,b,n

(z,w),

where HD,b,n(z,w) = |QD,b,n(z,w)| and µ#
D,b,n

(z,w) is a probability measure.

The conformal covariance condition (1) then becomes the scaling rule for H,

HD,b,n(z,w) = |f ′(z)|b |f ′(w)|b Hf(D),b,n(f(z), f(w)), (2)

and the conformal invariance rule for µ#,

f ◦ µ#
D,b,n

(z,w) = µ#
f(D),b,n

(f(z), f(w)). (3)

Since µ# is a conformal invariant, we can define µ#
D,b,n

(z,w) even if the

boundaries are not smooth at z, w.
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Boundary Perturbation

Suppose D ⊂ D′ are Jordan domains and ∂D, ∂D′ agree and are analytic in

neighbourhoods of z, w. Then QD,b,n(z,w) is absolutely continuous with respect

to QD′,b,n(z,w). Moreover, the Radon-Nikodym derivative

YD,D′,b,n(z,w) =
dQD,b,n(z,w)

dQD′,b,n(z,w)

is a conformal invariant.
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Recall: D ⊂ D′ and

YD,D′,b,n(z,w) =
dQD,b,n(z,w)

dQD′,b,n(z,w)

Saying that YD,D′,b,n(z,w) is a conformal invariant means that if f : D′ → f(D′)

is a conformal map that extends analytically in neighbourhoods of z, w, then

Yf(D),f(D′),b,n(f(z), f(w))(f ◦ γ̄) = YD,D′,b,n(z,w)(γ̄), (4)

where γ̄ = (γ1, . . . , γn) and f ◦ γ̄ = (f ◦ γ1, . . . , f ◦ γn).

As with µ#
D,b,n

(z,w), the last condition (4) implies that YD,D′,b,n(z,w) is

well-defined even if the boundaries are not smooth at z,w.
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Cascade Relation

Let

ẑ = (z1, . . . , zj−1, zj+1, . . . , zn), ŵ = (w1, . . . , wj−1, wj+1, . . . , wn),

γ̂ = (γ1, . . . , γj−1, γj+1, . . . , γn).

The marginal distribution on γ̂ induced by QD,b,n(z,w) is absolutely continuous

with respect to QD,b,n−1(ẑ, ŵ) with Radon-Nikodym derivative H
D̂,b,1(zj , wj).

Here D̂ is the subdomain of D \ γ̂ whose boundary includes zj , wj .
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Markov Property

In the measure µ#
D,b,1(z, w), the conditional distribution on γ given an initial

segment γ[0, t] is µ#
D\γ[0,t],b,1

(γ(t), w).
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Note: We have stated this condition in a way that does not use two dimensions

and conformal invariance.
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Schramm’s Result

Note: The conformal Markov property is the combination of the Markov property

and (3). O. Schramm showed that there is a one-parameter family of measures,

which he parametrized by κ, satisfying the conformal Markov property. While these

measures are well-defined for κ > 0, they are supported on simple curves only for

0 < κ ≤ 4.

9



Existence of the Configurational Measure

Theorem (Kozdron-Lawler): For any b ≥ 1
4
, there exists a family of measures

QD,b,n(z,w) supported on n-tuples of mutually avoiding simple curves satisfying

• conformal covariance

• boundary perturbation

• cascade relation

• Markov property

Moreover, the simple curve γi is a chordal SLEκ from zi to wi in D where

κ =
6

2b + 1
.

Note: b ≥ 1
4
←→ 0 < κ ≤ 4
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The Partition Function for Two Paths

By conformal invariance, it suffices to work in D = H.

If 0 < x1 < · · · < xn < yn < · · · < y1 <∞, let

H∗
H,b,n(x,y) = lim

w→∞
w2b HH,b,n+1((0,x), (w,y)).

Proposition: If b ≥ 1/4 and n + 1 = 2, then

H∗
H,b,1(x, y) = (y − x)−2b Γ(2a) Γ(6a− 1)

Γ(4a) Γ(4a− 1)
(x/y)a F (2a, 1− 2a, 4a; x/y)

where F denotes the hypergeometric function and a =
2

κ
=

2b + 1

3
.

Note: This result first appeared in J. Dubédat, and was derived non-rigorously by

M. Bauer, D. Bernard, and K. Kytölä. Our configurational approach provides

another rigorous derivation.
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The Scaling Limit of Fomin’s Identity

Theorem (Kozdron-Lawler): If γ : [0,∞)→ H is an SLE2 in the upper half plane

H from 0 to ∞, and β : [0, 1]→ H is a Brownian excursion from x to y in H where

0 < x < y <∞, then

P { γ[0,∞) ∩ β[0, 1] = ∅ } = 1−
H (f(0), f(y)) H (f(x), f(∞))

H (f(0), f(∞)) H (f(x), f(y))

where f : H→ D is a conformal transformation of the upper half plane H onto the

unit disk D, and H(z, w) is the excursion Poisson kernel in D given by

H(z, w) := H∂D(z, w) :=
1

π

1

|w − z|2
=

1

2π

1

1− cos(arg w − arg z)
.
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