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1. Brief Introduction to Probability
e Perform an experiment

e Set of all possible outcomes of an experiment is
called sample space, denoted 2

Ex: Toss coin. 3 2 outcomes: Heads or Tails

SQ={HT}

Definition: A probability, P, is a function P : S — [0, 1],
S C 2, st:

1. P(¢) =0
2. P(Q) =1

3. P(LAuB) = P(A) + P(B) VA,B C Q2 with A B
disjoint

2
P(T) = 3,
P(HorT)=1,
P(H and T) = 0.

Definition: A random variable, X, is a real number rep-
resenting values of possible outcomes of an experiment.
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Ex: Let H =1, T" = 0. Flip a coin twice and count
the number of heads. Then there can be either 0,1 or
2 heads.

X = 0 No Heads
X =1 One Head
X = 2 Two Heads

Thus,
1
P(X=0)= 2 TT is only way to get no heads
2
P(X:l):Z HT or TH
1
P(X =2) = 2 HH only



Definition: The expected value (or average value or
mean) of a (discrete) random variable is defined as:

E(X) =) zP(X =uz)

e
(i.e. sum over all possible outcomes)

Ex: Roll a die. Observe face. What is expected out-
come?

X=1|P(X=1)=¢
X=2|P(X=2)=¢
X=3|P(X=3)=¢
X=4|P(X=4)=¢
X=5|P(X=5)=1
X=6|PX=6)=1

~E(X) =) 2P(X =2)

xT

=1.P(X=1)4...46-P(X =6)
1

=-(1+2+3+4+5+6)

= 3.5

Note: Expectation is additive:
E(X+Y)=E(X)+EX)



2. Random Walk

RY : d-dimensional Euclidean space

7% = set of all d-tuples with integer coefficients
={(21,...,24) 1z € L}
“d—dimensional lattice”

A particle starts at the origin of Z¢. At each unit of time
the particle randomly selects one of its 2d nearest neigh-
bours and moves there. This is called a random walk.

For Example, on Z2:

At each step the particle can move either up, down, left
or right. This is sometimes called a drunkard’s walk.




e A “drunk’” steps out of the bar and is so intoxicated
that he stumbles at random.

e Imagine the bar situated at the centre of a large
grid of streets.

bar

e With each step the drunk is equally likely to go
north, south, east or west.

e Imagine that the drunk also has a home.

Now, suppose that we release the drunk and let him
walk (randomly) and that

e At the bar, he has a drink and leaves at the next
time step.

e At home, he has a nap and leaves at the next time
step.



CLAIM

The drunkard returns to the bar infinitely often; but also
returns home infinitely often.

IN FACT

e In one dimension, the drunk will return to the bar
infinitely often.

e In two dimensions, the drunk will return to the bar
infinitely often.

e In three dimensions, the drunk will not return to
the bar infinitely often. That is, he will go to the
bar one final time, have his final drink, and wander
off ... never to return again.



More formally,

a simple random walk on Z% is a random walk in which
the probability of moving from a point to any one of its
2d nearest neighbours is %z'
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Simple random walk on Z3
Choose any neighbour with probability %

e.g.

Now, let’'s begin a simple random walk on Z% starting at
the origin.

Let pese = Pr{walk never returns to 0}

Definition: A random walk is recurrent iff pes. = O.
A random walk is transient iff pes. > O.

We can now formulate the theorem of POolya.



3. Theorem: Pdlya, 1928

A simple random walk on the d-dimensional lattice Z? is
recurrent for d =1 and d = 2, but is transient for d > 3.

That is, for d = 1,2 it is “certain” to return to the ori-
gin, but for d > 3 it is not.

Proof: I will prove this theorem for the d = 1,2 recur-
rent cases and the d = 3 transient case. The d > 3
cases are very similar to the d = 3 case except for some
messier algebra.

But first ...



Recurrence = infinite expected number of returns

e u = Pr{random walk started at O returns to 0O}
o Pr{walker is there exactly k times} = v*1(1 — u)

e m — expected number of times at O

k=1
=(1—U)Zk-uk_l
k=1
— d
= (1— Ry
1wy L
k=1
d O
=(1—u)d— uP
uk=1
d 1
= (1 —u)—
( u)dul—u
1
Y

L if m = o0, then v =1 and so the walk is recurrent

if m < oo, then uw < 1 and so the walk is transient
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Alternatively,
let u, = Pr{walk starting at 0 is at 0 on n'" step}

ug = 1

Define a random variable as follows:

1, if walker is at O at time n
€n — .
0, otherwise

O
Thus, T = Z e, is the total number of times at O.

n=0

So, m=E(T) = iE(en)

n=0

But, E(ex,) =1 -un+0- (1 — uy)

So,

00
m = g U,
n=0

recurrence < Y u, diverges
transience < > w, converges
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D=1
To return to origin walker must take same number of
steps left as right.

. only even return times are possible

Uny = (%)2" . #possible paths
n 2n
uze = (%) (3)

Using the well-known Stirling Formula, we can get an
asymptotically equivalent expression for uy,,.

Stirling Formula: n! = vV/2mn e ™™
(2n)! 1
n!(2n —n)l22n
_ V2m2n e=2n (2n)?"
(V27mn en nn)2 22n
1

L U2p —

A/ T
Thus,
ZUQn ~ Z— which diverges
" A/ TN
. Simple rw in one dimension is recurrent. L]
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D=2
To return the walker must take ...

e same number of steps left as right, AND
e the same number of steps up as down.

. every path that returns in 2n steps has probability

(%)Qn of occurring

The number of paths with k steps left, k steps right, n—k

. 2n . 2n)!
steps up, n—k steps down is (k:,k:,n—k:,n—k) = k!k!(n(—kg)!(n—k)!

B n 2 (2n)!
Han = ) Zk!k!(n—kz)!(n—k)!

1
4
k=0

1\ " & (2n)! nin!

Z) 2. nin! k'k!(n — k)'(n — k)!
1

4

)" Y2 ()
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1
Thus, nguQn%;%zoo

(It is just the square of the one dimensional result.)

. Simple rw in two dimensions is also recurrent.
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D=3
Similarly, to return to the origin, the walker must take

e same number of steps left as right, AND
e same number of steps up as down, AND
e same number of steps forward as backward

. every path that returns in 2n steps has probability
(%)2” of occurring

The number of paths with k steps left, k steps right, j
steps up, j steps down, n—k — j steps forward, n—j5 —k
steps backward is

( 2n ) L (2n)!

kk jjn—k—jn—k—j/ kkjljil(n—k—)l(n—k—j)!
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So,

1 (2n)!
W"_E%'Z:kmwﬂ@fj—kﬁm—j—kﬁ
Jt+k<n
1 /2n 1 n! g
'_§%<n) %; Q%kUKn—k—jﬂ)
J+k<n

Now,

1 ( n ) 1 n!
3n\k,jn—j—k/ 3kljl(n—j—k)!
— probability of placing n balls in 3 boxes

This is maximized when k, j, (n—k — j) are as close to
Z as possible.
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So,

1 2ny (1 n! 1 n
uznﬁﬁ(n>(3n[%]|[ﬂ]|[ﬁ]l> jzk3nk!j!(n—j—k)!

3 3

\ . 4

=1 since it i;ra distribution

e < (P (31 ([;!)3>

3

However, Stirling = uz, < -%; for some constant K € R*

So,

m_ZU’Q”Ssz<OO

. Simple rw in three dimensions is transient. L]
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4. Self-Avoiding Random Walk

A self-avoiding random walk is simply a random walk
with the additional constraint that you cannot revisit a
previously visited site.

One application of self-avoiding random walks is as a
model for polymers.

e A polymer is a chain of molecules known as monomers.

e Monomers attach *“at random angles” to the end
of the chain.

e A monomer cannot attach at an already occupied
spot.

For example, suppose that we have a polymer in which
monomers are allowed to attach to the chain only at
angles which are multiples of 45°. In this case, we are
working on an “honeycomb lattice"”.

88
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Definition: A self-avoiding random walk (SARW) of length
n in Z% is a sequence w of points such that

1. w= (wo,w1,...,wn) Where w; € Z¢
2. wo=20
3. |lwj —wj-1]] = 1 for j = 1,...,n and distance is

measured “on the lattice”

4., wi#wj forz';&j

2

1,2, 3 =R
1, 2, 3 + 4 = SARW

Although SARWSs are similar to RWSs, they are tough to
analyze. There are still many aspects of them that are
unknown.

2, . set of SARWS of length n
Crn = || = #(2,) = card(2,)
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Open Question

“What is C,,7"
“How many elements does €2,, have?”
“How many n-step self-avoiding random walks are there?”

Some Partial Answers

e There exist (2d)™ simple random walks of length n.
So,

Cn < (2d)"

e Don't let it visit it's last site. (i.e. no immediate
returns) .. 3 at most 2d— 1 nearest unvistited neigh-
bours. So,

C, < 2d(2d — 1)1

e Let the random walk move only in the postive x
direction. (Orin any one direction for that matter.)
This is clearly self-avoiding, so

d" < Cy
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Bounds on Number of n-step SARWS

d" < C, < 2d(2d — 1)7~1

CONJECTURE

There is some number 8 with

Cp ~ 3"

WELL KNOWN: lim CL/™ exists

n—aoo

s limctn =3

n—aoo

FROM ABOVE: d< 3<2d— 1.

UNKNOWN: 3
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