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Charles Loewner

• 1893: born May 29 as Karl Löwner in Lany, Bohemia

• 1917: Ph.D. from University of Prague in geometric function

theory under Georg Pick

• 1933: jailed during Nazi occupation of Prague, emmigrated to

US, changed his name to Charles Loewner, and received

Assistant Professorship at Louisville University

• Brown University (1944-1946); Syracuse University

(1946-1951); Stanford University (1951-1968)
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Brief History of the Loewner Equation

• (Loewner 1923): proved a special case of the Bieberbach

conjecture (|a3| ≤ 3)

• (DeBranges 1985): proved entire Bieberbach conjecture

• (Schramm 1999): scaling limits of certain stochastic processes

• (Lawler, Schramm, Werner 2000): proved Mandelbrot’s

conjecture that dimension of Brownian frontier is 4/3
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Mapping H to H

Let H = {z ∈ C : ℑz > 0} be the upper half plane.

H

R

Let h : H → H be onto with h(∞) = ∞.

Then h must be of the form h(z) = az + b where a > 0 and b ∈ R.
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Riemann Mapping Theorem

The Riemann mapping theorem states that any simply connected proper

subset of the complex plane can be mapped conformally onto the unit

disk, D = {z ∈ C : |z| < 1}.

Theorem (Riemann). Let D be a simply connected domain which is a

proper subset of complex plane. Let z0 ∈ D be a given point. Then there

exists a unique analytic function g which maps D conformally onto D

and has the properties g(z0) = 0 and g′(z0) > 0.
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Mapping H \ K to H

Suppose K is a bounded, compact set such that H \ K is simply

connected.

By the Riemann mapping theorem there exist many conformal maps gK

from H \ K to H with gK(∞) = ∞.

Using the Schwarz reflection principle, as z → ∞ we can expand gK

around ∞.

∴ gK(z) = bz + a0 +
a1

z
+ O

„

1

z2

«

with b > 0 and ai ∈ R.

Consider the expansion of f(z) = [gK(1/z)]−1 about the origin. f locally

maps R to R so the coefficients in the expansion are real and b > 0.
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For convenience, we choose the unique gK which satisfies the

“hydrodynamic normalization”

lim
z→∞

(gK(z) − z) = 0.

i.e. we choose b = 1, a0 = 0

The constant a(K) := a1 only depends on the set K.

Thus gK : H \ K → H with gK(∞) = ∞ is

gK(z) = z +
a(K)

z
+ O

„

1

z2

«

.
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Slit Mappings

Let γ : [0,∞) → H be a simple curve (no self intersections) with γ(0) = 0

and γ(0,∞) ⊆ H.

For each t ≥ 0 suppose that Kt := γ[0, t].

Let Ht := H \ Kt be the slit half plane and let gt : Ht → H be the

corresponding Riemann map.

We want gt(∞) = ∞ and gt to satisfy hydrodynamic normalization.

Thus as z → ∞,

gt(z) = z +
a(t)

z
+ O

„

1

z2

«

where a(t) := a(Kt).
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Ht H

γ(0) = 0

Ut := gt(γ(t))

gtKt := γ[0, t]

−→

γ(t)

gt(γ[0, t]) ⊆ R

The slit half plane Ht and the corresponding Riemann map to H.

• The curve γ : [0,∞) → H evolves from γ(0) = 0 to γ(t).

• Kt := γ[0, t], Ht := H \ Kt, gt : Ht → H

• Ut := gt(γ(t)), the image of γ(t).

• By the Carathéodory extension theorem, gt(γ[0, t]) ⊆ R.
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Understanding a(t)

As before Kt = γ[0, t], Ht = H \ Kt, and

a(t) := a(Kt) = a(γ[0, t]).

We choose the parametrization of γ(t) such that a(t) = 2t.

i.e. Let σt = inf{s : a(γ(s)) = 2t}. Then σt is such that a(γ[0, σt]) = 2t.

Reparametrize by γ̃(t) = γ(σt). Just call this γ.

Facts.

1) if s < t, then a(s) < a(t)

2) s 7→ a(s) is continuous

3) a(0) = 0, a(t) → ∞ as t → ∞
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The Loewner Equation

Assume that γ(t) is chosen so that a(t) = 2t.

Suppose Kt := γ[0, t] with Ht := H \ Kt and let gt : Ht → H be the

corresponding maps. Let Ut := gt(γ(t)).

Then gt satisfies the Loewner differential equation with the identity map

as initial data.

Theorem (Loewner). gt(z), for fixed z, is the solution of the IVP

∂tgt(z) =
2

gt(z) − Ut

, g0(z) = z.
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The natural thing to do is to start with Ut and solve the Loewner

equation.

Suppose that the function t 7→ Ut, t ∈ [0,∞) is continuous and

real-valued.

Solving the Loewner equation gives gt which conformally map Ht to H

where Ht = {z : gt(z) is well-defined} = H \ Kt.

Ideally, we would like g−1

t
(Ut) to be a well-defined curve so that we can

define γ(t) = g−1

t
(Ut). Although for many choices of U this is not

possible, the following theorem gives a sufficient condition.

Theorem (Rohde-Marshall). If U is “nice” [Hölder 1/2 continuous with

sufficiently small Hölder 1/2 norm], then γ(t) = g−1

t
(Ut) is a well-defined

simple curve and Kt = γ[0, t].
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Brownian Motion

Brownian motion is a model of “continuous, random motion.” Think of

Brownian motion as the limit of a random walk where the step sizes get

smaller and smaller (and the grid gets finer and finer).

Let X1,X2, . . . be independent random variables with

P(Xi = 1) = P(Xi = −1) = 1/2 for all i.

If Sn = X1 + X2 + · · · + Xn, then
Sn√

n
→BM (in distribution as n → ∞).

One dimensional Brownian motion is a real-valued process on the line;

B : [0,∞) → R, B0 = 0, B(t) = Bt.
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Facts about Brownian motion.

1) t 7→ Bt is continuous

2) Bt ∼ N (0, t), σBt ∼ Bσ2t ∼ N (0, σ2t)

3) Bt+s − Bs ∼ N (0, t) (stationary increments)

4) Bt is independent of Bs for 0 ≤ s < t (independent increments)

5) −Bt is a Brownian motion

6) Bt is Hölder α continuous for all 0 < α < 1/2
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SLE

• Stochastic Loewner Evolution (aka Schramm’s LE) introduced by

Oded Schramm in 1999

• developed by Lawler, Schramm, Werner and Rohde, Marshall

The idea: let Ut be a Brownian motion!

SLE with parameter κ is obtained by choosing Ut =
√

κBt where Bt is a

standard one dimensional Brownian motion.

Definition. SLEκ in the upper half plane is the random collection of

conformal maps gt obtained by solving the Loewner equation

∂tgt(z) =
2

gt(z) −√
κBt

, g0(z) = z.
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It is not obvious that g−1

t
is well-defined at Ut so that the curve γ can be

defined. The following theorem establishes this.

Theorem (Rohde-Schramm). There exists a curve γ associated to SLEκ

(at least for κ 6= 8).

Think of γ(t) = g−1

t
(
√

κBt).

SLEκ is the random collection of conformal maps gt (complex analysts)

or the curve γ[0, t] being generated in H (probabilists)!

Although changing the variance parameter κ does not qualitatively

change the behaviour of Brownian motion, it drastically alters the

behaviour of SLE.
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Properties of SLE

Fact.

• 0 < κ ≤ 4: γ(t) can be defined and is a random, simple curve.

• 4 < κ < 8: γ(t) can be defined, but it is not a simple curve. It has

double points, but does not cross itself!

• κ > 8: γ(t) is a space filling curve! It has double points, but does

not cross itself. Yet it is space-filling!!

Conjecture. The Hausdorff dimension of the paths γ(t) depends on κ.

• dimH(SLEκ) = 1 + κ

8
for κ < 8

• dimH(SLEκ) = 2 for κ > 8

Of course dimH(SLEκ) = 2 for κ > 8 since it is space-filling.
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