/

An Introduction to the Loewner
Fquation and SLE

Michael Kozdron
Institut Mittag-Leffler
Fall 2001

~




/ ‘ Charles Loewner I \
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e 1893: born May 29 as Karl Lowner in Lany, Bohemia
e 1917: Ph.D. from University of Prague in geometric function
theory under Georg Pick

e 1933: jailed during Nazi occupation of Prague, emmigrated to
US, changed his name to Charles Loewner, and received
Assistant Professorship at Louisville University

e Brown University (1944-1946); Syracuse University
\ (1946-1951); Stanford University (1951-1968) /
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‘Brief History of the Loewner Equation'

(Loewner 1923): proved a special case of the Bieberbach

conjecture (|az| < 3)
(DeBranges 1985): proved entire Bieberbach conjecture
(Schramm 1999): scaling limits of certain stochastic processes

(Lawler, Schramm, Werner 2000): proved Mandelbrot’s

conjecture that dimension of Brownian frontier is 4/3




/ Mapping H to HI

Let H= {z € C: 3z > 0} be the upper half plane.

Let h : H — H be onto with h(oo) = oo.

Then h must be of the form h(z) = az + b where a > 0 and b € R.
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Riemann Mapping Theorem'

The Riemann mapping theorem states that any simply connected proper

subset of the complex plane can be mapped conformally onto the unit
disk, D={z€ C: |z] < 1}.

Theorem (Riemann). Let D be a simply connected domain which is a
proper subset of complex plane. Let zo € D be a given point. Then there
exists a unique analytic function g which maps D conformally onto D

and has the properties g(z0) = 0 and g’ (20) > 0.

\_ /




/ ‘Mapping H\ K to ]H[I \

Suppose K is a bounded, compact set such that H \ K is simply

connected.

By the Riemann mapping theorem there exist many conformal maps gx
from H \ K to H with gx(c0) = oc.

Using the Schwarz reflection principle, as z — oo we can expand gx

around oo.

1
g gK(Z):bz—l—ao—l—%—FO(—)

52
with b > 0 and a; € R.

Consider the expansion of f(2) = [gx(1/2)]”" about the origin. f locally
maps R to R so the coefficients in the expansion are real and b > 0.
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For convenience, we choose the unique gx which satisfies the

“hydrodynamic normalization”

lim (gx(2) — 2) = 0.

z— 00

i.e. we choose b=1, ag =0
The constant a(K) := a1 only depends on the set K.

Thus gk : H\ K — H with gx(0c0) = oo is

g (2) = 2+ ) o (i) |
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/ ‘ Slit Mappings I \

Let v : [0,00) — H be a simple curve (no self intersections) with v(0) = 0
and (0, 00) C H.

For each t > 0 suppose that K; := «[0, t].

Let H; := H \ K; be the slit half plane and let g, : H; — H be the

corresponding Riemann map.
We want g:(c0) = oo and ¢; to satisfy hydrodynamic normalization.

Thus as z — oo,

2z 22

v =+ "0 40 (L)

where a(t) := a(K3).
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7(0) =0 9:(7[0,]) C R

The slit half plane H; and the corresponding Riemann map to H.

e The curve 7 : [0,00) — H evolves from v(0) = 0 to ().
J Kt = ’)/[O,t], Ht = H\Kt, gt Ht — H
o U;:= gi(v(t)), the image of ~(t).

e By the Carathéodory extension theorem, g.(7|[0,t]) C R.
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Understanding a(t)

As before K; = «[0,t], H; = H\ K¢, and

a(t) := a(K¢) = a(v]0,1]).

We choose the parametrization of v(t) such that a(t) = 2t.

i.e. Let oy = inf{s : a(vy(s)) = 2t}. Then o, is such that a(v[0, o:]) = 2t.
Reparametrize by 4(t) = v(o¢). Just call this ~.

Facts.
1) if s < t, then a(s) < a(t)
2) s — a(s) is continuous

3) a(0) =0, a(t) - o0 as t —
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‘The Loewner Equation'

Assume that ~(t) is chosen so that a(t) = 2t.

Suppose K; := v[0,t] with H; := H \ K; and let g; : H; — H be the
corresponding maps. Let U := g:(y(2)).

Then g; satisfies the Loewner differential equation with the identity map

as initial data.

Theorem (Loewner). g.(z), for fized z, is the solution of the IVP

2
gi(z) — Up’
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Orgi(z) = go(z) = z.




Ghe natural thing to do is to start with U; and solve the Loewner \

equation.

Suppose that the function ¢t — Uy, t € [0,00) is continuous and

real-valued.

Solving the Loewner equation gives g; which conformally map H; to H
where H; = {2z : g:(2) is well-defined} = H \ K.

Ideally, we would like g; ' (U;) to be a well-defined curve so that we can
define v(t) = g; ' (U;). Although for many choices of U this is not

possible, the following theorem gives a sufficient condition.

Theorem (Rohde-Marshall). If U is “nice” [Holder 1/2 continuous with
sufficiently small Hélder 1/2 norm], then v(t) = g; ' (U;) is a well-defined

\simple curve and Ky = [0, t]. /
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‘ Brownian Motion I

Brownian motion is a model of “continuous, random motion.” Think of

Brownian motion as the limit of a random walk where the step sizes get

smaller and smaller (and the grid gets finer and finer).

Let X1, Xo,... be independent random variables with
P(X;=1)=P(X; = —1) =1/2 for all 4.

IfS,=X1+X2+4---+X,, then i —BM (in distribution as n — 00).

Vn

One dimensional Brownian motion is a real-valued process on the line;
B :[0,00) = R, Bo =0, B(t) = Bx.

\_ /
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Facts about Brownian motion.
1) t — B is continuous
2) By ~ N(0,t), 0B; ~ B2, ~ N(0,0°t)

3) Biys — Bs ~ N(0,t) (stationary increments)

ot

)
)
4) B is independent of B for 0 < s < t (independent increments)
) —B: is a Brownian motion

) B

6) B is Holder a continuous for all 0 < o < 1/2

\_
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4 SLE A

e Stochastic Loewner Evolution (aka Schramm’s LE) introduced by
Oded Schramm in 1999

e developed by Lawler, Schramm, Werner and Rohde, Marshall

The idea: let U; be a Brownian motion!

SLE with parameter x is obtained by choosing U; = /kB: where B is a

standard one dimensional Brownian motion.

Definition. SLE, in the upper half plane is the random collection of

conformal maps g; obtained by solving the Loewner equation

Orge(z) = 9¢(2) —ZﬁBt’ go(z) = z.
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It is not obvious that g; ' is well-defined at U; so that the curve ~ can be
defined. The following theorem establishes this.

Theorem (Rohde-Schramm). There exists a curve v associated to SLFE,
(at least for k # 8).

Think of v(t) = g; ' (VEB:).

SLE, is the random collection of conformal maps g: (complex analysts)

or the curve [0, t] being generated in H (probabilists)!

Although changing the variance parameter x does not qualitatively

change the behaviour of Brownian motion, it drastically alters the
behaviour of SLE.

\_ /
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Properties of SLEI

Fact.
e 0 <k <4: v(t) can be defined and is a random, simple curve.

o 4 < Kk < 8: v(t) can be defined, but it is not a simple curve. It has

double points, but does not cross itself!

e x> 8: 7(t) is a space filling curve! It has double points, but does
not cross itself. Yet it is space-filling!!

o dimy (SLE.) =1+ % for k <8
o dimy(SLE,) =2 for k > 8

Of course dimgy (SLE,) = 2 for k > 8 since it is space-filling.

\_

Conjecture. The Hausdorff dimension of the paths v(t) depends on k.
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