An Introduction to the Loewner Equation and SLE

Michael Kozdron Institut Mittag-Leffler Fall 2001

Charles Loewner

- 1893: born May 29 as Karl Löwner in Lany, Bohemia
- 1917: Ph.D. from University of Prague in geometric function theory under Georg Pick
- 1933: jailed during Nazi occupation of Prague, emmigrated to US, changed his name to Charles Loewner, and received Assistant Professorship at Louisville University
- Brown University (1944-1946); Syracuse University (1946-1951); Stanford University (1951-1968)

Brief History of the Loewner Equation

- (Loewner 1923): proved a special case of the Bieberbach conjecture (|a₃| ≤ 3)
- (DeBranges 1985): proved entire Bieberbach conjecture
- (Schramm 1999): scaling limits of certain stochastic processes
- (Lawler, Schramm, Werner 2000): proved Mandelbrot's conjecture that dimension of Brownian frontier is 4/3

Riemann Mapping Theorem

The Riemann mapping theorem states that any simply connected proper subset of the complex plane can be mapped conformally onto the unit disk, $\mathbb{D} = \{z \in \mathbb{C} : |z| < 1\}.$

Theorem (Riemann). Let D be a simply connected domain which is a proper subset of complex plane. Let $z_0 \in D$ be a given point. Then there exists a unique analytic function g which maps D conformally onto \mathbb{D} and has the properties $g(z_0) = 0$ and $g'(z_0) > 0$.

Mapping $\mathbb{H} \setminus K$ to \mathbb{H}

Suppose K is a bounded, compact set such that $\mathbb{H} \setminus K$ is simply connected.

By the Riemann mapping theorem there exist many conformal maps g_K from $\mathbb{H} \setminus K$ to \mathbb{H} with $g_K(\infty) = \infty$.

Using the Schwarz reflection principle, as $z \to \infty$ we can expand g_K around ∞ .

:
$$g_K(z) = bz + a_0 + \frac{a_1}{z} + O\left(\frac{1}{z^2}\right)$$

with b > 0 and $a_i \in \mathbb{R}$.

Consider the expansion of $f(z) = [g_K(1/z)]^{-1}$ about the origin. f locally maps \mathbb{R} to \mathbb{R} so the coefficients in the expansion are real and b > 0.

For convenience, we choose the unique g_K which satisfies the "hydrodynamic normalization"

$$\lim_{z\to\infty}(g_K(z)-z)=0.$$

i.e. we choose b = 1, $a_0 = 0$

The constant $a(K) := a_1$ only depends on the set K.

Thus $g_K : \mathbb{H} \setminus K \to \mathbb{H}$ with $g_K(\infty) = \infty$ is

$$g_K(z) = z + \frac{a(K)}{z} + O\left(\frac{1}{z^2}\right).$$

Slit Mappings

Let $\gamma : [0, \infty) \to \overline{\mathbb{H}}$ be a simple curve (no self intersections) with $\gamma(0) = 0$ and $\gamma(0, \infty) \subseteq \mathbb{H}$.

For each $t \ge 0$ suppose that $K_t := \gamma[0, t]$.

Let $\mathbb{H}_t := \mathbb{H} \setminus K_t$ be the slit half plane and let $g_t : \mathbb{H}_t \to \mathbb{H}$ be the corresponding Riemann map.

We want $g_t(\infty) = \infty$ and g_t to satisfy hydrodynamic normalization.

Thus as $z \to \infty$, $g_t(z) = z + \frac{a(t)}{z} + O\left(\frac{1}{z^2}\right)$ where $a(t) := a(K_t)$.

Understanding a(t)

As before $K_t = \gamma[0, t], \mathbb{H}_t = \mathbb{H} \setminus K_t$, and

$$a(t) := a(K_t) = a(\gamma[0, t]).$$

We choose the parametrization of $\gamma(t)$ such that a(t) = 2t.

i.e. Let $\sigma_t = \inf\{s : a(\gamma(s)) = 2t\}$. Then σ_t is such that $a(\gamma[0, \sigma_t]) = 2t$. Reparametrize by $\tilde{\gamma}(t) = \gamma(\sigma_t)$. Just call this γ .

Facts.

- 1) if s < t, then a(s) < a(t)
- 2) $s \mapsto a(s)$ is continuous

3)
$$a(0) = 0, a(t) \to \infty$$
 as $t \to \infty$

The Loewner Equation

Assume that $\gamma(t)$ is chosen so that a(t) = 2t.

Suppose $K_t := \gamma[0, t]$ with $\mathbb{H}_t := \mathbb{H} \setminus K_t$ and let $g_t : \mathbb{H}_t \to \mathbb{H}$ be the corresponding maps. Let $U_t := g_t(\gamma(t))$.

Then g_t satisfies the Loewner differential equation with the identity map as initial data.

Theorem (Loewner). $g_t(z)$, for fixed z, is the solution of the IVP

$$\partial_t g_t(z) = \frac{2}{g_t(z) - U_t}, \quad g_0(z) = z.$$

The natural thing to do is to start with U_t and solve the Loewner equation.

Suppose that the function $t \mapsto U_t$, $t \in [0, \infty)$ is continuous and real-valued.

Solving the Loewner equation gives g_t which conformally map \mathbb{H}_t to \mathbb{H} where $\mathbb{H}_t = \{z : g_t(z) \text{ is well-defined}\} = \mathbb{H} \setminus K_t$.

Ideally, we would like $g_t^{-1}(U_t)$ to be a well-defined curve so that we can define $\gamma(t) = g_t^{-1}(U_t)$. Although for many choices of U this is not possible, the following theorem gives a sufficient condition.

Theorem (Rohde-Marshall). If U is "nice" [Hölder 1/2 continuous with sufficiently small Hölder 1/2 norm], then $\gamma(t) = g_t^{-1}(U_t)$ is a well-defined simple curve and $K_t = \gamma[0, t]$.

Brownian Motion

Brownian motion is a model of "continuous, random motion." Think of Brownian motion as the limit of a random walk where the step sizes get smaller and smaller (and the grid gets finer and finer).

Let X_1, X_2, \ldots be independent random variables with $\mathbb{P}(X_i = 1) = \mathbb{P}(X_i = -1) = 1/2$ for all *i*.

If
$$S_n = X_1 + X_2 + \dots + X_n$$
, then $\frac{S_n}{\sqrt{n}} \to BM$ (in distribution as $n \to \infty$).

One dimensional Brownian motion is a real-valued process on the line; $B: [0, \infty) \to \mathbb{R}, B_0 = 0, B(t) = B_t.$

Facts about Brownian motion.

- 1) $t \mapsto B_t$ is continuous
- 2) $B_t \sim \mathcal{N}(0, t), \sigma B_t \sim B_{\sigma^2 t} \sim \mathcal{N}(0, \sigma^2 t)$
- 3) $B_{t+s} B_s \sim \mathcal{N}(0, t)$ (stationary increments)
- 4) B_t is independent of B_s for $0 \le s < t$ (independent increments)
- 5) $-B_t$ is a Brownian motion
- 6) B_t is Hölder α continuous for all $0 < \alpha < 1/2$

SLE

- Stochastic Loewner Evolution (aka Schramm's LE) introduced by Oded Schramm in 1999
- developed by Lawler, Schramm, Werner and Rohde, Marshall

The idea: let U_t be a Brownian motion!

SLE with parameter κ is obtained by choosing $U_t = \sqrt{\kappa}B_t$ where B_t is a standard one dimensional Brownian motion.

Definition. SLE_{κ} in the upper half plane is the random collection of conformal maps g_t obtained by solving the Loewner equation

$$\partial_t g_t(z) = \frac{2}{g_t(z) - \sqrt{\kappa}B_t}, \quad g_0(z) = z.$$

It is not obvious that g_t^{-1} is well-defined at U_t so that the curve γ can be defined. The following theorem establishes this.

Theorem (Rohde-Schramm). There exists a curve γ associated to SLE_{κ} (at least for $\kappa \neq 8$).

Think of $\gamma(t) = g_t^{-1}(\sqrt{\kappa}B_t)$.

 SLE_{κ} is the random collection of conformal maps g_t (complex analysts) or the curve $\gamma[0, t]$ being generated in \mathbb{H} (probabilists)!

Although changing the variance parameter κ does not qualitatively change the behaviour of Brownian motion, it drastically alters the behaviour of SLE.

Properties of SLE

Fact.

- $0 < \kappa \leq 4$: $\gamma(t)$ can be defined and is a random, simple curve.
- $4 < \kappa < 8$: $\gamma(t)$ can be defined, but it is not a simple curve. It has double points, but does not cross itself!
- κ > 8: γ(t) is a space filling curve! It has double points, but does not cross itself. Yet it is space-filling!!

Conjecture. The Hausdorff dimension of the paths $\gamma(t)$ depends on κ .

- $\dim_H(SLE_\kappa) = 1 + \frac{\kappa}{8}$ for $\kappa < 8$
- $\dim_H(SLE_{\kappa}) = 2$ for $\kappa > 8$

Of course $\dim_H(SLE_{\kappa}) = 2$ for $\kappa > 8$ since it is space-filling.

References

Lars V. Ahlfors, Complex Analysis, 3rd ed., McGraw-Hill, 1979.

Peter L. Duren, Univalent Functions, Springer-Verlag, 1983.

Gregory F. Lawler, An Introduction to the Stochastic Loewner Evolution, preprint, 2001.

Steffen Rohde and Oded Schramm, *Basic Properties of SLE*, preprint, 2001.