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Permutations and Combinations

There are 2 jumbles of “AB” namely AB and BA.

There are 6 jumbles of “ABC” namely ABC, ACB, BAC, BCA, CAB, and CBA.

In general, there are N ! jumbles or permutations of N things. We can visualize this

as putting objects into boxes:

N N − 1 N − 2 · · · 2 1

N × (N − 1) × (N − 2) × · · · × 2 × 1 = N !

If there are N objects, then there are
`N

k

´

ways of choosing k of them:

“N

k

”

=
N !

k! (N − k)!
.
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Growth of N !

We compute some values:

1! 1

2! 2

3! 6

4! 24

5! 120

20! 2.4329 × 1018

40! 8.16 × 1047

100! 9.33 × 10157

200! error

Obviously, N ! grows very quickly; much faster than exponential.

To compare, e100 = 2.69 × 1043.
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An Approximation

Let S(N) =
√

2π e−N NN+ 1

2 .

S(5) 118.0191680

S(20) 2.4228 × 1018

S(40) 8.14 × 1047

S(100) 9.32 × 10157

S(200) error
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Stirling’s Formula

Theorem:

lim
N→∞

N !
√

2π e−N NN+ 1

2

= 1

In other words, for large N ,

N ! ≃
√

2π e−N NN+ 1

2 .

Notation: f(N) ≃ g(N) means that f(N)/g(N) → 1 as N → ∞.
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Some History

Stirling’s formula was discovered by Abraham de Moivre and published in “Miscellenea

Analytica” in 1730. It was later refined, but published in the same year, by James

Stirling in “Methodus Differentialis” along with other fabulous results. For instance,

Stirling computes the area under the Bell Curve:

Z +∞

−∞

e−x2/2 dx =
√

2π.

We will come back to this computation of Stirling . . .
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Aside: A Double Integral Computation

We compute

Z +∞

−∞

e−x2/2 dx via double integrals.

If I =

Z +∞

−∞

e−x2/2 dx, then

I2 =

„Z +∞

−∞

e−x2/2 dx

«2

=

Z +∞

−∞

e−y2/2 dy

Z +∞

−∞

e−x2/2 dx

=

Z +∞

−∞

Z +∞

−∞

e(−x2
−y2)/2 dx dy
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Changing to polar coordinates: x = r cos θ, y = r sin θ, 0 ≤ r < ∞, 0 ≤ θ < 2π, and

remembering the change-of-variables factor (Jacobian) J = r, we get

I2 =

Z +∞

−∞

Z +∞

−∞

e(−x2
−y2)/2 dx dy

=

Z 2π

0

Z +∞

0
e−r2/2 r dr dθ

= 2π

Z +∞

0
r e−r2/2 dr

= 2π make a substitution!
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The Gamma Function Representation

For natural N , define the Gamma function Γ(N) as

Γ(N) =

Z

∞

0
e−t tN−1 dt.

Proposition: Γ(N + 1) = N !

Proof. To see this, let u = tN , and dv = e−t dt, and integrate by parts:
Z

∞

0
e−t tN dt = −e−t tN |∞0 + N

Z

∞

0
e−t tN−1 dt

= N

Z

∞

0
e−t tN−1 dt.
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Thus, we can iterate in N :

N

Z

∞

0
e−t tN−1 dt = N(N − 1)

Z

∞

0
e−t tN−2 dt

= N(N − 1)(N − 2)

Z

∞

0
e−t tN−3 dt

= N !

Z

∞

0
e−t tN−N dt

= N !

Z

∞

0
e−t dt

= N !

Now, there is no reason to limit Γ(N) to just NATURAL N . Indeed, the integral
Z

∞

0
e−t tx−1 dt

converges for 0 < x < ∞.

Note: When x < 1, both 0 and ∞ must be considered.
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Definition: For 0 < x < ∞, define

Γ(x) =

Z

∞

0
e−t tx−1 dt

to be the Gamma function.

Thus, the Gamma function may be considered as the generalized factorial.

This is the natural way to consider “x!” for non-natural x.

Changing variables just as we did for N ! yields

Proposition: Γ(x + 1) = x Γ(x).
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Another change-of-variables reveals the identity:

Proposition: Γ(1/2) =

Z

∞

−∞

e−x2

dx

Stirling showed that

Γ(1/2) =
√

π.

This is equivalent to showing that the area under the bell curve is
√

2π.

CHECK! Change variables, and use the calculus fact about integrals of even functions

over symmetric intervals.
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Laplace’s Method

Goal: Estimate

Z

∞

−∞

eNf(x) dx for large N , where f looks like

f(x)

x0

f(x0)

x

It can be shown that for such a function, the main contribution to the integral comes

from values of x near x0.
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In other words, write

Z

∞

−∞

eNf(x) dx =

Z (1+ǫ)x0

(1−ǫ)x0

eNf(x) dx +

Z

∞

(1+ǫ)x0

eNf(x) dx +

Z (1−ǫ)x0

−∞

eNf(x) dx

where ǫ > 0 is an arbitrary constant.

The contibutions from the second and third integral are asymptotically negligible.

That is, as N → ∞,

Z

∞

(1+ǫ)x0

eNf(x) dx → 0 and

Z (1−ǫ)x0

−∞

eNf(x) dx → 0.

So, for large N , we have

Z

∞

−∞

eNf(x) dx ≃
Z (1+ǫ)x0

(1−ǫ)x0

eNf(x) dx. (∗)
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Choose ǫ > 0 small, and use a Taylor expansion around x0 to obtain

f(x) ≈ f(x0) +
1

2
f ′′(x0)(x − x0)2

since f ′(x0) = 0.

Note that f ′′(x0) < 0, since f has a global maximum at x0.

Substituting into (∗) yields
Z

∞

−∞

eNf(x) dx ≃ eNf(x0)

Z (1+ǫ)x0

(1−ǫ)x0

e
N

2
f ′′(x0)(x−x0)2 dx. (∗∗)

Setting u =
p

−Nf ′′(x0) (x − x0) and du =
p

−Nf ′′(x0) dx gives

(∗∗) =
eNf(x0)

p

−Nf ′′(x0)

Z ǫ
√

−Nf ′′(x0)

−ǫ
√

−Nf ′′(x0)
e−

1

2
u2

du ≃ eNf(x0)

p

−Nf ′′(x0)

Z

∞

−∞

e−
1

2
u2

du

=

√
2π eNf(x0)

p

−Nf ′′(x0)
.
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Proof of Stirling’s Formula

Recall that

N ! =

Z

∞

0
e−t tN dt =

Z

∞

0
e−t+N ln t dt.

Changing variables with t = Nx and dt = Ndx yields

N ! = NN+1

Z

∞

0
eN(ln x−x) dx = NN+1

Z

∞

0
eNf(x) dx

where f(x) = ln x − x.

Note: f is of the desired form with x0 = 1, f(x0) = −1, f ′(x0) = 0, f ′′(x0) = −1.

Stirling’s formula may now be derived easily from Laplace’s method:

N ! ≃ NN+1

√
2π eNf(x0)

p

−Nf ′′(x0)
= NN+1

√
2π e−N

N1/2
=

√
2π e−N NN+ 1

2 .


