The Loewner Equation and an Introduction to SLE

Michael Kozdron
Duke University
September 17, 2002
http://www.math.cornell.edu/~kozdron/

Charles Loewner

- 1893: born May 29 as Karl Löwner in Lany, Bohemia
- 1917: Ph.D. from University of Prague in geometric function theory under Georg Pick
- 1933: jailed during Nazi occupation of Prague, emmigrated to US, changed his name to Charles Loewner, and received Assistant Professorship at Louisville University
- Brown University (1944-1946); Syracuse University (1946-1951); Stanford University (1951-1968)

Brief History

- (Loewner 1923): proved a special case of the Bieberbach conjecture ($\left|a_{3}\right| \leq 3$) using Loewner Equation
- (DeBranges 1985): proved entire Bieberbach conjecture
- (Schramm 1999): introduced SLE while considering scaling limits of certain stochastic processes
- (Lawler, Schramm, Werner 2000): proved Mandelbrot's conjecture that dimension of Brownian frontier is $4 / 3$

Mapping \mathbb{H} to \mathbb{H}

Let $\mathbb{H}=\{z \in \mathbb{C}: \Im z>0\}$ be the upper half plane.

Let $h: \mathbb{H} \rightarrow \mathbb{H}$ be onto with $h(\infty)=\infty$.

Then h must be of the form $h(z)=a z+b$ where $a>0$ and $b \in \mathbb{R}$.

Riemann Mapping Theorem

The Riemann mapping theorem states that any simply connected proper subset of the complex plane can be mapped conformally onto the unit disk, $\mathbb{D}=\{z \in \mathbb{C}:|z|<1\}$.

Theorem. Let D be a simply connected domain which is a proper subset of complex plane. Let $z_{0} \in D$ be a given point. Then there exists a unique analytic function g which maps D conformally onto \mathbb{D} and has the properties $g\left(z_{0}\right)=0$ and $g^{\prime}\left(z_{0}\right)>0$.

Mapping $\mathbb{H} \backslash K$ to \mathbb{H}

Suppose K is a bounded, compact set such that $\mathbb{H} \backslash K$ is simply connected.

By the Riemann mapping theorem there exist many conformal maps g_{K} from $\mathbb{H} \backslash K$ to \mathbb{H} with $g_{K}(\infty)=\infty$.

Using the Schwarz reflection principle, as $z \rightarrow \infty$ we can expand g_{K} around ∞.

$$
\therefore g_{K}(z)=b z+a_{0}+\frac{a_{1}}{z}+O\left(\frac{1}{z^{2}}\right)
$$

with $b>0$ and $a_{i} \in \mathbb{R}$.

Consider the expansion of $f(z)=\left[g_{K}(1 / z)\right]^{-1}$ about the origin. f locally maps \mathbb{R} to \mathbb{R} so the coefficients in the expansion are real and $b>0$.

For convenience, we choose the unique g_{K} which satisfies the "hydrodynamic normalization"

$$
\lim _{z \rightarrow \infty}\left(g_{K}(z)-z\right)=0
$$

i.e. we choose $b=1, a_{0}=0$

The constant $a(K):=a_{1}$ only depends on the set K.

Thus $g_{K}: \mathbb{H} \backslash K \rightarrow \mathbb{H}$ with $g_{K}(\infty)=\infty$ is

$$
g_{K}(z)=z+\frac{a(K)}{z}+O\left(\frac{1}{z^{2}}\right) .
$$

Slit Mappings

Let $\gamma:[0, \infty) \rightarrow \overline{\mathbb{H}}$ be a simple curve (no self intersections) with $\gamma(0)=0, \gamma(0, \infty) \subseteq \mathbb{H}$, and $\gamma(t) \rightarrow \infty$ as $t \rightarrow \infty$.

For each $t \geq 0$ suppose that $K_{t}:=\gamma[0, t]$.

Let $\mathbb{H}_{t}:=\mathbb{H} \backslash K_{t}$ be the slit half plane and let $g_{t}: \mathbb{H}_{t} \rightarrow \mathbb{H}$ be the corresponding Riemann map.

We want $g_{t}(\infty)=\infty$ and g_{t} to satisfy hydrodynamic normalization.

Thus as $z \rightarrow \infty$,

$$
g_{t}(z)=z+\frac{a(t)}{z}+O\left(\frac{1}{z^{2}}\right)
$$

where $a(t):=a\left(K_{t}\right)$.

The slit half plane \mathbb{H}_{t} and the corresponding Riemann map to \mathbb{H}.

- The curve $\gamma:[0, \infty) \rightarrow \overline{\mathbb{H}}$ evolves from $\gamma(0)=0$ to $\gamma(t)$.
- $K_{t}:=\gamma[0, t], \mathbb{H}_{t}:=\mathbb{H} \backslash K_{t}, g_{t}: \mathbb{H}_{t} \rightarrow \mathbb{H}$
- $U_{t}:=g_{t}(\gamma(t))$, the image of $\gamma(t)$.
- By the Carathéodory extension theorem, $g_{t}(\gamma[0, t]) \subseteq \mathbb{R}$.

Understanding $a(t)$

As before $K_{t}=\gamma[0, t], \mathbb{H}_{t}=\mathbb{H} \backslash K_{t}$, and

$$
a(t):=a\left(K_{t}\right)=a(\gamma[0, t])
$$

$a(t)$ is called the half-plane capacity from ∞.

Facts.

1) $a(t)=\lim _{z \rightarrow \infty} z\left(g_{t}(z)-z\right)$
2) if $s<t$, then $a(s)<a(t)$
3) $s \mapsto a(s)$ is continuous
4) $a(0)=0, a(t) \rightarrow \infty$ as $t \rightarrow \infty$

It is possible to reparametrize $\gamma(t)$ so that $a(t)=2 t$.

The Loewner Equation

Assume that $\gamma(t)$ is chosen so that $a(t)=2 t$.

Suppose $K_{t}:=\gamma[0, t]$ with $\mathbb{H}_{t}:=\mathbb{H} \backslash K_{t}$ and let $g_{t}: \mathbb{H}_{t} \rightarrow \mathbb{H}$ be the corresponding maps. Let $U_{t}:=g_{t}(\gamma(t))$.

Then g_{t} satisfies the Loewner differential equation with the identity map as initial data.

Theorem (Loewner 1923). For fixed $z, g_{t}(z)$ is the solution of the IVP

$$
\partial_{t} g_{t}(z)=\frac{2}{g_{t}(z)-U_{t}}, \quad g_{0}(z)=z
$$

The natural thing to do is to start with U_{t} and solve the Loewner equation.

Suppose that the function $t \mapsto U_{t}, t \in[0, \infty)$ is continuous and real-valued.

Solving the Loewner equation gives g_{t} which conformally map \mathbb{H}_{t} to \mathbb{H} where $\mathbb{H}_{t}=\left\{z: g_{t}(z)\right.$ is well-defined $\}=\mathbb{H} \backslash K_{t}$.

Ideally, we would like $g_{t}^{-1}\left(U_{t}\right)$ to be a well-defined curve so that we can define $\gamma(t)=g_{t}^{-1}\left(U_{t}\right)$. Although for many choices of U this is not possible, the following theorem gives a sufficient condition.

Theorem (Rohde-Marshall 2001). If U is "nice" [Hölder 1/2 continuous with sufficiently small Hölder 1/2 norm], then $\gamma(t)=g_{t}^{-1}\left(U_{t}\right)$ is a well-defined simple curve and $K_{t}=\gamma[0, t]$.

Brownian Motion

Brownian motion is a model of "continuous, random motion." Think of Brownian motion as the limit of a random walk where the step sizes get smaller and smaller (and the grid gets finer and finer).

Let X_{1}, X_{2}, \ldots be independent random variables with $\mathbb{P}\left(X_{i}=1\right)=\mathbb{P}\left(X_{i}=-1\right)=1 / 2$ for all i.

If $S_{n}=X_{1}+X_{2}+\cdots+X_{n}$, then $\frac{S_{n}}{\sqrt{n}} \rightarrow \mathrm{BM}$ (in distribution as $n \rightarrow \infty$).

One dimensional Brownian motion is a real-valued process on the line; $B:[0, \infty) \rightarrow \mathbb{R}, B_{0}=0, B(t)=B_{t}$.

Graph of Brownian Motion

Time series plot of t vs. $B(t), t \geq 0$ for simulated Brownian motion.

Facts about Brownian Motion

1) $t \mapsto B_{t}$ is continuous
2) $B_{t} \sim \mathcal{N}(0, t), \sigma B_{t} \sim B_{\sigma^{2} t} \sim \mathcal{N}\left(0, \sigma^{2} t\right)$
3) $B_{t+s}-B_{s} \sim \mathcal{N}(0, t)$ (stationary increments)
4) B_{t} is independent of B_{s} for $0 \leq s<t$ (independent increments)
5) $-B_{t}$ is a Brownian motion
6) B_{t} is Hölder α continuous for all $0<\alpha<1 / 2$

Notice that Brownian motion just fails the Rohde-Marshall condition.

SLE

- Stochastic Loewner Evolution (aka Schramm's LE) introduced by Oded Schramm in 1999
- developed by Lawler, Schramm, Werner, Rohde, Marshall, Beffara

The idea: let U_{t} be a Brownian motion!

SLE with parameter κ is obtained by choosing $U_{t}=\sqrt{\kappa} B_{t}$ where B_{t} is a standard one dimensional Brownian motion.

Definition. SLE $_{\kappa}$ in the upper half plane is the random collection of conformal maps g_{t} obtained by solving the Loewner equation

$$
\partial_{t} g_{t}(z)=\frac{2}{g_{t}(z)-\sqrt{\kappa} B_{t}}, \quad g_{0}(z)=z
$$

As Brownian motion fails the Rohde-Marshall condition, it is not obvious that g_{t}^{-1} is well-defined at U_{t} so that the curve γ can be defined. The following theorem establishes this.

Theorem (Rohde-Schramm 2001). There exists a curve γ associated to $S L E_{\kappa}$.
(The critical case $\kappa=8$ was proved by $L-S$ - W later in 2001.)

Think of $\gamma(t)=g_{t}^{-1}\left(\sqrt{\kappa} B_{t}\right)$.
SLE_{κ} is the random collection of conformal maps g_{t} (complex analysts) or the curve $\gamma[0, t]$ being generated in \mathbb{H} (probabilists)!

Although changing the variance parameter κ does not qualitatively change the behaviour of Brownian motion, it drastically alters the behaviour of SLE.

Properties of SLE

Fact. With probability one,

- $0<\kappa \leq 4: \gamma(t)$ is a random, simple curve avoiding \mathbb{R}.
- $4<\kappa<8$: $\gamma(t)$ is not a simple curve. It has double points, but does not cross itself! These paths do hit \mathbb{R}.
- $\kappa \geq 8: \gamma(t)$ is a space filling curve! It has double points, but does not cross itself. Yet it is space-filling!!

(Almost) Properties of SLE

Conjecture. The Hausdorff dimension of the paths $\gamma(t)$ depends on κ.

- $\operatorname{dim}_{H}\left(S L E_{\kappa}\right)=1+\frac{\kappa}{8}$ for $\kappa<8$
- $\operatorname{dim}_{H}\left(S L E_{\kappa}\right)=2$ for $\kappa \geq 8$

Of course $\operatorname{dim}_{H}\left(\mathrm{SLE}_{\kappa}\right)=2$ for $\kappa \geq 8$ since it is space-filling.

These have been established as upper bounds, and have been proved in the cases $\kappa=\frac{8}{3}$ and $\kappa=6$.

Brownian Frontier

One early use of SLE was to prove a conjecture of Mandelbrot (Fractal Geometry of Nature 1982).

Let B_{t} be a two dimensional Brownian motion. The frontier is boundary of the unbounded component of the complement of $B[0, t]$.

Theorem (Lawler, Schramm, Werner 2000). With probability one, the Hausdorff dimension of the frontier of $B[0,1]$ is $\frac{4}{3}$.

References

Lars V. Ahlfors, Complex Analysis, 3rd ed., McGraw-Hill, 1979.

Peter L. Duren, Univalent Functions, Springer-Verlag, 1983.

Gregory F. Lawler, An Introduction to the Stochastic Loewner Evolution, preprint, 2001.

Gregory F. Lawler, Math 613: Topics in Analysis, Cornell, Fall 2002.

Steffen Rohde and Oded Schramm, Basic Properties of SLE, preprint, 2001.

