# The Loewner Equation and an Introduction to SLE

Michael Kozdron Duke University

September 17, 2002

http://www.math.cornell.edu/~kozdron/

#### Charles Loewner



- 1893: born May 29 as Karl Löwner in Lany, Bohemia
- 1917: Ph.D. from University of Prague in geometric function theory under Georg Pick
- 1933: jailed during Nazi occupation of Prague, emmigrated to US, changed his name to Charles Loewner, and received Assistant Professorship at Louisville University
- Brown University (1944-1946); Syracuse University (1946-1951); Stanford University (1951-1968)

#### Brief History

- (Loewner 1923): proved a special case of the Bieberbach conjecture ( $|a_3| \le 3$ ) using Loewner Equation
- (DeBranges 1985): proved entire Bieberbach conjecture
- (Schramm 1999): introduced SLE while considering scaling limits of certain stochastic processes
- (Lawler, Schramm, Werner 2000): proved Mandelbrot's conjecture that dimension of Brownian frontier is 4/3

# Mapping $\mathbb{H}$ to $\mathbb{H}$

Let  $\mathbb{H} = \{z \in \mathbb{C} : \Im z > 0\}$  be the upper half plane.

 $\mathbb{H}$ 

 $\bar{\mathbb{R}}$ 

Let  $h: \mathbb{H} \to \mathbb{H}$  be onto with  $h(\infty) = \infty$ .

Then h must be of the form h(z) = az + b where a > 0 and  $b \in \mathbb{R}$ .

#### Riemann Mapping Theorem

The Riemann mapping theorem states that any simply connected proper subset of the complex plane can be mapped conformally onto the unit disk,  $\mathbb{D} = \{z \in \mathbb{C} : |z| < 1\}$ .

**Theorem.** Let D be a simply connected domain which is a proper subset of complex plane. Let  $z_0 \in D$  be a given point. Then there exists a unique analytic function g which maps D conformally onto  $\mathbb{D}$  and has the properties  $g(z_0) = 0$  and  $g'(z_0) > 0$ .

# Mapping $\mathbb{H} \setminus K$ to $\mathbb{H}$

Suppose K is a bounded, compact set such that  $\mathbb{H} \setminus K$  is simply connected.

By the Riemann mapping theorem there exist many conformal maps  $g_K$  from  $\mathbb{H} \setminus K$  to  $\mathbb{H}$  with  $g_K(\infty) = \infty$ .

Using the Schwarz reflection principle, as  $z \to \infty$  we can expand  $g_K$  around  $\infty$ .

$$g_K(z) = bz + a_0 + \frac{a_1}{z} + O\left(\frac{1}{z^2}\right)$$

with b > 0 and  $a_i \in \mathbb{R}$ .

Consider the expansion of  $f(z) = [g_K(1/z)]^{-1}$  about the origin. f locally maps  $\mathbb{R}$  to  $\mathbb{R}$  so the coefficients in the expansion are real and b > 0.

For convenience, we choose the unique  $g_K$  which satisfies the "hydrodynamic normalization"

$$\lim_{z \to \infty} (g_K(z) - z) = 0.$$

i.e. we choose b = 1,  $a_0 = 0$ 

The constant  $a(K) := a_1$  only depends on the set K.

Thus  $g_K : \mathbb{H} \setminus K \to \mathbb{H}$  with  $g_K(\infty) = \infty$  is

$$g_K(z) = z + \frac{a(K)}{z} + O\left(\frac{1}{z^2}\right).$$

## Slit Mappings

Let  $\gamma: [0, \infty) \to \overline{\mathbb{H}}$  be a simple curve (no self intersections) with  $\gamma(0) = 0, \, \gamma(0, \infty) \subseteq \mathbb{H}$ , and  $\gamma(t) \to \infty$  as  $t \to \infty$ .

For each  $t \geq 0$  suppose that  $K_t := \gamma[0, t]$ .

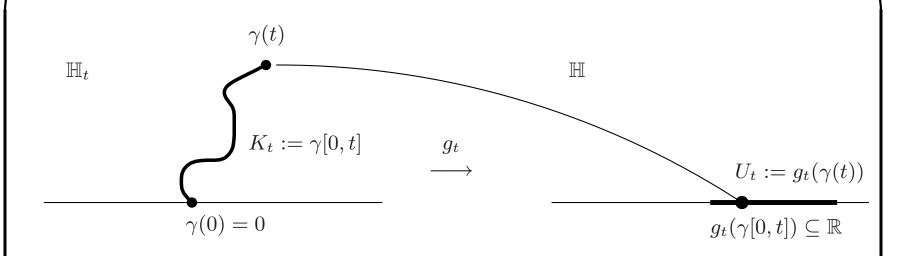
Let  $\mathbb{H}_t := \mathbb{H} \setminus K_t$  be the slit half plane and let  $g_t : \mathbb{H}_t \to \mathbb{H}$  be the corresponding Riemann map.

We want  $g_t(\infty) = \infty$  and  $g_t$  to satisfy hydrodynamic normalization.

Thus as  $z \to \infty$ ,

$$g_t(z) = z + \frac{a(t)}{z} + O\left(\frac{1}{z^2}\right)$$

where  $a(t) := a(K_t)$ .



The slit half plane  $\mathbb{H}_t$  and the corresponding Riemann map to  $\mathbb{H}$ .

- The curve  $\gamma:[0,\infty)\to\overline{\mathbb{H}}$  evolves from  $\gamma(0)=0$  to  $\gamma(t)$ .
- $K_t := \gamma[0, t], \mathbb{H}_t := \mathbb{H} \setminus K_t, g_t : \mathbb{H}_t \to \mathbb{H}$
- $U_t := g_t(\gamma(t))$ , the image of  $\gamma(t)$ .
- By the Carathéodory extension theorem,  $g_t(\gamma[0,t]) \subseteq \mathbb{R}$ .

# Understanding a(t)

As before  $K_t = \gamma[0, t]$ ,  $\mathbb{H}_t = \mathbb{H} \setminus K_t$ , and

$$a(t) := a(K_t) = a(\gamma[0, t]).$$

a(t) is called the half-plane capacity from  $\infty$ .

Facts.

- 1)  $a(t) = \lim_{z \to \infty} z(g_t(z) z)$
- 2) if s < t, then a(s) < a(t)
- 3)  $s \mapsto a(s)$  is continuous
- 4)  $a(0) = 0, a(t) \to \infty \text{ as } t \to \infty$

It is possible to reparametrize  $\gamma(t)$  so that a(t) = 2t.

## The Loewner Equation

Assume that  $\gamma(t)$  is chosen so that a(t) = 2t.

Suppose  $K_t := \gamma[0, t]$  with  $\mathbb{H}_t := \mathbb{H} \setminus K_t$  and let  $g_t : \mathbb{H}_t \to \mathbb{H}$  be the corresponding maps. Let  $U_t := g_t(\gamma(t))$ .

Then  $g_t$  satisfies the Loewner differential equation with the identity map as initial data.

**Theorem** (Loewner 1923). For fixed z,  $g_t(z)$  is the solution of the IVP

$$\partial_t g_t(z) = \frac{2}{g_t(z) - U_t}, \quad g_0(z) = z.$$

The natural thing to do is to start with  $U_t$  and solve the Loewner equation.

Suppose that the function  $t \mapsto U_t$ ,  $t \in [0, \infty)$  is continuous and real-valued.

Solving the Loewner equation gives  $g_t$  which conformally map  $\mathbb{H}_t$  to  $\mathbb{H}$  where  $\mathbb{H}_t = \{z : g_t(z) \text{ is well-defined}\} = \mathbb{H} \setminus K_t$ .

Ideally, we would like  $g_t^{-1}(U_t)$  to be a well-defined curve so that we can define  $\gamma(t) = g_t^{-1}(U_t)$ . Although for many choices of U this is not possible, the following theorem gives a sufficient condition.

**Theorem** (Rohde-Marshall 2001). If U is "nice" [Hölder 1/2 continuous with sufficiently small Hölder 1/2 norm], then  $\gamma(t) = g_t^{-1}(U_t)$  is a well-defined simple curve and  $K_t = \gamma[0, t]$ .

#### Brownian Motion

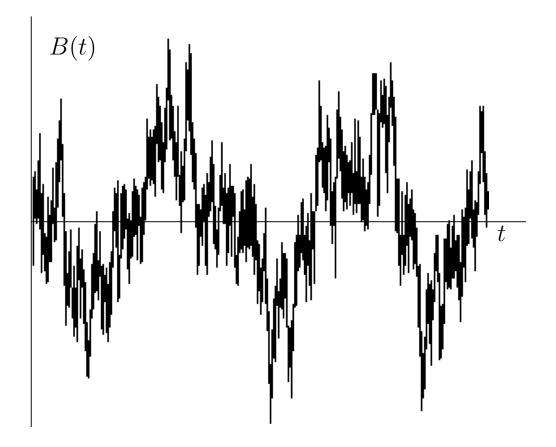
Brownian motion is a model of "continuous, random motion." Think of Brownian motion as the limit of a random walk where the step sizes get smaller and smaller (and the grid gets finer and finer).

Let  $X_1, X_2, ...$  be independent random variables with  $\mathbb{P}(X_i = 1) = \mathbb{P}(X_i = -1) = 1/2$  for all i.

If 
$$S_n = X_1 + X_2 + \dots + X_n$$
, then  $\frac{S_n}{\sqrt{n}} \to BM$  (in distribution as  $n \to \infty$ ).

One dimensional Brownian motion is a real-valued process on the line;  $B:[0,\infty)\to\mathbb{R},\,B_0=0,\,B(t)=B_t.$ 

# Graph of Brownian Motion



Time series plot of t vs.  $B(t), t \ge 0$  for simulated Brownian motion.

#### Facts about Brownian Motion

- 1)  $t \mapsto B_t$  is continuous
- 2)  $B_t \sim \mathcal{N}(0, t), \ \sigma B_t \sim B_{\sigma^2 t} \sim \mathcal{N}(0, \sigma^2 t)$
- 3)  $B_{t+s} B_s \sim \mathcal{N}(0,t)$  (stationary increments)
- 4)  $B_t$  is independent of  $B_s$  for  $0 \le s < t$  (independent increments)
- 5)  $-B_t$  is a Brownian motion
- 6)  $B_t$  is Hölder  $\alpha$  continuous for all  $0 < \alpha < 1/2$

Notice that Brownian motion just fails the Rohde-Marshall condition.

# SLE

- Stochastic Loewner Evolution (aka Schramm's LE) introduced by Oded Schramm in 1999
- developed by Lawler, Schramm, Werner, Rohde, Marshall, Beffara

The idea: let  $U_t$  be a Brownian motion!

SLE with parameter  $\kappa$  is obtained by choosing  $U_t = \sqrt{\kappa}B_t$  where  $B_t$  is a standard one dimensional Brownian motion.

**Definition.**  $SLE_{\kappa}$  in the upper half plane is the random collection of conformal maps  $g_t$  obtained by solving the Loewner equation

$$\partial_t g_t(z) = \frac{2}{g_t(z) - \sqrt{\kappa} B_t}, \quad g_0(z) = z.$$

As Brownian motion fails the Rohde-Marshall condition, it is not obvious that  $g_t^{-1}$  is well-defined at  $U_t$  so that the curve  $\gamma$  can be defined. The following theorem establishes this.

**Theorem** (Rohde-Schramm 2001). There exists a curve  $\gamma$  associated to  $SLE_{\kappa}$ .

(The critical case  $\kappa = 8$  was proved by L-S-W later in 2001.)

Think of  $\gamma(t) = g_t^{-1}(\sqrt{\kappa}B_t)$ .

 $SLE_{\kappa}$  is the random collection of conformal maps  $g_t$  (complex analysts) or the curve  $\gamma[0,t]$  being generated in  $\mathbb{H}$  (probabilists)!

Although changing the variance parameter  $\kappa$  does not qualitatively change the behaviour of Brownian motion, it drastically alters the behaviour of SLE.

# Properties of SLE

Fact. With probability one,

- $0 < \kappa \le 4$ :  $\gamma(t)$  is a random, simple curve avoiding  $\mathbb{R}$ .
- $4 < \kappa < 8$ :  $\gamma(t)$  is not a simple curve. It has double points, but does not cross itself! These paths do hit  $\mathbb{R}$ .
- $\kappa \geq 8$ :  $\gamma(t)$  is a space filling curve! It has double points, but does not cross itself. Yet it is space-filling!!

# (Almost) Properties of SLE

Conjecture. The Hausdorff dimension of the paths  $\gamma(t)$  depends on  $\kappa$ .

- $\dim_H(SLE_{\kappa}) = 1 + \frac{\kappa}{8} \text{ for } \kappa < 8$
- $\dim_H(SLE_{\kappa}) = 2 \text{ for } \kappa \geq 8$

Of course  $\dim_H(SLE_{\kappa}) = 2$  for  $\kappa \geq 8$  since it is space-filling.

These have been established as upper bounds, and have been proved in the cases  $\kappa = \frac{8}{3}$  and  $\kappa = 6$ .

#### Brownian Frontier

One early use of SLE was to prove a conjecture of Mandelbrot (Fractal Geometry of Nature 1982).

Let  $B_t$  be a two dimensional Brownian motion. The frontier is boundary of the unbounded component of the complement of B[0, t].

**Theorem** (Lawler, Schramm, Werner 2000). With probability one, the Hausdorff dimension of the frontier of B[0,1] is  $\frac{4}{3}$ .

#### References

Lars V. Ahlfors, Complex Analysis, 3rd ed., McGraw-Hill, 1979.

Peter L. Duren, *Univalent Functions*, Springer-Verlag, 1983.

Gregory F. Lawler, An Introduction to the Stochastic Loewner Evolution, preprint, 2001.

Gregory F. Lawler, Math 613: Topics in Analysis, Cornell, Fall 2002.

Steffen Rohde and Oded Schramm, Basic Properties of SLE, preprint, 2001.