Green's function estimates with application to loop-erased random walk

February 20, 2003

1 Green's functions on \mathbb{C}

Notation. We write any and all of x, y, z, w for points in \mathbb{C}.
Let $\mathbb{D}=\{z \in \mathbb{C}:|z|<1\}$ denote the interior of the unit disk. If $x, y \in \mathbb{D}$, let

$$
g_{\mathbb{D}}(x, y)=\log \left|\frac{\bar{y} x-1}{y-x}\right|
$$

denote the Green's function for \mathbb{D}. Note $g_{\mathbb{D}}(0, x)=g_{\mathbb{D}}(x)=-\log |x|$, and $g_{\mathbb{D}}(x, y)=$ $g_{\mathbb{D}}(y, x)$.

Suppose $D \subsetneq \mathbb{C}$ is simply connected and $0 \in D$. By the Riemann mapping theorem, \exists ! conformal transformation $\psi_{D}(z): D \rightarrow \mathbb{D}$ with $\psi_{D}(0)=0, \psi_{D}^{\prime}(0)>0$. In this case, the Green's function for D is

$$
\begin{equation*}
g_{D}(z, w)=g_{\mathbb{D}}\left(\psi_{D}(z), \psi_{D}(w)\right) \text { for } z, w \in D . \tag{*}
\end{equation*}
$$

Conversely, if we write $g_{D}(z)=g_{D}(z, 0)=g_{D}(0, z)$, then

$$
\psi_{D}(z)=\exp \left\{-g_{D}(z)+i \theta_{D}(z)\right\}
$$

In other words, determining the Green's function for a simply connected, proper subset of \mathbb{C} is equivalent to finding the Riemann mapping function of that domain onto the unit disk.

Equivalently, we can formulate the Green's function for D in terms of BM. Suppose B_{t} is a standard BM in \mathbb{C} and $T_{D}=\inf \left\{t: B_{t} \notin D\right\}$.

If $x \in D$, we can define $g_{D}(x, \cdot)$ as the unique harmonic function on $D \backslash\{x\}$, vanishing on ∂D, with $g_{D}(x, y)=-\log |x-y|+O(1)$ as $|x-y| \rightarrow 0$. From this description we have for $x \neq y \in D, g_{D}(x, y)=\mathbf{E}^{x}\left[\log \left|B\left(T_{D}\right)-y\right|\right]-\log |x-y|$. In particular, if $0 \in D$, then

$$
g_{D}(x)=\mathbf{E}^{x}\left[\log \left|B\left(T_{D}\right)\right|\right]-\log |x| \text { for } x \in D
$$

2 Green's functions on \mathbb{Z}^{2}

Denote by \mathcal{A}, the set of all finite, simply connected $A \subseteq \mathbb{Z}^{2}$ containing the origin. Let $\operatorname{inrad}(A)=\operatorname{dist}(0, \partial A)=\inf \left\{|z|: z \in \mathbb{Z}^{2} \backslash A\right\}$.

By \mathcal{A}^{n}, we mean those $A \in \mathcal{A}$ with $\operatorname{inrad}(A) \in[n, 2 n]$.
There are three reasonable ways to define the "boundary" of A.

- (outer) boundary: $\partial A:=\left\{y \in \mathbb{Z}^{2} \backslash A:|y-x|=1\right.$ for some $\left.x \in A\right\}$,
- inner boundary: $\partial_{i} A:=\partial\left(\mathbb{Z}^{2} \backslash A\right)=\left\{x \in A:|y-x|=1\right.$ for some $\left.y \in \mathbb{Z}^{2} \backslash A\right\}$,
- edge boundary: $\partial_{e} A:=\left\{(x, y): x \in A, y \in \mathbb{Z}^{2} \backslash A,|x-y|=1\right\}$.

Suppose S_{j} is a SRW on $\mathbb{Z}^{2}, S_{0}=0$. If $\tau_{A}=\min \left\{j \geq 0: S_{j} \notin A\right\}$, then

$$
G_{A}(x, y)=\mathbf{E}^{x}\left[\sum_{j=0}^{\tau_{A}-1} 1\left\{S_{j}=y\right\}\right]=\sum_{j=0}^{\infty} \mathbf{P}^{x}\left\{S_{j}=y, \tau_{A}>j\right\}
$$

denotes the Green's function for A (for SRW), i.e., the expected number of visits from x to y before exiting A.

Let $G_{A}(x)=G_{A}(x, 0)=G_{A}(0, x)$. It is known that

$$
G_{A}(x)=\mathbf{E}^{x}\left[a\left(S\left(\tau_{A}\right)\right)\right]-a(x) \text { for } x \in A
$$

where a is the potential kernel for SRW defined by

$$
a(x)=\lim _{m \rightarrow \infty} \sum_{j=0}^{m}\left[\mathbf{P}^{0}\left\{S_{j}=0\right\}-\mathbf{P}^{x}\left\{S_{j}=0\right\}\right]
$$

It is also known that as $|x| \rightarrow \infty$,

$$
\begin{equation*}
a(x)=\frac{2}{\pi} \log |x|+k_{0}+o\left(|x|^{-3 / 2}\right) \tag{1}
\end{equation*}
$$

where $k_{0}=(2 \gamma+3 \ln 2) / \pi$ and γ is Euler's constant. Stronger results are known. The asymptotic expansion of $a(x)$ given in Fukai-Uchiyama shows that the error is $O\left(|x|^{-2}\right)$.

3 Riemann Mapping \tilde{A} to \mathbb{D}

To each $A \in \mathcal{A}^{n}$ we associate a domain $\tilde{A} \subseteq \mathbb{C}$ in the following way:

$$
\tilde{A} \cup \partial \tilde{A}=\bigcup_{x \in A} \mathcal{S}_{x}
$$

where \mathcal{S}_{x} is the closed square of side one centered at x whose sides are parallel to the coordinate axes. Also, note that $\tilde{A} \subseteq \mathbb{C}$ is simply connected iff $A \subseteq \mathbb{Z}^{2}$ is simply connected.

That is, put a unit square about each point in A. The interior of the union of these squares is \tilde{A}.

Let $\psi_{A}(z)$ be the conformal transformation of \tilde{A} onto \mathbb{D} with $\psi_{A}(0)=0, \psi_{A}^{\prime}(0)>0$.
If we let $g_{A}(x, y):=g_{\tilde{A}}(x, y)$ be the Green's function for \tilde{A} (for BM), and set $g_{A}(x)=$ $g_{A}(0, x)$, then we can write the Riemann map as

$$
\psi_{A}(x)=\exp \left\{-g_{A}(x)+i \theta_{A}(x)\right\}
$$

By $(*)$, we then have that the Green's function for \tilde{A} is given by

$$
\begin{equation*}
g_{A}(x, y)=g_{\mathbb{D}}\left(\psi_{A}(x), \psi_{A}(y)\right)=\log \left|\frac{\overline{\psi_{A}(y)} \psi_{A}(x)-1}{\psi_{A}(y)-\psi_{A}(x)}\right| . \tag{2}
\end{equation*}
$$

4 The Koebe one-quarter theorem and its consequences

The following are corollaries to the Koebe one-quarter theorem, and the growth and distortion theorems. There are proofs to similar results in Lawler's SLE notes.

Corollary 1. If $A \in \mathcal{A}^{n}$, then $-\log \psi_{A}^{\prime}(0)=\log n+O(1)$.
Corollary 2. If $A \in \mathcal{A}^{n}$ and $|x| \leq n / 16$, then

$$
\psi_{A}(x)=x \psi_{A}^{\prime}(0)+|x|^{2} O\left(n^{-2}\right),
$$

and

$$
g_{A}(x)+\log |x|=-\log \psi_{A}^{\prime}(0)+|x| O\left(n^{-1}\right)
$$

Note that for $x=0$ the left hand side is defined by the limit and the error term on the right hand side disappears.

5 Beurling estimates

Suppose B_{t} is a BM in \mathbb{C}, and $T_{A}:=T_{\tilde{A}}=\inf \left\{t: B_{t} \notin \tilde{A}\right\}$. From the Beurling projection theorem, we have

Corollary (Beurling Estimate). There is a constant $c<\infty$ such that if $x \in \tilde{A}$, then for all $r>0$,

$$
\mathbf{P}^{x}\left\{\left|B\left(T_{A}\right)-x\right|>r \operatorname{dist}(x, \partial \tilde{A})\right\} \leq c r^{-1 / 2} .
$$

From this, we can deduce

$$
g_{A}(x) \leq c n^{-1 / 2} \operatorname{dist}(x, \partial \tilde{A})^{1 / 2}, \quad A \in \mathcal{A}^{n}, \quad|x| \geq n / 4
$$

so that

$$
g_{A}(x) \leq c n^{-1 / 2} \text { for } x \in \partial_{i} A .
$$

Hence, $\psi_{A}(x)=\exp \left\{i \theta_{A}(x)\right\}+O\left(n^{-1 / 2}\right)$, and if $x, y \in \partial_{i} A$,

$$
\left|\psi_{A}(x)-\psi_{A}(y)\right|=\left[1-\cos \left(\theta_{A}(x)-\theta_{A}(y)\right)\right]^{-1}+O\left(n^{-1 / 2}\right) .
$$

If $z \in \partial A$, we define $\theta_{A}(z)$ to be the average of $\theta_{A}(x)$ over all $x \in A$ with $|x-z|=1$. The Beurling estimate and a simple Harnack principle show that

$$
\theta_{A}(z)=\theta_{A}(x)+O\left(n^{-1 / 2}\right), \quad(x, z) \in \partial_{e} A .
$$

There are similar results in the discrete case. Suppose S_{n} is SRW on \mathbb{Z}^{2}, and $\tau_{A}=$ $\min \left\{j \geq 0: S_{j} \notin A\right\}$. From the discrete Beurling projection theorem, we have

Corollary (Discrete Beurling Estimate). There is a constant c such that if $x \in A$, then for all $r>0$,

$$
\mathbf{P}^{x}\left\{\left|S\left(\tau_{A}\right)-x\right|>r \operatorname{dist}(x, \partial A)\right\} \leq c r^{-1 / 2} .
$$

Thus, we can deduce

$$
G_{A}(x) \leq c n^{-1 / 2} \operatorname{dist}(x, \partial A)^{1 / 2}, \quad A \in \mathcal{A}^{n}, \quad|x| \geq n / 4
$$

so that

$$
\begin{equation*}
G_{A}(x) \leq c n^{-1 / 2} \text { for } x \in \partial_{i} A . \tag{**}
\end{equation*}
$$

If $A \in \mathcal{A}$ and $0 \neq x \in \partial_{i} A$, then

$$
G_{A}(0)=G_{A \backslash\{x\}}(0)+\frac{G_{A}(x)^{2}}{G_{A}(x, x)} .
$$

If we replace $A \backslash\{x\}$ with the connected component of $A \backslash\{x\}$ containing the origin, then by $(* *)$

$$
G_{A}(0)-G_{A \backslash\{x\}}(0) \leq G_{A}(x)^{2} \leq c n^{-1}, \quad A \in \mathcal{A}^{n}, x \in \partial_{i} A .
$$

6 Main Result

Theorem 1. There exists a decreasing sequence $\varepsilon_{n} \downarrow 0$ such that if $A \in \mathcal{A}^{n}$,

$$
G_{A}(0)=-\frac{2}{\pi} \log \psi_{A}^{\prime}(0)+k_{0}+O\left(\varepsilon_{n}^{3}\right),
$$

where k_{0} is the constant in (1). Moreover, if $x, y \in \partial_{i} A$ with $\left|\theta_{A}(x)-\theta_{A}(y)\right| \geq \varepsilon_{n}$,

$$
\begin{equation*}
G_{A}(x, y)=\frac{(\pi / 2) G_{A}(x) G_{A}(y)}{1-\cos \left(\theta_{A}(x)-\theta_{A}(y)\right)}\left[1+O\left(\frac{\varepsilon_{n}^{3}}{\left|\theta_{A}(x)-\theta_{A}(y)\right|}\right)\right] \tag{3}
\end{equation*}
$$

There are two parts to this theorem, and we handle them as separate propositions. First, we estimate $G_{A}(x, y)$ for x, y not too close to the boundary, which means that $\psi_{A}(x)$ and $\psi_{A}(y)$ are not close to $\partial \mathbb{D}$. Our second proposition will give estimates for x and y close to the boundary provided that they are not too close to each other.

Note that $\varepsilon_{n}=n^{-1 / 48} \log ^{2 / 3} n$.

7 Green's function estimates

7.1 Estimates away from the boundary

Goal. Estimate $G_{A}(x, y)$ for x, y not too close to the boundary.
This follows from a result that says the place SRW leaves A is close to the place BM leaves \tilde{A}. The proof uses two facts: a strong approximation result, which will tell us that when BM hits the boundary the SRW is close to the BM, and the Beurling estimates, which tells us that if a BM or a SRW is close to the boundary then it will hit it soon.

Proposition 1. There exists a constant c such that for every n, B_{t} and S_{t} can be defined on the same probability space so that if $A \in \mathcal{A}^{n}, 1<r \leq n^{20}$, and $x \in A$ with $|x| \leq n^{3}$,

$$
\mathbf{P}^{x}\left\{\left|B\left(T_{A}\right)-S\left(\tau_{A}\right)\right| \geq c r \log n\right\} \leq c r^{-1 / 2}
$$

Proof. We will use the following fact that can be easily derived from the strong approximation theorem [1]: there exists a constant c_{1} such that a SRW S_{t} and a BM B_{t} can be defined at the origin on the same probability space so that, except for an event of probability $O\left(n^{-10}\right)$,

$$
\left|B_{t}-S_{t}\right| \leq c_{1} \log n, \quad 0 \leq t \leq \sigma_{n}
$$

where σ_{n}^{1} (resp., σ_{n}^{2}) is the first time the BM (resp., SRW) gets distance n^{8} from its starting point and $\sigma_{n}=\max \left\{\sigma_{n}^{1}, \sigma_{n}^{2}\right\}$. For any given n, let $\left(B_{t}, S_{t}\right)$ be defined as above. Let

$$
T_{A}^{\prime}=\inf \left\{t \geq 0: \operatorname{dist}\left(B_{t}, \partial \tilde{A}\right) \leq 2 c_{1} \log n\right\}, \tau_{A}^{\prime}=\inf \left\{t \geq 0: \operatorname{dist}\left(S_{t}, \partial A\right) \leq 2 c_{1} \log n\right\}
$$

and let V_{1}, V_{2}, V_{3} be the events

$$
\begin{gathered}
V_{1}=\left\{\sup _{0 \leq t \leq \sigma_{n}}\left|B_{t}-S_{t}\right|>c_{1} \log n\right\}, \\
V_{2}=\left\{\sup _{T_{A}^{\prime} \leq t \leq T_{A}}\left|B_{t}-B_{T_{A}^{\prime}}\right| \geq r \log n\right\}, \quad V_{3}=\left\{\sup _{\tau_{A}^{\prime} \leq t \leq \tau_{A}}\left|S_{t}-S_{\tau_{A}^{\prime}}\right| \geq r \log n\right\} .
\end{gathered}
$$

By the Beurling projection theorems and the strong Markov property, we can see that $\mathbf{P}\left(V_{2} \cup V_{3}\right) \leq c r^{-1 / 2}$. Also, $\mathbf{P}\left(V_{1}\right) \leq n^{-10} \leq r^{-1 / 2}$. But on the complement of $V_{1} \cup V_{2} \cup V_{3}$, $\left|B\left(T_{A}\right)-S\left(\tau_{A}\right)\right| \leq\left(r+c_{1}\right) \log n$.

Corollary 3. There exists a c such that if $A \in \mathcal{A}^{n}$ and $|x| \leq n^{2}$,

$$
\left|\mathbf{E}^{x}\left[\log \left|B\left(T_{A}\right)\right|\right]-\mathbf{E}^{x}\left[\log \left|S\left(\tau_{A}\right)\right|\right]\right| \leq c n^{-1 / 3} \log n
$$

For any $A \in \mathcal{A}^{n}$, let $A^{*, n}$ be the set

$$
A^{*, n}=\left\{x \in A: g_{A}(x) \geq n^{-1 / 16}\right\} .
$$

The choice of $1 / 16$ for the exponent is somewhat arbitrary, and slightly better estimates might be obtained by choosing a different exponent. However, since we do not expect the error estimate derived here to be optimal, we will just make this definition.

Corollary 4. If $A \in \mathcal{A}^{n}$, and $x \in A^{*, n}, y \in A$, then

$$
G_{A}(x, y)=(2 / \pi) g_{A}(x, y)+k_{y-x}+O\left(n^{-7 / 24} \log n\right)
$$

where $k_{x}=k_{0}+(2 / \pi) \log |x|-a(x)$. Note that $\left|k_{x}\right| \leq c|x|^{-3 / 2}$.

7.2 Estimates near the boundary

Goal. Estimate $G_{A}(x, y)$ for x, y close to the boundary, but not close to each other.
Let $J_{x, n}=\left\{z \in A:\left|\psi_{A}(z)-\exp \left\{i \theta_{A}(x)\right\}\right| \geq n^{-1 / 16} \log ^{2} n\right\}$.
Proposition 2. Suppose $A \in \mathcal{A}^{n}$ and $x \in A \backslash A^{*, n}, y \in J_{x, n}$. Then,

$$
\begin{aligned}
G_{A}(x, y) & =G_{A}(x) \frac{1-\left|\psi_{A}(y)\right|^{2}}{\left|\psi_{A}(y)-e^{i \theta_{A}(x)}\right|^{2}}\left[1+O\left(\frac{n^{-1 / 16} \log n}{\left|\psi_{A}(y)-e^{i \theta_{A}(x)}\right|}\right)\right], \quad y \in A^{*, n} \\
G_{A}(x, y) & =\frac{(\pi / 2) G_{A}(x) G_{A}(y)}{1-\cos \left(\theta_{A}(x)-\theta_{A}(y)\right)}\left[1+O\left(\frac{n^{-1 / 16} \log n}{\left|\theta_{A}(y)-\theta_{A}(x)\right|}\right)\right], \quad y \in A \backslash A^{*, n} .
\end{aligned}
$$

There is nothing surprising about the leading term. The following estimates can be derived easily from (2). If $z=\psi_{A}(x)=(1-r) e^{i \theta}, z^{\prime}=\psi_{A}(y) \in \mathbb{D}$ with $\left|z-z^{\prime}\right| \geq r$, then

$$
g_{A}(x, y)=g_{\mathbb{D}}\left(z, z^{\prime}\right)=\frac{g_{\mathbb{D}}(z)\left(1-\left|z^{\prime}\right|^{2}\right)}{\left|z^{\prime}-e^{i \theta}\right|^{2}}\left[1+O\left(\frac{r}{\left|z-z^{\prime}\right|}\right)\right] .
$$

Similarly, if $z^{\prime}=\psi_{A}(y)=\left(1-r^{\prime}\right) e^{i \theta^{\prime}}$ with $r \geq r^{\prime}$ and $\left|z-z^{\prime}\right| \geq r$,

$$
g_{A}(x, y)=g_{\mathbb{D}}\left(z, z^{\prime}\right)=\frac{g_{\mathbb{D}}(z) g_{\mathbb{D}}\left(z^{\prime}\right)}{1-\cos \left(\theta-\theta^{\prime}\right)}\left[1+O\left(\frac{r}{\left|\theta-\theta^{\prime}\right|}\right)\right] .
$$

The proposition essentially says that these relations are valid (at least in the dominant term) if we replace g_{A} with $(\pi / 2) G_{A}$.

The hardest part of the proof is a lemma that states that if the SRW starts at a point x with $\psi_{A}(x)$ near $\partial \mathbb{D}$, then, given that the walk does not leave $A, \psi_{A}\left(S_{j}\right)$ moves a little towards the center of the disk before its argument changes too much.

7.3 An estimate for hitting the boundary

In order to prove Proposition 2, we will need a lemma which states roughly that if BM has a good chance of exiting $\partial \tilde{A}$ at a particular collection of segments \tilde{V} there is also a good chance that SRW exits A at the corresponding set V in ∂A. Specifically, let A be any finite, connected subset of \mathbb{Z}^{2}, not necessarily simply connected, and let $V \subseteq \partial A$. For every $y \in V$, consider the collection of edges containing y, namely $\mathcal{E}_{y}:=\left\{(x, y) \in \partial_{e} A\right\}$; let $\mathcal{E}_{V}=\cup_{y \in V} \mathcal{E}_{y}$ where $\ell_{x, y}$ is the perpendicular line segment of length 1intersecting (x, y) in the midpoint, and define

$$
\tilde{V}=\bigcup_{(x, y) \in \mathcal{E}_{V}} \ell_{x, y} .
$$

Let $T=T_{A}, \tau=\tau_{A}$ be as before, and let

$$
f(x)=f_{A, V}(x)=\mathbf{P}^{x}\left\{S_{\tau_{A}} \in V\right\}, \quad \tilde{f}(x)=\tilde{f}_{\tilde{A}, \tilde{V}}(x)=\mathbf{P}^{x}\left\{B_{T_{A}} \in \tilde{V}\right\} .
$$

Let Δ denote the usual Laplacian in \mathbb{C} and call a function h harmonic at x if $\Delta h(x)=0$. Let L denote the discrete Laplacian

$$
\operatorname{Lh}(x)=\frac{1}{4} \sum_{|x-y|=1}(h(y)-h(x))
$$

and call h discrete harmonic at x if $\operatorname{Lh}(x)=0$. Note that \tilde{f} is harmonic in \tilde{A} and f is discrete harmonic in A. It follows from Taylor series and uniform bounds on derivatives of harmonic functions that if $r>1$ and h is harmonic on $\{z \in \mathbb{C}:|z|<r\}$, then

$$
|L h(0)| \leq\|h\|_{\infty} O\left(r^{-3}\right) .
$$

Lemma 1. For every $\varepsilon>0$ there is a $\delta>0$, such that if A is a finite connected subset of $\mathbb{Z}^{2}, V \subseteq \partial A$, and $x \in A$ with $\tilde{f}(x) \geq \varepsilon$, then $f(x) \geq \delta$.

We first note for every $n<\infty$, there is a $\delta^{\prime}=\delta^{\prime}(n)>0$ such that the lemma holds for all A of cardinality at most n and all $\varepsilon>0$. This is because f, \tilde{f} are strictly positive (assuming V is nonempty) and the collection of connected subsets of \mathbb{Z}^{2} containing the origin of cardinality at most n is finite. Hence we can choose

$$
\delta^{\prime}(n)=\min \mathbf{P}^{x}\left\{S_{\tau_{A}}=(y, z)\right\}
$$

where the minimum is over all finite connected A of cardinality at most n, over all $x \in A$, and over all $(y, z) \in \partial_{e} A$.

8 Application to loop-erased random walk

In this section we combine the Green's function estimate of Theorem 1 with an identity of S. Fomin, to give an estimate for the probability of a particular event dealing with loop-erased random walk.

8.1 Hitting probabilities

If $x \in A, y \in \partial A$, let $H_{A}(x, y)=\mathbf{P}^{x}\left\{S\left(\tau_{A}\right)=y\right\}$ be the probability that SRW starting at x exits A at y. Then a simple last exit decomposition gives:

Fact 1. $H_{A}(x, y)=\frac{1}{4} \sum_{(z, y) \in \partial_{e} A} G_{A}(x, z)$
Proof.

$$
\begin{aligned}
\mathbf{P}^{x}\left\{S\left(\tau_{A}\right)=y\right\} & =\sum_{(z, y) \in \partial_{e} A} \sum_{k=1}^{\infty} \mathbf{P}^{x}\left\{S_{k}=y \mid S_{k-1}=z, \tau_{A}=k\right\} \mathbf{P}^{x}\left\{S_{k-1}=z, \tau_{A}=k\right\} \\
& =\sum_{(z, y) \in \partial_{e} A} \sum_{k=1}^{\infty} \frac{1}{4} \mathbf{P}^{x}\left\{S_{k-1}=z, \tau_{A}=k\right\}=\frac{1}{4} \sum_{(z, y) \in \partial_{e} A} G_{A}(x, z)
\end{aligned}
$$

Using this we can derive the following from (3):
Corollary 5. If $A \in \mathcal{A}^{n}, x \in \partial_{i} A, y \in \partial A$ with $\left|\theta_{A}(x)-\theta_{A}(y)\right| \geq \varepsilon_{n}$, then

$$
\begin{equation*}
H_{A}(x, y)=\frac{(\pi / 2) G_{A}(x) H_{A}(0, y)}{1-\cos \left(\theta_{A}(x)-\theta_{A}(y)\right)}\left[1+O\left(\frac{\varepsilon_{n}^{3}}{\left|\theta_{A}(x)-\theta_{A}(y)\right|}\right)\right] \tag{4}
\end{equation*}
$$

Similarly, if $x \in \partial A, y \in \partial A$, let $H_{A}(x, y)=\mathbf{P}^{x}\left\{S\left(\tau_{A}\right)=y \mid S_{1} \in A\right\}$ be the probability that a SRW starting at x takes its first step into A and then exits A at y.

Fact 2. $H_{A}(x, y)=\frac{1}{4} \sum_{(z, x) \in \partial_{e} A} H_{A}(z, y)$
Proof.

$$
H_{A}(x, y)=\sum_{(z, x) \in \partial_{e} A} \mathbf{P}^{x}\left\{S\left(\tau_{A}\right)=y \mid S_{1}=z\right\} \mathbf{P}^{x}\left\{S_{1}=z\right\}=\frac{1}{4} \sum_{(z, x) \in \partial_{e} A} \mathbf{P}^{z}\left\{S\left(\tau_{A}\right)=y\right\}
$$

Combining this with (3) and (4) we get:
Corollary 6. If $A \in \mathcal{A}^{n}, x, y \in \partial A$ with $\left|\theta_{A}(x)-\theta_{A}(y)\right| \geq \varepsilon_{n}$, then

$$
\begin{equation*}
H_{A}(x, y)=\frac{(\pi / 2) H_{A}(0, x) H_{A}(0, y)}{1-\cos \left(\theta_{A}(x)-\theta_{A}(y)\right)}\left[1+O\left(\frac{\varepsilon_{n}^{3}}{\left|\theta_{A}(x)-\theta_{A}(y)\right|}\right)\right] . \tag{5}
\end{equation*}
$$

8.2 Loop-erased random walk and Fomin's identity

If $S=[S(0), S(1), \ldots, S(m)]$ is a SRW path of length m, let $\Lambda(S)$ be the loop-erased part of S, which can be constructed as follows. If S is already self-avoiding, set $\Lambda(S)=S$. Otherwise, let $s_{0}=\max \{j: S(j)=S(0)\}$, and for $i>0$, let $s_{i}=\max \{j: S(j)=$ $\left.S\left(s_{j-1}+1\right)\right\}$. If we let $n=\min \left\{i: s_{i}=m\right\}$, then $\Lambda(S)=\left[S\left(s_{0}\right), S\left(s_{1}\right), \ldots, S\left(s_{n}\right)\right]$.
Suppose that $A \in \mathcal{A}^{n}$ and $x^{1}, x^{2}, \ldots, x^{N} \in \partial A$. Let $S^{1}, S^{2}, \ldots, S^{N}$ be independent SRW starting at $x^{1}, x^{2}, \ldots, x^{N}$, respectively, and let

$$
\tau_{A}^{k}:=\min \left\{j>0: S_{j}^{k} \notin A\right\} .
$$

Let $L^{k}=\Lambda\left(S^{k}\right)$ be the loop erasure of the path $\left[S^{k}(0)=x^{k}, S^{k}(1), \ldots, S^{k}\left(\tau_{A}^{k}\right)\right]$, and let $\mathcal{E}=\mathcal{E}\left(x^{1}, \ldots, x^{N}, y^{1}, \ldots, y^{N} ; A\right)$ be the event that

- $S^{k}\left(\tau_{A}^{k}\right)=y^{k}, \quad k=1, \ldots, N$, and
- $S^{k}\left[0, \tau_{A}^{k}\right] \cap\left\{L^{1} \cup \cdots \cup L^{k-1}\right\}=\emptyset, \quad k=2, \ldots, N$.

Theorem (Fomin [2, Theorem 7.5]). If $\mathbf{H}_{A}=\left[H_{A}\left(x^{k}, y^{\ell}\right)\right]$ is the $N \times N$ hitting matrix

$$
\mathbf{H}_{A}=\left[\begin{array}{ccc}
H_{A}\left(x^{1}, y^{1}\right) & \cdots & H_{A}\left(x^{1}, y^{N}\right) \\
\vdots & \ddots & \vdots \\
H_{A}\left(x^{N}, y^{1}\right) & \cdots & H_{A}\left(x^{N}, y^{N}\right)
\end{array}\right]
$$

then

$$
\mathbf{P}\{\mathcal{E}\}=\operatorname{det}\left[\mathbf{H}_{A}\right] .
$$

Combining Fomin's Theorem with (5) yields the following:

Theorem 2. Suppose that $A \in \mathcal{A}^{n}$ and $x^{1}, \ldots, x^{N}, y^{1}, \ldots, y^{N} \in \partial A$ with

$$
\delta=\min _{1 \leq k, \ell \leq N}\left\{\left|\theta_{A}\left(x^{k}\right)-\theta_{A}\left(y^{\ell}\right)\right|\right\} \geq \varepsilon_{n} .
$$

Let $\varphi_{A}\left(x^{k}, y^{\ell}\right)=\left[1-\cos \left(\theta_{A}\left(x^{k}\right)-\theta_{A}\left(y^{\ell}\right)\right)\right]^{-1}$. If \mathcal{E} is the event defined as above, then

$$
\mathbf{P}\{\mathcal{E}\}=(\pi / 2)^{N}\left[\prod_{k=1}^{N} H_{A}\left(0, x^{k}\right)\right]\left[\prod_{\ell=1}^{N} H_{A}\left(0, y^{\ell}\right)\right] \operatorname{det}\left[\mathbf{\Phi}_{A}\right]\left[1+O\left(\varepsilon_{n}^{3} \delta^{-1}\right)\right]
$$

where $\boldsymbol{\Phi}_{A}$ is the $N \times N$ matrix $\boldsymbol{\Phi}_{A}=\left[\varphi_{A}\left(x^{k}, y^{\ell}\right)\right]$.

References

[1] P. Auer. Some hitting probabilities of random walks on Z^{2}. In I. Berkes, E. Csáki, and P. Révész, editors, Limit Theorems in Probability and Statistics, pages 9-25, Budapest, Hungary, 1990. North-Holland.
[2] Sergey Fomin. Loop-erased walks and total positivity. Trans. Amer. Math. Soc., 353(9):3563-3583, 2001.

