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1 Green’s functions on C

Notation. We write any and all of z, y, 2, w for points in C.

Let D = {z € C: |z| < 1} denote the interior of the unit disk. If z, y € D, let

yr — 1
go(x,y) = log
y—z
denote the Green’s function for D. Note gp(0,z) = gp(x) = —log|z|, and gp(x,y) =

9n(y, ).

Suppose D C C is simply connected and 0 € D. By the Riemann mapping theorem, 3!
conformal transformation ¢p(z) : D — D with ¢p(0) = 0, ¥,(0) > 0. In this case, the
Green’s function for D is

9o(z,w) = go(¥p(2), Yp(w)) for z,w € D. (%)

Conversely, if we write gp(z) = gp(z,0) = gp(0, z), then

¥p(2) = exp{—gp(2) +ilp(2)}.

In other words, determining the Green’s function for a simply connected, proper subset
of C is equivalent to finding the Riemann mapping function of that domain onto the
unit disk.

Equivalently, we can formulate the Green’s function for D in terms of BM. Suppose B;
is a standard BM in C and Tp = inf{t : B; ¢ D}.

If z € D, we can define gp(z,-) as the unique harmonic function on D \ {z}, vanishing
on 0D, with gp(z,y) = —log|z —y| + O(1) as |x — y| — 0. From this description we
have for © # y € D, gp(z,y) = E*[log |B(Tp) — y|| — log |x — y|. In particular, if 0 € D,
then

gp(x) = E*[log |B(Tp)|] — log|z| for = € D.



2 Green’s functions on Z2

Denote by A, the set of all finite, simply connected A C Z? containing the origin. Let
inrad(A) = dist(0,0A4) = inf{|z| : z € Z?\ A}.

By A", we mean those A € A with inrad(A) € [n, 2n].

There are three reasonable ways to define the “boundary” of A.
e (outer) boundary: OA:={ye€Z*\ A:|y— x| =1 for some v € A},
e inner boundary: 0;A:=09(Z*\ A)={r € A:|y—z| =1 for some y € Z?\ A},
o cdge boundary: 0. A :={(r,y):x € A, y € Z*\ A, |v —y| = 1}.

Suppose S; is a SRW on Z?, Sy = 0. If 74 = min{j > 0: S; &€ A}, then

Gale,) = B3 1S = )] = Y PH{S; =7 > J)

denotes the Green’s function for A (for SRW), i.e., the expected number of visits from
x to y before exiting A.

Let Ga(z) = Ga(z,0) = GA(0,z). It is known that
Ga(z) =E*[a(S(14))] — a(z) for z € A.

where a is the potential kernel for SRW defined by

a(z) = lim Y [P{S; =0} — P*{S; = 0}].
=0
It is also known that as |z| — oo,
2
a(x) = —logla| + ko + o(|2|7*?) (1)

where kg = (27 4+ 3In2)/7 and « is Euler’s constant. Stronger results are known. The
asymptotic expansion of a(z) given in Fukai-Uchiyama shows that the error is O(|z|72).



3 Riemann Mapping A to D
To each A € A" we associate a domain A C C in the following way:
AvoA=]s.,
€A

where S, is the closed square of side one centered at = whose sides are parallel to the co-
ordinate axes. Also, note that A C C is simply connected iff A C Z? is simply connected.

That is, put a unit square about each point in A. The interior of the union of these
squares is A.

Let 14(z) be the conformal transformation of A onto ID with 14(0) = 0, ¢/,(0) > 0.

If we let ga(z,y) := gi(z,y) be the Green’s function for A (for BM), and set ga(z) =
94(0, ), then we can write the Riemann map as

Ya(x) = exp{—ga(z) +i04(x)}.

By (%), we then have that the Green’s function for A is given by

Ya(y)a(z) — 1

Yaly) —va(z) ' @)

9a(z,y) = gp(¥Ya(z),va(y)) = log

4 The Koebe one-quarter theorem and its consequences

The following are corollaries to the Koebe one-quarter theorem, and the growth and
distortion theorems. There are proofs to similar results in Lawler’s SLE notes.

Corollary 1. If A € A", then —log¢/,(0) = logn + O(1).

Corollary 2. If A € A" and |x| < n/16, then

Ya(@) = 2¢4(0) + |2[*O(n "),

and
ga(z) +log|z] = —log ¢/, (0) + |z[O(n™").

Note that for x = 0 the left hand side is defined by the limit and the error term on the
right hand side disappears.



5 Beurling estimates

Suppose Byisa BM in C, and Ty := Ty = inf{t : B; & /Nl} From the Beurling projection
theorem, we have

Corollary (Beurling Estimate). There is a constant ¢ < oo such that if x € A, then for
all r >0, .
P*{|B(Ty) — x| > r dist(z, 04)} < cr /2.

From this, we can deduce
ga(z) < en V2 dist(x, 0A)2, Ae A", |z| >n/4d

so that
ga(z) < en™V? for x € §;A.

Hence, 14 (x) = exp{ifs(x)} + O(n/?), and if z,y € 0;A,
[Wa(r) = Ya(y)] = [1 = cos(Ba(x) — 0a(y))] " + O(n~"7?).

If z € 0A, we define 64(z) to be the average of 04(z) over all x € A with |z — z| = 1.
The Beurling estimate and a simple Harnack principle show that

0a(2) = 0a(z) + O(n~Y?),  (z,2) € 0.A.

There are similar results in the discrete case. Suppose S, is SRW on Z2, and 74 =
min{j > 0:S; € A}. From the discrete Beurling projection theorem, we have

Corollary (Discrete Beurling Estimate). There is a constant ¢ such that if x € A, then
for all r >0,
Px{|S(TA) - IE| >r dist(a:,(’)A)} < cr—1/2

Thus, we can deduce

Ga(z) <en Y2 dist(z,04)Y2, Aec A", |z| >n/4,

so that
Ga(z) < en~ Y2 for x € B A. (xx)
If Ae Aand 0 # x € 0;A, then
_ Ga(x)?
G 4(0) = Ga\(23(0) + Gz, )

If we replace A \ {z} with the connected component of A\ {z} containing the origin,
then by (xx)

GA(0) — Gavy (0) < Ga(z)* <en™', A€ A", z €A



6 Main Result

Theorem 1. There exists a decreasing sequence €, | 0 such that if A € A",
2
G4(0) = - log /4 (0) + ko + O(e),

where ko is the constant in (1). Moreover, if x,y € 0;A with |0a(x) — 04(y)| > en,

_ (/2) Ga(z) Galy) 21
Gl ) = T s = 0at) T a2t

There are two parts to this theorem, and we handle them as separate propositions. First,
we estimate G4(z,y) for z, y not too close to the boundary, which means that 14 (z)
and ¥4 (y) are not close to dD. Our second proposition will give estimates for x and y
close to the boundary provided that they are not too close to each other.

)l (3)

Note that &, = n=/481og?* n.

7 Green’s function estimates
7.1 Estimates away from the boundary
Goal. Estimate G 4(z,y) for z, y not too close to the boundary.

This follows from a result that says the place SRW leaves A is close to the place BM
leaves A. The proof uses two facts: a strong approximation result, which will tell us that
when BM hits the boundary the SRW is close to the BM, and the Beurling estimates,
which tells us that if a BM or a SRW is close to the boundary then it will hit it soon.

Proposition 1. There exists a constant ¢ such that for every n, By and Sy can be defined
on the same probability space so that if A€ A", 1 <r <n®, and x € A with |z| < n?,

P*{|B(T4) — S(74)| > cr logn} < cr 2

Proof. We will use the following fact that can be easily derived from the strong approx-
imation theorem [1]: there exists a constant ¢; such that a SRW S; and a BM B; can
be defined at the origin on the same probability space so that, except for an event of
probability O(n~1%),

|B; — Si| < ¢ logn, 0<t<o,,

where o} (resp., 02) is the first time the BM (resp., SRW) gets distance n® from its

starting point and o,, = max{o),c2}. For any given n, let (B, S;) be defined as above.

n n
Let

T', = inf{t > 0 : dist(B,;, 0A) < 2¢; logn}, 7y = inf{t > 0 : dist(S;, DA) < 2¢; logn},
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and let V1, V5, V3 be the events

Vi={ sup |B;—Si>c logn},

0<t<on

Vo={ sup |B,— Bp,| =7 logn}, Vi={ sup [S,— Sy|=>r logn}.

T <t<Typ 7/, <t<Tx

By the Beurling projection theorems and the strong Markov property, we can see that
P(VaUV3) < er= /2. Also, P(V;) < n™'% < r~Y/2. But on the complement of V; UV,U Vs,
B(Tx) — S(7a)] < (r + 1) logn. 0

Corollary 3. There exists a ¢ such that if A € A" and |z| < n?,
| B#[log | B(T4)|) — E[log |S(ra) | < e n™% logn.
For any A € A", let A*" be the set
A ={x € A:ga(w) >0,

The choice of 1/16 for the exponent is somewhat arbitrary, and slightly better estimates
might be obtained by choosing a different exponent. However, since we do not expect
the error estimate derived here to be optimal, we will just make this definition.

Corollary 4. If A€ A", and v € A*",y € A, then
Ga(z,y) = (2/7) ga(z,y) + ky—o + O(n~"**logn)
where k, = ko + (2/7) log |x| — a(x). Note that |k,| < c|x|=3/2,

7.2 Estimates near the boundary

Goal. Estimate G4(z,y) for z, y close to the boundary, but not close to each other.
Let J,, = {2z € A: [a(2) — exp{ifa(2)}| > n~1%1og® n}.

Proposition 2. Suppose A € A" and x € A\ A", y € Jy,,. Then,

L [a(y)l
[0aly) — TP

_(7/2) Ga(z) Ga(y)
Galz,y) = 1— cos(04(x) — 04(y))

n~ Y% logn

Ga(z,y) = Ga(z) l1ha(y) — eieA(x)]

[140O(

)], oy e AT,

n~Y%logn

104(y) — 0a(z)]

[ 14 0O(

)], ye A\ A



There is nothing surprising about the leading term. The following estimates can be
derived easily from (2). If z = 4(z) = (1 —7)e?, 2/ = 4(y) € D with |z —2'| > r, then

gp(2) (L —[2]%) 1

|Z/ _ ei9|2

1+ O(

gA(l’,y) = gD<Z7Z,) = |Z _ Z/|

Similarly, if 2/ = ¥4 (y) = (1 — 1) with r > 7" and |z — 2/| > 7,

9a(@,y) = gol=,7) = 19_@(;)8(93322/) ST - o1

The proposition essentially says that these relations are valid (at least in the dominant
term) if we replace g4 with (7/2) G 4.

The hardest part of the proof is a lemma that states that if the SRW starts at a point x
with 14 (x) near 0D, then, given that the walk does not leave A, 14(S;) moves a little
towards the center of the disk before its argument changes too much.

7.3 An estimate for hitting the boundary

In order to prove Proposition 2, we will need a lemma which states roughly that if BM
has a good chance of exiting dA at a particular collection of segments V' there is also a
good chance that SRW exits A at the corresponding set V' in JA. Specifically, let A be
any finite, connected subset of Z?, not necessarily simply connected, and let V' C 9A. For
every y € V, consider the collection of edges containing y, namely &, := {(z,y) € 0.A};
let &y = Uyey €, where /,, is the perpendicular line segment of length lintersecting
(x,y) in the midpoint, and define
V= |J luy

Let T'=T4, T = 74 be as before, and let
f(@) = fav(z) =P{S,, €V}, f(x)=fip(zr)=P{Br, €V}

Let A denote the usual Laplacian in C and call a function h harmonic at z if Ah(z) = 0.
Let L denote the discrete Laplacian

|z—y|=1

and call h discrete harmonic at z if Lh(z) = 0. Note that f is harmonic in A and f is
discrete harmonic in A. It follows from Taylor series and uniform bounds on derivatives
of harmonic functions that if » > 1 and A is harmonic on {z € C: |z| < r}, then

[LA(O)] < Al O(r™?).



Lemma 1. For every € > 0 there is a § > 0, such that if A is a finite connected subset
of 73,V C 0A, and v € A with f(x) > ¢, then f(x) > 4.

We first note for every n < oo, there is a ¢’ = ¢§’(n) > 0 such that the lemma holds for
all A of cardinality at most n and all ¢ > 0. This is because f, f are strictly positive
(assuming V' is nonempty) and the collection of connected subsets of Z?* containing the
origin of cardinality at most n is finite. Hence we can choose

0'(n) = min P*{S,, = (y,2)},

where the minimum is over all finite connected A of cardinality at most n, over all z € A,
and over all (y, z) € 0. A.

8 Application to loop-erased random walk

In this section we combine the Green’s function estimate of Theorem 1 with an identity
of S. Fomin, to give an estimate for the probability of a particular event dealing with
loop-erased random walk.

8.1 Hitting probabilities
Ifx € A,y € 0A, let Ha(z,y) = P*{S(74) = y} be the probability that SRW starting
at x exits A at y. Then a simple last exit decomposition gives:
1
Fact 1. Hy(z,y) = 1 Z Gal(z,2)
(z,y)€0.A

Proof.

P {S(ra)=yl= D > P{Sp=y|S1=27a=k} P{S1 =274=k}

(z,y)€0.A k=1
=Y Yl s manm = Y aes) u
4 ’ 4 ’
(z,y)€0. A k=1 (2,y)€0: A

Using this we can derive the following from (3):
Corollary 5. If Ac A", x € 0;A, y € 0A with |04(x) — 0a(y)| > €n, then

(m/2) Ga(z) Ha(0,y) &
Hy(x,y) = 1+0 L
) = T o Bala) - 0alo)) O ata) - 0ala)
Similarly, if x € 0A, y € 0A, let Ha(x,y) = P*{S(74) = y|S1 € A} be the probability
that a SRW starting at x takes its first step into A and then exits A at y.

)l (4)
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Fact 2. Hy(z,y) =

Z HA(Zay)

(z,2)€0. A

|

Proof.
1
Ha(z,y) = Z P{S(ra) = y|S1 = 2} P*{S) = 2} = 1 Z P{S(ma) =y} O
(z,2)ED. A (2,2)EDe A
Combining this with (3) and (4) we get:
Corollary 6. If Ac A", x,y € 0A with |0a(x) — 0a(y)| > €n, then

(7/2) Ha(0,2) Ha(0,y) &
1 —cos(0a(x) — 0a(y)) 1+0( 0a(z) — 04(y)]

Ha(z,y) = )l (5)

8.2 Loop-erased random walk and Fomin’s identity

If S =1[5(0),S5(1),...,5(m)] is a SRW path of length m, let A(S) be the loop-erased part
of S, which can be constructed as follows. If S is already self-avoiding, set A(S) = S.
Otherwise, let s = max{j : S(j) = S(0)}, and for i > 0, let s; = max{j : S(j) =
S(sj_1+1)}. If we let n =min{i:s; =m}, then A(S) = [S(s0),S(s1),-..,5(sn)]-
Suppose that A € A" and z',22,..., 2 € A. Let S*,S?,..., SN be independent SRW
starting at a!, 22, ..., 2", respectively, and let

Th :==min{j > 0: 5} & A}.

Let L¥ = A(S*) be the loop erasure of the path [S*(0) = z*, S*(1),...,S*(7%)], and let
E=E@t, ..., 2Nyt ... ,yN; A) be the event that

o SF(rh)y =9k, k=1,...,N, and
o SHO,AINn{LtyU---ULF} =0, k=2,...,N.

Theorem (Fomin [2, Theorem 7.5)). If Hy = [Ha(z*,y")] is the N x N hitting matriz

HA(xlayl) U HA(:El?yN)
Hy = : :
Ha(z™,y') - Ha(z™,yN)
then
P{E} = det[Hy,].

Combining Fomin’s Theorem with (5) yields the following:



Theorem 2. Suppose that A € A" and z*,... 2N, y', ...,y € OA with

_ . ky ¢
5= min {10a(") ~ 04} = <.

Let (2%, y") = [1 — cos(04(z*) — 04(y"))] 7. If € is the event defined as above, then

P{€} = (n/2)" [[ [ Ha(0.2")] [[ ] Ha(0,4)] det[®4] [1 +O(e307")]
where ® 4 is the N x N matriz ®4 = [pa(a*,y")].
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