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1 Green’s functions on C
Notation. We write any and all of x, y, z, w for points in C.

Let D = {z ∈ C : |z| < 1} denote the interior of the unit disk. If x, y ∈ D, let

gD(x, y) = log

∣∣∣∣yx− 1

y − x

∣∣∣∣
denote the Green’s function for D. Note gD(0, x) = gD(x) = − log |x|, and gD(x, y) =
gD(y, x).

Suppose D ( C is simply connected and 0 ∈ D. By the Riemann mapping theorem, ∃!
conformal transformation ψD(z) : D → D with ψD(0) = 0, ψ′D(0) > 0. In this case, the
Green’s function for D is

gD(z, w) = gD(ψD(z), ψD(w)) for z, w ∈ D. (∗)

Conversely, if we write gD(z) = gD(z, 0) = gD(0, z), then

ψD(z) = exp{−gD(z) + iθD(z)}.

In other words, determining the Green’s function for a simply connected, proper subset
of C is equivalent to finding the Riemann mapping function of that domain onto the
unit disk.

Equivalently, we can formulate the Green’s function for D in terms of BM. Suppose Bt

is a standard BM in C and TD = inf{t : Bt 6∈ D}.

If x ∈ D, we can define gD(x, ·) as the unique harmonic function on D \ {x}, vanishing
on ∂D, with gD(x, y) = − log |x − y| + O(1) as |x − y| → 0. From this description we
have for x 6= y ∈ D, gD(x, y) = Ex[log |B(TD)− y|]− log |x− y|. In particular, if 0 ∈ D,
then

gD(x) = Ex[log |B(TD)|]− log |x| for x ∈ D.
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2 Green’s functions on Z2

Denote by A, the set of all finite, simply connected A ⊆ Z2 containing the origin. Let
inrad(A) = dist(0, ∂A) = inf{|z| : z ∈ Z2 \ A}.

By An, we mean those A ∈ A with inrad(A) ∈ [n, 2n].

There are three reasonable ways to define the “boundary” of A.

• (outer) boundary: ∂A := {y ∈ Z2 \ A : |y − x| = 1 for some x ∈ A},

• inner boundary: ∂iA := ∂(Z2 \ A) = {x ∈ A : |y − x| = 1 for some y ∈ Z2 \ A},

• edge boundary: ∂eA := {(x, y) : x ∈ A, y ∈ Z2 \ A, |x− y| = 1}.

Suppose Sj is a SRW on Z2, S0 = 0. If τA = min{j ≥ 0 : Sj 6∈ A}, then

GA(x, y) = Ex[

τA−1∑
j=0

1{Sj = y}] =
∞∑

j=0

Px{Sj = y, τA > j}

denotes the Green’s function for A (for SRW), i.e., the expected number of visits from
x to y before exiting A.

Let GA(x) = GA(x, 0) = GA(0, x). It is known that

GA(x) = Ex[a(S(τA))]− a(x) for x ∈ A.

where a is the potential kernel for SRW defined by

a(x) = lim
m→∞

m∑
j=0

[P0{Sj = 0} −Px{Sj = 0}].

It is also known that as |x| → ∞,

a(x) =
2

π
log |x|+ k0 + o(|x|−3/2) (1)

where k0 = (2γ + 3 ln 2)/π and γ is Euler’s constant. Stronger results are known. The
asymptotic expansion of a(x) given in Fukai-Uchiyama shows that the error is O(|x|−2).
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3 Riemann Mapping Ã to D
To each A ∈ An we associate a domain Ã ⊆ C in the following way:

Ã ∪ ∂Ã =
⋃
x∈A

Sx,

where Sx is the closed square of side one centered at x whose sides are parallel to the co-
ordinate axes. Also, note that Ã ⊆ C is simply connected iff A ⊆ Z2 is simply connected.

That is, put a unit square about each point in A. The interior of the union of these
squares is Ã.

Let ψA(z) be the conformal transformation of Ã onto D with ψA(0) = 0, ψ′A(0) > 0.

If we let gA(x, y) := gÃ(x, y) be the Green’s function for Ã (for BM), and set gA(x) =
gA(0, x), then we can write the Riemann map as

ψA(x) = exp{−gA(x) + iθA(x)}.

By (∗), we then have that the Green’s function for Ã is given by

gA(x, y) = gD(ψA(x), ψA(y)) = log

∣∣∣∣∣ψA(y)ψA(x)− 1

ψA(y)− ψA(x)

∣∣∣∣∣ . (2)

4 The Koebe one-quarter theorem and its consequences

The following are corollaries to the Koebe one-quarter theorem, and the growth and
distortion theorems. There are proofs to similar results in Lawler’s SLE notes.

Corollary 1. If A ∈ An, then − logψ′A(0) = log n+O(1).

Corollary 2. If A ∈ An and |x| ≤ n/16, then

ψA(x) = xψ′A(0) + |x|2O(n−2),

and
gA(x) + log |x| = − logψ′A(0) + |x|O(n−1).

Note that for x = 0 the left hand side is defined by the limit and the error term on the
right hand side disappears.
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5 Beurling estimates

Suppose Bt is a BM in C, and TA := TÃ = inf{t : Bt 6∈ Ã}. From the Beurling projection
theorem, we have

Corollary (Beurling Estimate). There is a constant c <∞ such that if x ∈ Ã, then for
all r > 0,

Px{|B(TA)− x| > r dist(x, ∂Ã)} ≤ c r−1/2.

From this, we can deduce

gA(x) ≤ c n−1/2 dist(x, ∂Ã)1/2, A ∈ An, |x| ≥ n/4

so that
gA(x) ≤ cn−1/2 for x ∈ ∂iA.

Hence, ψA(x) = exp{iθA(x)}+O(n−1/2), and if x, y ∈ ∂iA,

|ψA(x)− ψA(y)| = [1− cos(θA(x)− θA(y))]−1 +O(n−1/2).

If z ∈ ∂A, we define θA(z) to be the average of θA(x) over all x ∈ A with |x − z| = 1.
The Beurling estimate and a simple Harnack principle show that

θA(z) = θA(x) +O(n−1/2), (x, z) ∈ ∂eA.

There are similar results in the discrete case. Suppose Sn is SRW on Z2, and τA =
min{j ≥ 0 : Sj 6∈ A}. From the discrete Beurling projection theorem, we have

Corollary (Discrete Beurling Estimate). There is a constant c such that if x ∈ A, then
for all r > 0,

Px{|S(τA)− x| > r dist(x, ∂A)} ≤ c r−1/2.

Thus, we can deduce

GA(x) ≤ c n−1/2 dist(x, ∂A)1/2, A ∈ An, |x| ≥ n/4,

so that
GA(x) ≤ cn−1/2 for x ∈ ∂iA. (∗∗)

If A ∈ A and 0 6= x ∈ ∂iA, then

GA(0) = GA\{x}(0) +
GA(x)2

GA(x, x)
.

If we replace A \ {x} with the connected component of A \ {x} containing the origin,
then by (∗∗)

GA(0)−GA\{x}(0) ≤ GA(x)2 ≤ c n−1, A ∈ An, x ∈ ∂iA.
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6 Main Result

Theorem 1. There exists a decreasing sequence εn ↓ 0 such that if A ∈ An,

GA(0) = − 2

π
logψ′A(0) + k0 +O(ε3

n),

where k0 is the constant in (1). Moreover, if x, y ∈ ∂iA with |θA(x)− θA(y)| ≥ εn,

GA(x, y) =
(π/2) GA(x) GA(y)

1− cos(θA(x)− θA(y))
[1 +O(

ε3
n

|θA(x)− θA(y)|
)]. (3)

There are two parts to this theorem, and we handle them as separate propositions. First,
we estimate GA(x, y) for x, y not too close to the boundary, which means that ψA(x)
and ψA(y) are not close to ∂D. Our second proposition will give estimates for x and y
close to the boundary provided that they are not too close to each other.

Note that εn = n−1/48 log2/3 n.

7 Green’s function estimates

7.1 Estimates away from the boundary

Goal. Estimate GA(x, y) for x, y not too close to the boundary.

This follows from a result that says the place SRW leaves A is close to the place BM
leaves Ã. The proof uses two facts: a strong approximation result, which will tell us that
when BM hits the boundary the SRW is close to the BM, and the Beurling estimates,
which tells us that if a BM or a SRW is close to the boundary then it will hit it soon.

Proposition 1. There exists a constant c such that for every n, Bt and St can be defined
on the same probability space so that if A ∈ An, 1 < r ≤ n20, and x ∈ A with |x| ≤ n3,

Px{|B(TA)− S(τA)| ≥ c r log n} ≤ c r−1/2.

Proof. We will use the following fact that can be easily derived from the strong approx-
imation theorem [1]: there exists a constant c1 such that a SRW St and a BM Bt can
be defined at the origin on the same probability space so that, except for an event of
probability O(n−10),

|Bt − St| ≤ c1 log n, 0 ≤ t ≤ σn,

where σ1
n (resp., σ2

n) is the first time the BM (resp., SRW) gets distance n8 from its
starting point and σn = max{σ1

n, σ
2
n}. For any given n, let (Bt, St) be defined as above.

Let

T ′
A = inf{t ≥ 0 : dist(Bt, ∂Ã) ≤ 2c1 log n}, τ ′A = inf{t ≥ 0 : dist(St, ∂A) ≤ 2c1 log n},
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and let V1, V2, V3 be the events

V1 = { sup
0≤t≤σn

|Bt − St| > c1 log n},

V2 = { sup
T ′

A≤t≤TA

|Bt −BT ′
A
| ≥ r log n}, V3 = { sup

τ ′
A≤t≤τA

|St − Sτ ′
A
| ≥ r log n}.

By the Beurling projection theorems and the strong Markov property, we can see that
P(V2∪V3) ≤ cr−1/2. Also, P(V1) ≤ n−10 ≤ r−1/2. But on the complement of V1∪V2∪V3,
|B(TA)− S(τA)| ≤ (r + c1) log n.

Corollary 3. There exists a c such that if A ∈ An and |x| ≤ n2,

| Ex[log |B(TA)|]− Ex[log |S(τA)|] | ≤ c n−1/3 log n.

For any A ∈ An, let A∗,n be the set

A∗,n = {x ∈ A : gA(x) ≥ n−1/16}.

The choice of 1/16 for the exponent is somewhat arbitrary, and slightly better estimates
might be obtained by choosing a different exponent. However, since we do not expect
the error estimate derived here to be optimal, we will just make this definition.

Corollary 4. If A ∈ An, and x ∈ A∗,n, y ∈ A, then

GA(x, y) = (2/π) gA(x, y) + ky−x +O(n−7/24 log n)

where kx = k0 + (2/π) log |x| − a(x). Note that |kx| ≤ c|x|−3/2.

7.2 Estimates near the boundary

Goal. Estimate GA(x, y) for x, y close to the boundary, but not close to each other.

Let Jx,n = {z ∈ A : |ψA(z)− exp{iθA(x)}| ≥ n−1/16 log2 n}.

Proposition 2. Suppose A ∈ An and x ∈ A \ A∗,n, y ∈ Jx,n. Then,

GA(x, y) = GA(x)
1− |ψA(y)|2

|ψA(y)− eiθA(x)|2
[ 1 +O(

n−1/16 log n

|ψA(y)− eiθA(x)|
) ], y ∈ A∗,n,

GA(x, y) =
(π/2) GA(x) GA(y)

1− cos(θA(x)− θA(y))
[ 1 +O(

n−1/16 log n

|θA(y)− θA(x)|
) ], y ∈ A \ A∗,n.
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There is nothing surprising about the leading term. The following estimates can be
derived easily from (2). If z = ψA(x) = (1− r)eiθ, z′ = ψA(y) ∈ D with |z− z′| ≥ r, then

gA(x, y) = gD(z, z′) =
gD(z) (1− |z′|2)

|z′ − eiθ|2
[1 +O(

r

|z − z′|
)].

Similarly, if z′ = ψA(y) = (1− r′)eiθ′
with r ≥ r′ and |z − z′| ≥ r,

gA(x, y) = gD(z, z′) =
gD(z) gD(z′)

1− cos(θ − θ′)
[1 +O(

r

|θ − θ′|
)].

The proposition essentially says that these relations are valid (at least in the dominant
term) if we replace gA with (π/2)GA.

The hardest part of the proof is a lemma that states that if the SRW starts at a point x
with ψA(x) near ∂D, then, given that the walk does not leave A, ψA(Sj) moves a little
towards the center of the disk before its argument changes too much.

7.3 An estimate for hitting the boundary

In order to prove Proposition 2, we will need a lemma which states roughly that if BM
has a good chance of exiting ∂Ã at a particular collection of segments Ṽ there is also a
good chance that SRW exits A at the corresponding set V in ∂A. Specifically, let A be
any finite, connected subset of Z2, not necessarily simply connected, and let V ⊆ ∂A. For
every y ∈ V , consider the collection of edges containing y, namely Ey := {(x, y) ∈ ∂eA};
let EV = ∪y∈V Ey where `x,y is the perpendicular line segment of length 1intersecting
(x, y) in the midpoint, and define

Ṽ =
⋃

(x,y)∈EV

`x,y.

Let T = TA, τ = τA be as before, and let

f(x) = fA,V (x) = Px{SτA
∈ V }, f̃(x) = f̃Ã,Ṽ (x) = Px{BTA

∈ Ṽ }.

Let ∆ denote the usual Laplacian in C and call a function h harmonic at x if ∆h(x) = 0.
Let L denote the discrete Laplacian

Lh(x) =
1

4

∑
|x−y|=1

(h(y)− h(x))

and call h discrete harmonic at x if Lh(x) = 0. Note that f̃ is harmonic in Ã and f is
discrete harmonic in A. It follows from Taylor series and uniform bounds on derivatives
of harmonic functions that if r > 1 and h is harmonic on {z ∈ C : |z| < r}, then

|Lh(0)| ≤ ‖h‖∞ O(r−3).
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Lemma 1. For every ε > 0 there is a δ > 0, such that if A is a finite connected subset
of Z2, V ⊆ ∂A, and x ∈ A with f̃(x) ≥ ε, then f(x) ≥ δ.

We first note for every n < ∞, there is a δ′ = δ′(n) > 0 such that the lemma holds for
all A of cardinality at most n and all ε > 0. This is because f , f̃ are strictly positive
(assuming V is nonempty) and the collection of connected subsets of Z2 containing the
origin of cardinality at most n is finite. Hence we can choose

δ′(n) = minPx{SτA
= (y, z)},

where the minimum is over all finite connected A of cardinality at most n, over all x ∈ A,
and over all (y, z) ∈ ∂eA.

8 Application to loop-erased random walk

In this section we combine the Green’s function estimate of Theorem 1 with an identity
of S. Fomin, to give an estimate for the probability of a particular event dealing with
loop-erased random walk.

8.1 Hitting probabilities

If x ∈ A, y ∈ ∂A, let HA(x, y) = Px{S(τA) = y} be the probability that SRW starting
at x exits A at y. Then a simple last exit decomposition gives:

Fact 1. HA(x, y) =
1

4

∑
(z,y)∈∂eA

GA(x, z)

Proof.

Px{S(τA) = y} =
∑

(z,y)∈∂eA

∞∑
k=1

Px{Sk = y|Sk−1 = z, τA = k} Px{Sk−1 = z, τA = k}

=
∑

(z,y)∈∂eA

∞∑
k=1

1

4
Px{Sk−1 = z, τA = k} =

1

4

∑
(z,y)∈∂eA

GA(x, z)

Using this we can derive the following from (3):

Corollary 5. If A ∈ An, x ∈ ∂iA, y ∈ ∂A with |θA(x)− θA(y)| ≥ εn, then

HA(x, y) =
(π/2) GA(x) HA(0, y)

1− cos(θA(x)− θA(y))
[1 +O(

ε3
n

|θA(x)− θA(y)|
)]. (4)

Similarly, if x ∈ ∂A, y ∈ ∂A, let HA(x, y) = Px{S(τA) = y|S1 ∈ A} be the probability
that a SRW starting at x takes its first step into A and then exits A at y.

8



Fact 2. HA(x, y) =
1

4

∑
(z,x)∈∂eA

HA(z, y)

Proof.

HA(x, y) =
∑

(z,x)∈∂eA

Px{S(τA) = y|S1 = z} Px{S1 = z} =
1

4

∑
(z,x)∈∂eA

Pz{S(τA) = y}

Combining this with (3) and (4) we get:

Corollary 6. If A ∈ An, x, y ∈ ∂A with |θA(x)− θA(y)| ≥ εn, then

HA(x, y) =
(π/2) HA(0, x) HA(0, y)

1− cos(θA(x)− θA(y))
[1 +O(

ε3
n

|θA(x)− θA(y)|
)]. (5)

8.2 Loop-erased random walk and Fomin’s identity

If S = [S(0), S(1), . . . , S(m)] is a SRW path of length m, let Λ(S) be the loop-erased part
of S, which can be constructed as follows. If S is already self-avoiding, set Λ(S) = S.
Otherwise, let s0 = max{j : S(j) = S(0)}, and for i > 0, let si = max{j : S(j) =
S(sj−1 + 1)}. If we let n = min{i : si = m}, then Λ(S) = [S(s0), S(s1), . . . , S(sn)].
Suppose that A ∈ An and x1, x2, . . . , xN ∈ ∂A. Let S1, S2, . . . , SN be independent SRW
starting at x1, x2, . . . , xN , respectively, and let

τ k
A := min{j > 0 : Sk

j 6∈ A}.

Let Lk = Λ(Sk) be the loop erasure of the path [Sk(0) = xk, Sk(1), . . . , Sk(τ k
A)], and let

E = E(x1, . . . , xN , y1, . . . , yN ;A) be the event that

• Sk(τ k
A) = yk, k = 1, . . . , N , and

• Sk[0, τ k
A] ∩ {L1 ∪ · · · ∪ Lk−1} = ∅, k = 2, . . . , N .

Theorem (Fomin [2, Theorem 7.5]). If HA = [HA(xk, y`)] is the N ×N hitting matrix

HA =

HA(x1, y1) · · · HA(x1, yN)
...

. . .
...

HA(xN , y1) · · · HA(xN , yN)


then

P{E} = det[HA].

Combining Fomin’s Theorem with (5) yields the following:
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Theorem 2. Suppose that A ∈ An and x1, . . . , xN , y1, . . . , yN ∈ ∂A with

δ = min
1≤k,`≤N

{|θA(xk)− θA(y`)|} ≥ εn.

Let ϕA(xk, y`) = [1− cos(θA(xk)− θA(y`))]−1. If E is the event defined as above, then

P{E} = (π/2)N [
N∏

k=1

HA(0, xk)] [
N∏

`=1

HA(0, y`)] det[ΦA] [1 +O(ε3
nδ

−1)]

where ΦA is the N ×N matrix ΦA = [ϕA(xk, y`)].
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and P. Révész, editors, Limit Theorems in Probability and Statistics, pages 9–25,
Budapest, Hungary, 1990. North-Holland.

[2] Sergey Fomin. Loop-erased walks and total positivity. Trans. Amer. Math. Soc.,
353(9):3563–3583, 2001.

10


