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Background and Notation from Complex Analysis

Everything is exclusively two-dimensional. We write w, x, y, z for points in C, and

t, n for time (∈ R).

D := {z ∈ C : |z| < 1} denotes the open unit disk.

f : D → D′ is a conformal transformation if f conformally maps of D onto D′.

Note. f ′(z) 6= 0 for z ∈ D, and f−1 : D′ → D is also a conformal transformation.

inrad(D) = inf{|z| : z ∈ C \ D} and rad(D) := sup{|z| : z ∈ ∂D}

D := {domains D ⊂ C : 0 ∈ D; D s.c., bounded; ∂D Jordan, piecewise analytic}

For D, D′ ∈ D, let T (D, D′) := {conformal transformations f : D → D′}.
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Important Results from Complex Analysis

Riemann Mapping Theorem. Suppose that D, D′ ∈ D. Then there exists

f ∈ T (D, D′) with f(0) = 0 and f ′(0) > 0.

Carathéodory Extension Theorem. Suppose that D, D′ ∈ D. If f ∈ T (D, D′),

then f can be extended to a homeomorphism of D = D ∪ ∂D onto D′.

Koebe One-Quarter Theorem. If f is a conformal mapping of the unit disk with

f(0) = 0, then the image of f contains the open disk of radius |f ′(0)|/4 about the

origin.
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Subsets of Z2

Suppose that A ⊂ Z2. Let A = {A ⊂ Z2 : 0 ∈ A, A finite and s.c.}.

If A ∈ A, let

inrad(A) := inf{|z| : z ∈ Z2 \ A}, rad(A) := sup{|z| : z ∈ A},

and let

An = {A ∈ A : n ≤ inrad(A) ≤ 2n}.

• (outer) boundary: ∂A := {y ∈ Z2 \ A : |y − x| = 1 for some x ∈ A}

• inner boundary: ∂iA := {x ∈ A : |y − x| = 1 for some y ∈ Z2 \ A}
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Ã ⊂ C Associated to A ⊂ Z
2

We associate a domain Ã ⊂ C to each finite A ⊂ Z2.

Put

Ã ∪ ∂Ã =
[

x∈A

Sx,

where Sx is the closed square of side one centred at x whose sides are parallel to

the coordinate axes.

Let Ã denote the open subset of C bounded by ∂Ã containing A.

Note. Ã is s.c. domain iff A is s.c. subset of Z2.

Note. If A ∈ A, then Ã ∈ D.
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Carathéodory Convergence

The notion of convergence of domains in C in the Carathéodory sense is different

than the usual topological convergence of domains.

Let domains En, E ⊂ C.

Let

• fn ∈ T (D, En) with fn(0) = 0, f ′
n(0) > 0,

• f ∈ T (D, E) and f(0) = 0, f ′(0) > 0.

Definition and Theorem. En converges to E in the Carathéodory sense if fn → f

uniformly on every compact subsets of D.
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Let D ⊂ C be simply connected with 0 ∈ D, inrad(D) = 1, and rad(D) = R.

Let D′
N = {x ∈

1

N
Z2 ∩ D :

1

N
Sx ⊆ D}.

Let DN be connected component of D′
N containing the origin.

Let D̃N be the union of scaled squares so that

D̃N ∪ ∂D̃N =
[

x∈DN

1

N
Sx.

Note. D̃N ∈ D.

Theorem.

D̃N
Cara
→ D
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Background from Probability

A probability space (Ω,F , P) is a measure space with total measure P(Ω) = 1.

A random variable is a measurable mapping Y : (Ω,F , P) → (C,B).

X induces a probability measure on (C,B) called the law of Y , LY := P ◦ Y −1,

defined as LY (A) = P({ω ∈ Ω : Y (ω) ∈ A}) for each A ∈ B.

A stochastic process is a collection of random variables {Yi : i ∈ I} for some

indexing set I.
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Simple Random Walk

Let Xi be i.i.d. with P{Xi = e} = 1/4, |e| = 1, and set

Sn = x + X1 + · · · + Xn.

The process {Sn : n ∈ N} is a simple random walk on Z2 starting at x ∈ Z2.

Write S[0, j] = [S(0), S(1), . . . , S(j)] for the set of points visited by the SRW (in

order).

Suppose that A ⊂ Z2.

Let τA = inf{n : Sn 6∈ A} = inf{n : Sn ∈ ∂A}.

We call τA the exit time of random walk from A (or the hitting time of Ac).
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Complex Brownian Motion

The process {Bt, t ≥ 0} is a complex Brownian motion (starting at x ∈ C) if

• P(B0 = x) = 1 and the function t 7→ Bt is continuous (wp1),

• for any t0 < t1 < . . . < tn the increments Bt0 , Bt1 − Bt0 , . . . , Btn−1
− Btn

are independent,

• for any s, t ≥ 0, the increment Bt+s − Bs ∼ N (0, t) is normally distributed.

Write B[0, T ] = {z ∈ C : Bs = z some 0 ≤ s ≤ T}.

Suppose that D ⊂ C.

Let TD = inf{t : Bt 6∈ D}.

We call TD the exit time of Brownian motion from D (or the hitting time of Dc).
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Discrete Hitting Measure

Suppose that x ∈ A. For y ∈ Z2, let

HA(x, y) = Px{S(τA) = y}

be the hitting probability of y from x.

HA(x, ·) is a probability measure on Z2 concentrated on ∂A.

HA(x, y) is the discrete analogue of the Poisson kernel.

If V ⊆ ∂A, then Px{S(τA) ∈ V } =
X

y∈V

HA(x, y).
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Poisson Kernel

Suppose D ∈ D.

Write Pz{BTD
∈ dy} for harmonic measure in D from z ∈ D.

Its density wrt arclength is HD(z, y), the Poisson kernel.

i.e., Pz{BTD
∈ dy} = HD(z, y) |dy|

If V ⊆ ∂D, then Pz{B(TD) ∈ V } =

Z

V
HD(z, y) |dy|.

Ex. HD(z, y) =
1

2π

1 − |z|2

|y − z|2
for z ∈ D, |y| = 1.
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Wiener Measure

Let µD(z) be Wiener measure, the measure on curves starting at z ending at ∂D.

It is well-known that Wiener measure is the law of BM {Bt, 0 ≤ t ≤ TD}.

We can write µD(z) =

Z

∂D
µD(z, y) |dy| where µD(z, y) is the measure on curves

starting at z ∈ D ending at y ∈ ∂D.

µD(z, y) is a finite measure with mass HD(z, y).

The probability measure

µ#
D(z, y) =

µD(z, y)

HD(z, y)

is the law of BM starting at z conditioned to exit D at y.
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Conformal Invariance

Paul Lévy first showed that BM is conformally invariant.

Let D, D′ ∈ D and let f ∈ T (D, D′).

Then

• f ◦ µD(z) = µD′ (f(z))

• HD(z, y) = |f ′(y)|HD′ (f(z), f(y))

• f ◦ µD(z, y) = |f ′(y)|µD′ (f(z), f(y))

where B′ is another Brownian motion.

i.e., the conformal image of Brownian motion in D is a time-change of another

Brownian motion stopped on exiting D′.
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Excursions

An excursion in D is a curve γ : [0, tγ ] → C with

• 0 < tγ < ∞,

• γ(0) ∈ ∂D,

• γ(tγ) ∈ ∂D, and

• γ(0, tγ) ⊂ D.

If γ(0) = x and γ(tγ) = y, then γ is called an excursion from x to y in D.
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Excursion Poisson Kernel

For x, y ∈ ∂D, the excursion Poisson kernel is

H∂D(x, y) = lim
ε→0+

1

ε
HD(x + εnx, y)

where nx is the (inward pointing) unit normal vector to D at x.

i.e., the excursion Poisson kernel is the normal derivative of the (analytically

continued) Poisson kernel.

Ex. If x = eiθ, y = eiθ′

∈ ∂D, y 6= x, then

H∂D(x, y) =
1

π

1

|y − x|2
=

1

2π

1

1 − cos(θ′ − θ)
.
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Excursion Measure

Let µ∂D(x, y) be the measure on excursions from x to y in D.

Proposition.

µ∂D(x, y) = lim
ε→0+

1

ε
µD(x + εnx, y)

µ∂D(x, y) is a finite measure with mass H∂D(x, y).

Think of H∂D(x, y) as “ Px{excursion γ ends at y} ”.

µ#
∂D(x, y) :=

µ∂D(x, y)

H∂D(x, y)

is excursion measure normalized to be a probability measure.
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Excursion Measure in D

Let

µ∂D =

Z

∂D

Z

∂D
µ∂D(x, y) |dx| |dy|

be excursion measure on excursion in D.

Note that µ∂D is an infinite, but σ-finite, measure.

Suppose that Γ, Υ ⊂ ∂D with Γ ∩ Υ 6= ∅.

Let µ∂D(Γ, Υ) be µ∂D restricted to curves γ from Γ to Υ.
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Conformal Invariance

Let D, D′ ∈ D, let f ∈ T (D, D′), and suppose that ∂D, ∂D′ are locally analytic

at x, y, and f(x), f(y), resp.

Then

• H∂D(x, y) = |f ′(x)| |f ′(y)|H∂D′(f(x), f(y))

• f ◦ µ∂D(x, y) = |f ′(x)| |f ′(y)|µ∂D′ (f(x), f(y))

• f ◦ µ∂D = µ∂D′
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Green’s Functions for C

For x, y ∈ D, let

gD(x, y) = log

˛

˛

˛

˛

yx − 1

y − x

˛

˛

˛

˛

denote the standard Green’s function in D.

For D ∈ D, f ∈ T (D, D) with f(0) = 0, f ′(0) > 0, the Green’s function for D is

gD(x, y) = gD(f(x), f(y))

for x, y ∈ D.

Fact. For x ∈ D, x 6= 0,

gD(x) := gD(0, x) = gD(x, 0) = Ex[log |B(TD)|] − log |x|.
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Green’s Functions for Z2

Suppose A ⊂ Z2. For x, y ∈ A, let

GA(x, y) := Ex[

τA−1
X

j=0

1{Sj = y}]

denote the Green’s function (for simple random walk) on A.

This is the expected number of visits to y starting at x before exiting A.

Fact. For x ∈ A,

GA(x) := GA(x, 0) = GA(0, x) = Ex[a(S(τA))] − a(x).

a is the potential kernel for SRW: a(x) = 2
π

log |x| + k0 + o(|x|−3/2) as |x| → ∞

with k0 = (2ς + ln 8)/π and ς is Euler’s constant.

Note. GA(x) =
2

π
Ex[log |S(τA)| − log |x|]+ error
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Continuous and Discrete Beurling Estimates

Generalized Beurling Projection Theorem. There is a constant c < ∞ such that if

γ : [0, 1] → C is a curve with γ(0) = 0, |γ(1)| = 1, γ(0, 1) ⊂ D, and x ∈ D, then

Px{B[0, TD] ∩ γ[0, 1] = ∅} ≤ c |x|1/2.

Beurling Estimate. There is a constant c < ∞ such that if x ∈ Ã, then for all

r > 0,

Px{|B(TA) − x| > r dist(x, ∂Ã)} ≤ c r−1/2.

Discrete Beurling Estimate There is a constant c < ∞ such that if x ∈ A, then for

all r > 0,

Px{|S(τA) − x| > r dist(x, ∂A)} ≤ c r−1/2.
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Consequences of the Beurling Estimate

Suppose that A ∈ An with associated domain Ã ⊂ C.

Let fA = fÃ ∈ T (Ã, D) with fA(0) = 0, f ′
A(0) > 0.

Let gA = gÃ be the Green’s function.

Fact. fA(x) = exp{−gA(x) + iθA(x)}

If |x| ≥ n/4, then

gA(x) ≤ c n−1/2 dist(x, ∂Ã)1/2.

If x ∈ ∂iA, then gA(x) ≤ cn−1/2; hence

fA(x) = exp{iθA(x)} + O(n−1/2).

If A ∈ An and |x| ≥ n/4, then

GA(x) ≤ c n−1/2 dist(x, ∂A)1/2.

If x ∈ ∂iA, then GA(x) ≤ cn−1/2.
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Green’s Function Estimates Away from the Boundary

Let DN be the 1/N scale discrete approximation to D and set

2NDN := AN ∈ An with associated domain ˜(2NDN ) = ÃN .

For AN ∈ AN , let

A∗
N = {x ∈ AN : gAN

(x) ≥ N−1/16}.

Let x ∈ DN be such that 2Nx ∈ A∗
N .

Let y ∈ DN with 2Ny ∈ AN and |x − y| ≥ N−29/36.

Then,

GDN
(x, y) =

2

π
gDN

(x, y) + O(N−7/24 log N).
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An Estimate for Hitting the Boundary

If BM has a good chance of exiting Ã at some subset of Ṽ ⊆ ∂Ã, then there is

also a good chance that SRW exits A at the corresponding set V ⊆ ∂A.

Let V ⊆ ∂A with associated set Ṽ ⊆ ∂Ã.

Let Px{S(τA) ∈ V } =
X

y∈V

HA(x, y) =: h(x).

Let Pz{B(TD) ∈ V } =

Z

V
HD(z, y) |dy| =: h̃(x).

Proposition. For every ε > 0, there exists a δ > 0 such that if A ∈ An, V ⊆ ∂A,

and x ∈ A with h(x) > ε, then h̃(x) > δ.
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Hitting Probability Estimates

We derive from (messy) Green’s function estimates the following hitting probability

estimates. There is a difference whether we start in A or in ∂A.

If A ∈ An, x ∈ ∂iA, y ∈ ∂A with |θA(x) − θA(y)| ≥ εn, then

HA(x, y) =
(π/2) GA(x) HA(0, y)

1 − cos(θA(x) − θA(y))
[1 + O(

ε3
n

|θA(x) − θA(y)|
)].

Similarly, if x ∈ ∂A, y ∈ ∂A, let HA(x, y) be the probability that a simple random

walk starting at x takes its first step into A and then exits A at y.

If A ∈ An, x, y ∈ ∂A with |θA(x) − θA(y)| ≥ εn, then

HA(x, y) =
(π/2) HA(0, x) HA(0, y)

1 − cos(θA(x) − θA(y))
[1 + O(

ε3
n

|θA(x) − θA(y)|
)].
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Fomin’s Identity, I

Suppose that A ∈ An and x1, x2, . . . , xN ∈ ∂A.

Let S1, S2, . . . , SN be independent simple random walks starting at

x1, x2, . . . , xN , respectively.

Set τk
A := inf{j > 0 : Sk

j 6∈ A}.

Let Lk = Λ(Sk) be the loop erasure of the path [Sk(0) = xk, Sk(1), . . . , Sk(τk
A)].

Let E = E(x1, . . . , xN , y1, . . . , yN ; A) be the event

• Sk(τk
A) = yk, k = 1, . . . , N , and

• Sk[0, τk
A] ∩ {L1 ∪ · · · ∪ Lk−1} = ∅, k = 2, . . . , N .
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Fomin’s Identity, II

Theorem (Fomin).

P{E} = det[HA],

where HA = [HA(xk, yℓ)] is the N × N hitting matrix

HA =

2

6

6

6

4

HA(x1, y1) · · · HA(x1, yN )

..

.
. . .

..

.

HA(xN , y1) · · · HA(xN , yN )

3

7

7

7

5
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Consequences

Theorem. Suppose that A ∈ An and x1, . . . , xN , y1, . . . , yN ∈ ∂A with

δ = min
1≤k,ℓ≤N

{|θA(xk) − θA(yℓ)|} ≥ εn.

Let ϕA(xk, yℓ) = [1 − cos(θA(xk) − θA(yℓ))]−1. If E is the event defined as

before, then

P{E} = (π/2)N [
N

Y

k=1

HA(0, xk)] [
N

Y

ℓ=1

HA(0, yℓ)] det[ΦA] [1 + O(ε3
nδ−1)]

where ΦA is the N × N matrix ΦA = [ϕA(xk, yℓ)].

Note.

ϕA(xk, yℓ) = 2π H∂D(eθA(xk), eθA(yℓ))
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Scaling Limit

Suppose that D ⊆ C is a simply connected domain; ∂1 and ∂2 are disjoint

non-trivial subarcs of ∂D; DN is the N -scale approximate to D; D̃N is the

associated domain; ˜∂N,1 and ˜∂N,2 are the associated subarcs.

Then, as N → ∞,
X

x1,...,xk∈∂N
1

X

y1,...,yk∈∂N
2

det[H∂DN (xj , yj′ )]1≤j,j′≤k

converges to a conformally invariant limit. In fact, this limit is
Z

(∂1)k

Z

(∂2)k

det[H∂D(xj , yj′)]1≤j,j′≤k |dx1| · · · |dxk| |dy1| · · · |dyk|.

Furthermore, the measure on simple random walk excursions µRW
D,N (∂N,1, ∂N,2)

coverges to the measure on excursions µ∂DN
( ˜∂N,1, ˜∂N,2).

And, the measure on excursions µ∂DN
( ˜∂N,1, ˜∂N,2) converges to µ∂D(∂1, ∂2).
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