Excursion Measure in the Plane

Michael Kozdron Duke University & Cornell University

December 8, 2003

http://www.math.cornell.edu/~kozdron/

Background and Notation from Complex Analysis

Everything is exclusively two-dimensional. We write w, x, y, z for points in \mathbb{C} , and t, n for time ($\in \mathbb{R}$).

 $\mathbb{D} := \{z \in \mathbb{C} : |z| < 1\}$ denotes the open unit disk.

 $f: D \to D'$ is a conformal transformation if f conformally maps of D onto D'.

Note. $f'(z) \neq 0$ for $z \in D$, and $f^{-1}: D' \to D$ is also a conformal transformation.

 $\operatorname{inrad}(D) = \inf\{|z| : z \in \mathbb{C} \setminus D\} \text{ and } \operatorname{rad}(D) := \sup\{|z| : z \in \partial D\}$

 $\mathcal{D} := \{ \text{domains } D \subset \mathbb{C} : 0 \in D; \ D \text{ s.c., bounded}; \ \partial D \text{ Jordan, piecewise analytic} \}$

For $D, D' \in \mathcal{D}$, let $\mathcal{T}(D, D') := \{ \text{conformal transformations } f : D \to D' \}.$

Important Results from Complex Analysis

Riemann Mapping Theorem. Suppose that $D, D' \in \mathcal{D}$. Then there exists $f \in \mathcal{T}(D, D')$ with f(0) = 0 and f'(0) > 0.

Carathéodory Extension Theorem. Suppose that $D, D' \in \mathcal{D}$. If $f \in \mathcal{T}(D, D')$, then f can be extended to a homeomorphism of $\overline{D} = D \cup \partial D$ onto $\overline{D'}$.

Koebe One-Quarter Theorem. If f is a conformal mapping of the unit disk with f(0) = 0, then the image of f contains the open disk of radius |f'(0)|/4 about the origin.

Subsets of \mathbb{Z}^2

Suppose that $A \subset \mathbb{Z}^2$. Let $\mathcal{A} = \{A \subset \mathbb{Z}^2 : 0 \in A, A \text{ finite and s.c.}\}.$

If $A \in \mathcal{A}$, let

$$\operatorname{inrad}(A) := \inf\{|z| : z \in \mathbb{Z}^2 \setminus A\}, \quad \operatorname{rad}(A) := \sup\{|z| : z \in A\},\$$

and let

$$\mathcal{A}^n = \{ A \in \mathcal{A} : n \le \operatorname{inrad}(A) \le 2n \}.$$

- (outer) boundary: $\partial A := \{y \in \mathbb{Z}^2 \setminus A : |y x| = 1 \text{ for some } x \in A\}$
- inner boundary: $\partial_i A := \{x \in A : |y x| = 1 \text{ for some } y \in \mathbb{Z}^2 \setminus A\}$

$ilde{A} \subset \mathbb{C}$ Associated to $A \subset \mathbb{Z}^2$

We associate a domain $\tilde{A} \subset \mathbb{C}$ to each finite $A \subset \mathbb{Z}^2$.

Put

$$\tilde{A} \cup \partial \tilde{A} = \bigcup_{x \in A} \mathcal{S}_x,$$

where S_x is the closed square of side one centred at x whose sides are parallel to the coordinate axes.

Let \tilde{A} denote the open subset of \mathbb{C} bounded by $\partial \tilde{A}$ containing A.

Note. \tilde{A} is s.c. domain iff A is s.c. subset of \mathbb{Z}^2 .

Note. If $A \in \mathcal{A}$, then $\tilde{A} \in \mathcal{D}$.

Carathéodory Convergence

The notion of convergence of domains in \mathbb{C} in the Carathéodory sense is different than the usual topological convergence of domains.

Let domains $E_n, E \subset \mathbb{C}$.

Let

- $f_n \in \mathcal{T}(\mathbb{D}, E_n)$ with $f_n(0) = 0$, $f'_n(0) > 0$,
- $f \in \mathcal{T}(\mathbb{D}, E)$ and f(0) = 0, f'(0) > 0.

Definition and Theorem. E_n converges to E in the **Carathéodory sense** if $f_n \to f$ uniformly on every compact subsets of \mathbb{D} .

Let $D \subset \mathbb{C}$ be simply connected with $0 \in D$, inrad(D) = 1, and rad(D) = R.

Let
$$D'_N = \{x \in \frac{1}{N} \mathbb{Z}^2 \cap D : \frac{1}{N} \mathcal{S}_x \subseteq D\}.$$

Let D_N be connected component of D'_N containing the origin.

Let \tilde{D}_N be the union of scaled squares so that

$$\tilde{D}_N \cup \partial \tilde{D}_N = \bigcup_{x \in D_N} \frac{1}{N} \mathcal{S}_x.$$

Note. $\tilde{D}_N \in \mathcal{D}$.

Theorem.

$$\tilde{D}_N \xrightarrow{\operatorname{Cara}} D$$

Background from Probability

A probability space $(\Omega, \mathcal{F}, \mathbb{P})$ is a measure space with total measure $\mathbb{P}(\Omega) = 1$.

A random variable is a measurable mapping $Y : (\Omega, \mathcal{F}, \mathbb{P}) \to (\mathbb{C}, \mathcal{B})$.

X induces a probability measure on $(\mathbb{C}, \mathcal{B})$ called the **law** of Y, $\mathcal{L}_Y := \mathbb{P} \circ Y^{-1}$, defined as $\mathcal{L}_Y(A) = \mathbb{P}(\{\omega \in \Omega : Y(\omega) \in A\})$ for each $A \in \mathcal{B}$.

A stochastic process is a collection of random variables $\{Y_i : i \in I\}$ for some indexing set I.

Simple Random Walk

Let X_i be i.i.d. with $\mathbb{P}\{X_i = e\} = 1/4$, |e| = 1, and set

$$S_n = x + X_1 + \dots + X_n.$$

The process $\{S_n : n \in \mathbb{N}\}\$ is a simple random walk on \mathbb{Z}^2 starting at $x \in \mathbb{Z}^2$.

Write $S[0, j] = [S(0), S(1), \dots, S(j)]$ for the set of points visited by the SRW (in order).

Suppose that $A \subset \mathbb{Z}^2$.

Let $\tau_A = \inf\{n : S_n \notin A\} = \inf\{n : S_n \in \partial A\}.$

We call τ_A the exit time of random walk from A (or the hitting time of A^c).

Complex Brownian Motion

The process $\{B_t, t \ge 0\}$ is a complex Brownian motion (starting at $x \in \mathbb{C}$) if

- $\mathbb{P}(B_0 = x) = 1$ and the function $t \mapsto B_t$ is continuous (wp1),
- for any $t_0 < t_1 < \ldots < t_n$ the increments $B_{t_0}, B_{t_1} B_{t_0}, \ldots, B_{t_{n-1}} B_{t_n}$ are independent,
- for any s, $t \ge 0$, the increment $B_{t+s} B_s \sim \mathcal{N}(0, t)$ is normally distributed.

Write $B[0,T] = \{z \in \mathbb{C} : B_s = z \text{ some } 0 \le s \le T\}.$

Suppose that $D \subset \mathbb{C}$.

Let $T_D = \inf\{t : B_t \notin D\}.$

We call T_D the exit time of Brownian motion from D (or the hitting time of D^c).

Discrete Hitting Measure

Suppose that $x \in A$. For $y \in \mathbb{Z}^2$, let

$$H_A(x,y) = \mathbb{P}^x \{ S(\tau_A) = y \}$$

be the hitting probability of y from x.

 $H_A(x, \cdot)$ is a probability measure on \mathbb{Z}^2 concentrated on ∂A .

 $H_A(x, y)$ is the discrete analogue of the Poisson kernel.

If
$$V \subseteq \partial A$$
, then $\mathbb{P}^x \{ S(\tau_A) \in V \} = \sum_{y \in V} H_A(x, y).$

Poisson Kernel

Suppose $D \in \mathcal{D}$.

Write $\mathbb{P}^{z} \{ B_{T_{D}} \in dy \}$ for harmonic measure in D from $z \in D$.

Its density wrt arclength is $H_D(z, y)$, the **Poisson kernel**.

i.e.,
$$\mathbb{P}^{z} \{ B_{T_D} \in \mathrm{d}y \} = H_D(z, y) |\mathrm{d}y|$$

If
$$V \subseteq \partial D$$
, then $\mathbb{P}^{z} \{ B(T_{D}) \in V \} = \int_{V} H_{D}(z, y) |dy|.$

Ex.
$$H_{\mathbb{D}}(z,y) = \frac{1}{2\pi} \frac{1-|z|^2}{|y-z|^2}$$
 for $z \in \mathbb{D}$, $|y| = 1$.

Wiener Measure

Let $\mu_D(z)$ be Wiener measure, the measure on curves starting at z ending at ∂D .

It is well-known that Wiener measure is the law of BM $\{B_t, 0 \le t \le T_D\}$.

We can write $\mu_D(z) = \int_{\partial D} \mu_D(z, y) |dy|$ where $\mu_D(z, y)$ is the measure on curves starting at $z \in D$ ending at $y \in \partial D$.

 $\mu_D(z,y)$ is a finite measure with mass $H_D(z,y)$.

The probability measure

$$\mu_D^{\#}(z,y) = \frac{\mu_D(z,y)}{H_D(z,y)}$$

is the law of BM starting at z conditioned to exit D at y.

Conformal Invariance

Paul Lévy first showed that BM is conformally invariant.

Let $D, D' \in \mathcal{D}$ and let $f \in \mathcal{T}(D, D')$.

Then

- $f \circ \mu_D(z) = \mu_{D'}(f(z))$
- $H_D(z,y) = |f'(y)| H_{D'}(f(z), f(y))$
- $f \circ \mu_D(z, y) = |f'(y)| \, \mu_{D'}(f(z), f(y))$

where B' is another Brownian motion.

i.e., the conformal image of Brownian motion in D is a time-change of another Brownian motion stopped on exiting D'.

Excursions

An excursion in D is a curve $\gamma: [0, t_{\gamma}] \to \mathbb{C}$ with

- $0 < t_{\gamma} < \infty$,
- $\gamma(0) \in \partial D$,
- $\gamma(t_{\gamma}) \in \partial D$, and
- $\gamma(0, t_{\gamma}) \subset D.$

If $\gamma(0) = x$ and $\gamma(t_{\gamma}) = y$, then γ is called an excursion from x to y in D.

Excursion Poisson Kernel

For $x, y \in \partial D$, the excursion Poisson kernel is

$$H_{\partial D}(x,y) = \lim_{\varepsilon \to 0+} \frac{1}{\varepsilon} H_D(x + \varepsilon \mathbf{n}_x, y)$$

where \mathbf{n}_x is the (inward pointing) unit normal vector to D at x.

i.e., the excursion Poisson kernel is the normal derivative of the (analytically continued) Poisson kernel.

Ex. If $x = e^{i\theta}$, $y = e^{i\theta'} \in \partial \mathbb{D}$, $y \neq x$, then $H_{\partial \mathbb{D}}(x, y) = \frac{1}{\pi} \frac{1}{|y - x|^2} = \frac{1}{2\pi} \frac{1}{1 - \cos(\theta' - \theta)}.$

Excursion Measure

Let $\mu_{\partial D}(x, y)$ be the measure on excursions from x to y in D.

Proposition.

$$\mu_{\partial D}(x,y) = \lim_{\varepsilon \to 0+} \frac{1}{\varepsilon} \mu_D(x + \varepsilon \mathbf{n}_x, y)$$

 $\mu_{\partial D}(x,y)$ is a finite measure with mass $H_{\partial D}(x,y)$.

Think of $H_{\partial D}(x, y)$ as " \mathbb{P}^x {excursion γ ends at y}".

$$\mu_{\partial D}^{\#}(x,y) := \frac{\mu_{\partial D}(x,y)}{H_{\partial D}(x,y)}$$

is excursion measure normalized to be a probability measure.

Excursion Measure in D

Let

$$\mu_{\partial D} = \int_{\partial D} \int_{\partial D} \mu_{\partial D}(x, y) \left| \mathrm{d}x \right| \left| \mathrm{d}y \right|$$

be excursion measure on excursion in D.

Note that $\mu_{\partial D}$ is an infinite, but σ -finite, measure.

Suppose that Γ , $\Upsilon \subset \partial D$ with $\Gamma \cap \Upsilon \neq \emptyset$.

Let $\mu_{\partial D}(\Gamma, \Upsilon)$ be $\mu_{\partial D}$ restricted to curves γ from Γ to Υ .

Conformal Invariance

Let $D, D' \in \mathcal{D}$, let $f \in \mathcal{T}(D, D')$, and suppose that $\partial D, \partial D'$ are locally analytic at x, y, and f(x), f(y), resp.

Then

- $H_{\partial D}(x,y) = |f'(x)| |f'(y)| H_{\partial D'}(f(x), f(y))$
- $f \circ \mu_{\partial D}(x, y) = |f'(x)| |f'(y)| \mu_{\partial D'}(f(x), f(y))$

• $f \circ \mu_{\partial D} = \mu_{\partial D'}$

Green's Functions for $\mathbb C$

For $x, y \in \mathbb{D}$, let

$$g_{\mathbb{D}}(x,y) = \log \left| \frac{\overline{y}x - 1}{y - x} \right|$$

denote the standard Green's function in \mathbb{D} .

For $D \in \mathcal{D}$, $f \in \mathcal{T}(D, \mathbb{D})$ with f(0) = 0, f'(0) > 0, the Green's function for D is

 $g_D(x,y) = g_{\mathbb{D}}(f(x), f(y))$

for $x, y \in D$.

Fact. For $x \in D$, $x \neq 0$,

 $g_D(x) := g_D(0, x) = g_D(x, 0) = \mathbb{E}^x [\log |B(T_D)|] - \log |x|.$

Green's Functions for \mathbb{Z}^2

Suppose $A \subset \mathbb{Z}^2$. For $x, y \in A$, let

$$G_A(x,y) := \mathbb{E}^x \left[\sum_{j=0}^{\tau_A - 1} \mathbb{1}\{S_j = y\} \right]$$

denote the Green's function (for simple random walk) on A.

This is the expected number of visits to y starting at x before exiting A.

Fact. For $x \in A$,

$$G_A(x) := G_A(x, 0) = G_A(0, x) = \mathbb{E}^x [a(S(\tau_A))] - a(x) + C_A(x) = C_A(x) + C_$$

a is the potential kernel for SRW: $a(x) = \frac{2}{\pi} \log |x| + k_0 + o(|x|^{-3/2})$ as $|x| \to \infty$ with $k_0 = (2\varsigma + \ln 8)/\pi$ and ς is Euler's constant.

Note.
$$G_A(x) = \frac{2}{\pi} \mathbb{E}^x [\log |S(\tau_A)| - \log |x|] + \text{error}$$

Continuous and Discrete Beurling Estimates

Generalized Beurling Projection Theorem. There is a constant $c < \infty$ such that if $\gamma : [0,1] \to \mathbb{C}$ is a curve with $\gamma(0) = 0$, $|\gamma(1)| = 1$, $\gamma(0,1) \subset \mathbb{D}$, and $x \in \mathbb{D}$, then

 $\mathbb{P}^x \{ B[0, T_{\mathbb{D}}] \cap \gamma[0, 1] = \emptyset \} \le c \, |x|^{1/2}.$

Beurling Estimate. There is a constant $c < \infty$ such that if $x \in \tilde{A}$, then for all r > 0,

$$\mathbb{P}^x\{|B(T_A) - x| > r \operatorname{dist}(x, \partial \tilde{A})\} \le c r^{-1/2}.$$

Discrete Beurling Estimate There is a constant $c < \infty$ such that if $x \in A$, then for all r > 0,

$$\mathbb{P}^x\{|S(\tau_A) - x| > r \operatorname{dist}(x, \partial A)\} \le c r^{-1/2}.$$

Consequences of the Beurling Estimate

Suppose that $A \in \mathcal{A}^n$ with associated domain $\tilde{A} \subset \mathbb{C}$.

Let
$$f_A = f_{\tilde{A}} \in \mathcal{T}(\tilde{A}, \mathbb{D})$$
 with $f_A(0) = 0$, $f'_A(0) > 0$.

Let $g_A = g_{\tilde{A}}$ be the Green's function.

Fact.
$$f_A(x) = \exp\{-g_A(x) + i\theta_A(x)\}$$

If $|x| \ge n/4$, then

$$g_A(x) \le c n^{-1/2} \operatorname{dist}(x, \partial \tilde{A})^{1/2}.$$

If $x \in \partial_i A$, then $g_A(x) \leq cn^{-1/2}$; hence

$$f_A(x) = \exp\{i\theta_A(x)\} + O(n^{-1/2}).$$

If $A \in \mathcal{A}^n$ and $|x| \ge n/4$, then

$$G_A(x) \le c n^{-1/2} \operatorname{dist}(x, \partial A)^{1/2}.$$

If $x \in \partial_i A$, then $G_A(x) \leq cn^{-1/2}$.

Green's Function Estimates Away from the Boundary

Let D_N be the 1/N scale discrete approximation to D and set $2ND_N := A_N \in \mathcal{A}^n$ with associated domain $(2ND_N) = \tilde{A}_N$.

For $A_N \in \mathcal{A}^N$, let

$$A_N^* = \{ x \in A_N : g_{A_N}(x) \ge N^{-1/16} \}.$$

Let $x \in D_N$ be such that $2Nx \in A_N^*$.

Let $y \in D_N$ with $2Ny \in A_N$ and $|x - y| \ge N^{-29/36}$.

Then,

$$G_{D_N}(x,y) = \frac{2}{\pi} g_{D_N}(x,y) + O(N^{-7/24} \log N).$$

An Estimate for Hitting the Boundary

If BM has a good chance of exiting \tilde{A} at some subset of $\tilde{V} \subseteq \partial \tilde{A}$, then there is also a good chance that SRW exits A at the corresponding set $V \subseteq \partial A$.

Let $V \subseteq \partial A$ with associated set $\tilde{V} \subseteq \partial \tilde{A}$.

Let
$$\mathbb{P}^x \{ S(\tau_A) \in V \} = \sum_{y \in V} H_A(x, y) =: h(x).$$

Let
$$\mathbb{P}^{z} \{ B(T_D) \in V \} = \int_{V} H_D(z, y) |dy| =: \tilde{h}(x).$$

Proposition. For every $\varepsilon > 0$, there exists a $\delta > 0$ such that if $A \in \mathcal{A}^n$, $V \subseteq \partial A$, and $x \in A$ with $h(x) > \varepsilon$, then $\tilde{h}(x) > \delta$.

Hitting Probability Estimates

We derive from (messy) Green's function estimates the following hitting probability estimates. There is a difference whether we start in A or in ∂A .

If $A \in \mathcal{A}^n$, $x \in \partial_i A$, $y \in \partial A$ with $|\theta_A(x) - \theta_A(y)| \ge \varepsilon_n$, then $H_A(x,y) = \frac{(\pi/2) \ G_A(x) \ H_A(0,y)}{1 - \cos(\theta_A(x) - \theta_A(y))} \ [1 + O(\frac{\varepsilon_n^3}{|\theta_A(x) - \theta_A(y)|})].$

Similarly, if $x \in \partial A$, $y \in \partial A$, let $H_A(x, y)$ be the probability that a simple random walk starting at x takes its first step into A and then exits A at y.

If
$$A \in \mathcal{A}^n$$
, $x, y \in \partial A$ with $|\theta_A(x) - \theta_A(y)| \ge \varepsilon_n$, then
$$H_A(x,y) = \frac{(\pi/2) H_A(0,x) H_A(0,y)}{1 - \cos(\theta_A(x) - \theta_A(y))} \left[1 + O(\frac{\varepsilon_n^3}{|\theta_A(x) - \theta_A(y)|})\right].$$

Fomin's Identity, I

Suppose that $A \in \mathcal{A}^n$ and $x^1, x^2, \ldots, x^N \in \partial A$.

Let S^1, S^2, \ldots, S^N be independent simple random walks starting at x^1, x^2, \ldots, x^N , respectively.

Set
$$\tau_A^k := \inf\{j > 0 : S_j^k \notin A\}.$$

Let $L^k = \Lambda(S^k)$ be the loop erasure of the path $[S^k(0) = x^k, S^k(1), \dots, S^k(\tau_A^k)]$.

Let $\mathcal{E}=\mathcal{E}(x^1,\ldots,x^N,y^1,\ldots,y^N;A)$ be the event

- $\bullet \ S^k(\tau^k_A) = y^k, \quad k = 1, \dots, N \text{, and}$
- $S^k[0,\tau_A^k] \cap \{L^1 \cup \cdots \cup L^{k-1}\} = \emptyset, \quad k = 2, \dots, N.$

Fomin's Identity, II

Theorem (Fomin).

 $\mathbb{P}\{\mathcal{E}\} = \det[\mathbf{H}_A],$

where $\mathbf{H}_A = [H_A(x^k, y^\ell)]$ is the N imes N hitting matrix

$$\mathbf{H}_A = \begin{bmatrix} H_A(x^1, y^1) & \cdots & H_A(x^1, y^N) \\ \vdots & \ddots & \vdots \\ H_A(x^N, y^1) & \cdots & H_A(x^N, y^N) \end{bmatrix}$$

Consequences

Theorem. Suppose that $A \in \mathcal{A}^n$ and $x^1, \ldots, x^N, y^1, \ldots, y^N \in \partial A$ with

$$\delta = \min_{1 \le k, \ell \le N} \{ |\theta_A(x^k) - \theta_A(y^\ell)| \} \ge \varepsilon_n.$$

Let $\varphi_A(x^k, y^\ell) = [1 - \cos(\theta_A(x^k) - \theta_A(y^\ell))]^{-1}$. If \mathcal{E} is the event defined as before, then

$$\mathbb{P}\{\mathcal{E}\} = (\pi/2)^N \left[\prod_{k=1}^N H_A(0, x^k)\right] \left[\prod_{\ell=1}^N H_A(0, y^\ell)\right] \det[\Phi_A] \left[1 + O(\varepsilon_n^3 \delta^{-1})\right]$$

where Φ_A is the $N \times N$ matrix $\Phi_A = [\varphi_A(x^k, y^\ell)].$

Note.

$$\varphi_A(x^k, y^\ell) = 2\pi H_{\partial \mathbb{D}}(e^{\theta_A(x^k)}, e^{\theta_A(y^\ell)})$$

Scaling Limit

Suppose that $D \subseteq \mathbb{C}$ is a simply connected domain; ∂_1 and ∂_2 are disjoint non-trivial subarcs of ∂D ; D_N is the N-scale approximate to D; $\tilde{D_N}$ is the associated domain; $\partial_{N,1}$ and $\partial_{N,2}$ are the associated subarcs.

Then, as $N
ightarrow \infty$,

$$\sum_{x^1,\ldots,x^k\in\partial_1^N}\sum_{y^1,\ldots,y^k\in\partial_2^N}\det[H_{\partial D^N}(x^j,{y^j}')]_{1\leq j,j'\leq k}$$

converges to a conformally invariant limit. In fact, this limit is

$$\int_{(\partial_1)^k} \int_{(\partial_2)^k} \det[H_{\partial D}(x^j, y^{j'})]_{1 \le j, j' \le k} |\mathrm{d}x^1| \cdots |\mathrm{d}x^k| |\mathrm{d}y^1| \cdots |\mathrm{d}y^k|.$$

Furthermore, the measure on simple random walk excursions $\mu_{D,N}^{\text{RW}}(\partial_{N,1},\partial_{N,2})$ coverges to the measure on excursions $\mu_{\partial D_N}(\tilde{\partial_{N,1}},\tilde{\partial_{N,2}})$.

And, the measure on excursions $\mu_{\partial D_N}(\tilde{\partial_{N,1}}, \tilde{\partial_{N,2}})$ converges to $\mu_{\partial D}(\partial_1, \partial_2)$.