Excursion Measure in the Plane

Michael Kozdron
Duke University \& Cornell University

December 8, 2003
http://www.math.cornell.edu/~kozdron/

Background and Notation from Complex Analysis

Everything is exclusively two-dimensional. We write w, x, y, z for points in \mathbb{C}, and t, n for time $(\in \mathbb{R})$.
$\mathbb{D}:=\{z \in \mathbb{C}:|z|<1\}$ denotes the open unit disk.
$f: D \rightarrow D^{\prime}$ is a conformal transformation if f conformally maps of D onto D^{\prime}.

Note. $f^{\prime}(z) \neq 0$ for $z \in D$, and $f^{-1}: D^{\prime} \rightarrow D$ is also a conformal transformation.
$\operatorname{inrad}(D)=\inf \{|z|: z \in \mathbb{C} \backslash D\} \quad$ and $\quad \operatorname{rad}(D):=\sup \{|z|: z \in \partial D\}$
$\mathcal{D}:=\{$ domains $D \subset \mathbb{C}: 0 \in D ; D$ s.c., bounded; ∂D Jordan, piecewise analytic $\}$

For $D, D^{\prime} \in \mathcal{D}$, let $\mathcal{T}\left(D, D^{\prime}\right):=\left\{\right.$ conformal transformations $\left.f: D \rightarrow D^{\prime}\right\}$.

```
Important Results from Complex Analysis
```

Riemann Mapping Theorem. Suppose that $D, D^{\prime} \in \mathcal{D}$. Then there exists $f \in \mathcal{T}\left(D, D^{\prime}\right)$ with $f(0)=0$ and $f^{\prime}(0)>0$.

Carathéodory Extension Theorem. Suppose that $D, D^{\prime} \in \mathcal{D}$. If $f \in \mathcal{T}\left(D, D^{\prime}\right)$, then f can be extended to a homeomorphism of $\bar{D}=D \cup \partial D$ onto $\overline{D^{\prime}}$.

Koebe One-Quarter Theorem. If f is a conformal mapping of the unit disk with $f(0)=0$, then the image of f contains the open disk of radius $\left|f^{\prime}(0)\right| / 4$ about the origin.

Subsets of \mathbb{Z}^{2}
Suppose that $A \subset \mathbb{Z}^{2}$. Let $\mathcal{A}=\left\{A \subset \mathbb{Z}^{2}: 0 \in A, A\right.$ finite and s.c. $\}$.

If $A \in \mathcal{A}$, let

$$
\operatorname{inrad}(A):=\inf \left\{|z|: z \in \mathbb{Z}^{2} \backslash A\right\}, \quad \operatorname{rad}(A):=\sup \{|z|: z \in A\}
$$

and let

$$
\mathcal{A}^{n}=\{A \in \mathcal{A}: n \leq \operatorname{inrad}(A) \leq 2 n\} .
$$

- (outer) boundary: $\partial A:=\left\{y \in \mathbb{Z}^{2} \backslash A:|y-x|=1\right.$ for some $\left.x \in A\right\}$
- inner boundary: $\partial_{i} A:=\left\{x \in A:|y-x|=1\right.$ for some $\left.y \in \mathbb{Z}^{2} \backslash A\right\}$
\square

We associate a domain $\tilde{A} \subset \mathbb{C}$ to each finite $A \subset \mathbb{Z}^{2}$.

Put

$$
\tilde{A} \cup \partial \tilde{A}=\bigcup_{x \in A} \mathcal{S}_{x},
$$

where \mathcal{S}_{x} is the closed square of side one centred at x whose sides are parallel to the coordinate axes.

Let \tilde{A} denote the open subset of \mathbb{C} bounded by $\partial \tilde{A}$ containing A.

Note. \tilde{A} is s.c. domain iff A is s.c. subset of \mathbb{Z}^{2}.

Note. If $A \in \mathcal{A}$, then $\tilde{A} \in \mathcal{D}$.

Carathéodory Convergence

The notion of convergence of domains in \mathbb{C} in the Carathéodory sense is different than the usual topological convergence of domains.

Let domains $E_{n}, E \subset \mathbb{C}$.

Let

- $f_{n} \in \mathcal{T}\left(\mathbb{D}, E_{n}\right)$ with $f_{n}(0)=0, f_{n}^{\prime}(0)>0$,
- $f \in \mathcal{T}(\mathbb{D}, E)$ and $f(0)=0, f^{\prime}(0)>0$.

Definition and Theorem. E_{n} converges to E in the Carathéodory sense if $f_{n} \rightarrow f$ uniformly on every compact subsets of \mathbb{D}.

Let $D \subset \mathbb{C}$ be simply connected with $0 \in D, \operatorname{inrad}(D)=1$, and $\operatorname{rad}(D)=R$.

Let $D_{N}^{\prime}=\left\{x \in \frac{1}{N} \mathbb{Z}^{2} \cap D: \frac{1}{N} \mathcal{S}_{x} \subseteq D\right\}$.

Let D_{N} be connected component of D_{N}^{\prime} containing the origin.

Let \tilde{D}_{N} be the union of scaled squares so that

$$
\tilde{D}_{N} \cup \partial \tilde{D}_{N}=\bigcup_{x \in D_{N}} \frac{1}{N} \mathcal{S}_{x}
$$

Note. $\tilde{D}_{N} \in \mathcal{D}$.

Theorem.

$$
\tilde{D}_{N} \xrightarrow{\text { Cara }} D
$$

Background from Probability

A probability space $(\Omega, \mathcal{F}, \mathbb{P})$ is a measure space with total measure $\mathbb{P}(\Omega)=1$.

A random variable is a measurable mapping $Y:(\Omega, \mathcal{F}, \mathbb{P}) \rightarrow(\mathbb{C}, \mathcal{B})$.
X induces a probability measure on $(\mathbb{C}, \mathcal{B})$ called the law of $Y, \mathcal{L}_{Y}:=\mathbb{P} \circ Y^{-1}$, defined as $\mathcal{L}_{Y}(A)=\mathbb{P}(\{\omega \in \Omega: Y(\omega) \in A\})$ for each $A \in \mathcal{B}$.

A stochastic process is a collection of random variables $\left\{Y_{i}: i \in I\right\}$ for some indexing set I.

Simple Random Walk

Let X_{i} be i.i.d. with $\mathbb{P}\left\{X_{i}=e\right\}=1 / 4,|e|=1$, and set

$$
S_{n}=x+X_{1}+\cdots+X_{n} .
$$

The process $\left\{S_{n}: n \in \mathbb{N}\right\}$ is a simple random walk on \mathbb{Z}^{2} starting at $x \in \mathbb{Z}^{2}$.

Write $S[0, j]=[S(0), S(1), \ldots, S(j)]$ for the set of points visited by the SRW (in order).

Suppose that $A \subset \mathbb{Z}^{2}$.

Let $\tau_{A}=\inf \left\{n: S_{n} \notin A\right\}=\inf \left\{n: S_{n} \in \partial A\right\}$.

We call τ_{A} the exit time of random walk from A (or the hitting time of A^{c}).

Complex Brownian Motion

The process $\left\{B_{t}, t \geq 0\right\}$ is a complex Brownian motion (starting at $x \in \mathbb{C}$) if

- $\mathbb{P}\left(B_{0}=x\right)=1$ and the function $t \mapsto B_{t}$ is continuous (wp1),
- for any $t_{0}<t_{1}<\ldots<t_{n}$ the increments $B_{t_{0}}, B_{t_{1}}-B_{t_{0}}, \ldots, B_{t_{n-1}}-B_{t_{n}}$ are independent,
- for any $s, t \geq 0$, the increment $B_{t+s}-B_{s} \sim \mathcal{N}(0, t)$ is normally distributed.

Write $B[0, T]=\left\{z \in \mathbb{C}: B_{s}=z\right.$ some $\left.0 \leq s \leq T\right\}$.
Suppose that $D \subset \mathbb{C}$.
Let $T_{D}=\inf \left\{t: B_{t} \notin D\right\}$.
We call T_{D} the exit time of Brownian motion from D (or the hitting time of D^{c}).

Discrete Hitting Measure

Suppose that $x \in A$. For $y \in \mathbb{Z}^{2}$, let

$$
H_{A}(x, y)=\mathbb{P}^{x}\left\{S\left(\tau_{A}\right)=y\right\}
$$

be the hitting probability of y from x.
$H_{A}(x, \cdot)$ is a probability measure on \mathbb{Z}^{2} concentrated on ∂A.
$H_{A}(x, y)$ is the discrete analogue of the Poisson kernel.

If $V \subseteq \partial A$, then $\mathbb{P}^{x}\left\{S\left(\tau_{A}\right) \in V\right\}=\sum_{y \in V} H_{A}(x, y)$.

Poisson Kernel

Suppose $D \in \mathcal{D}$.

Write $\mathbb{P}^{z}\left\{B_{T_{D}} \in \mathrm{~d} y\right\}$ for harmonic measure in D from $z \in D$.

Its density wrt arclength is $H_{D}(z, y)$, the Poisson kernel.
i.e., $\mathbb{P}^{z}\left\{B_{T_{D}} \in \mathrm{~d} y\right\}=H_{D}(z, y)|\mathrm{d} y|$

If $V \subseteq \partial D$, then $\mathbb{P}^{z}\left\{B\left(T_{D}\right) \in V\right\}=\int_{V} H_{D}(z, y)|\mathrm{d} y|$.

Ex. $H_{\mathbb{D}}(z, y)=\frac{1}{2 \pi} \frac{1-|z|^{2}}{|y-z|^{2}}$ for $z \in \mathbb{D},|y|=1$.

Wiener Measure

Let $\mu_{D}(z)$ be Wiener measure, the measure on curves starting at z ending at ∂D.

It is well-known that Wiener measure is the law of $\mathrm{BM}\left\{B_{t}, 0 \leq t \leq T_{D}\right\}$.

We can write $\mu_{D}(z)=\int_{\partial D} \mu_{D}(z, y)|\mathrm{d} y|$ where $\mu_{D}(z, y)$ is the measure on curves starting at $z \in D$ ending at $y \in \partial D$.
$\mu_{D}(z, y)$ is a finite measure with mass $H_{D}(z, y)$.

The probability measure

$$
\mu_{D}^{\#}(z, y)=\frac{\mu_{D}(z, y)}{H_{D}(z, y)}
$$

is the law of BM starting at z conditioned to exit D at y.

Conformal Invariance

Paul Lévy first showed that BM is conformally invariant.

Let $D, D^{\prime} \in \mathcal{D}$ and let $f \in \mathcal{T}\left(D, D^{\prime}\right)$.

Then

- $f \circ \mu_{D}(z)=\mu_{D^{\prime}}(f(z))$
- $H_{D}(z, y)=\left|f^{\prime}(y)\right| H_{D^{\prime}}(f(z), f(y))$
- $f \circ \mu_{D}(z, y)=\left|f^{\prime}(y)\right| \mu_{D^{\prime}}(f(z), f(y))$
where B^{\prime} is another Brownian motion.
i.e., the conformal image of Brownian motion in D is a time-change of another Brownian motion stopped on exiting D^{\prime}.

Excursions

An excursion in D is a curve $\gamma:\left[0, t_{\gamma}\right] \rightarrow \mathbb{C}$ with

- $0<t_{\gamma}<\infty$,
- $\gamma(0) \in \partial D$,
- $\gamma\left(t_{\gamma}\right) \in \partial D$, and
- $\gamma\left(0, t_{\gamma}\right) \subset D$.

If $\gamma(0)=x$ and $\gamma\left(t_{\gamma}\right)=y$, then γ is called an excursion from x to y in D.

Excursion Poisson Kernel

For $x, y \in \partial D$, the excursion Poisson kernel is

$$
H_{\partial D}(x, y)=\lim _{\varepsilon \rightarrow 0+} \frac{1}{\varepsilon} H_{D}\left(x+\varepsilon \mathbf{n}_{x}, y\right)
$$

where \mathbf{n}_{x} is the (inward pointing) unit normal vector to D at x.
i.e., the excursion Poisson kernel is the normal derivative of the (analytically continued) Poisson kernel.

Ex. If $x=e^{i \theta}, y=e^{i \theta^{\prime}} \in \partial \mathbb{D}, y \neq x$, then

$$
H_{\partial \mathbb{D}}(x, y)=\frac{1}{\pi} \frac{1}{|y-x|^{2}}=\frac{1}{2 \pi} \frac{1}{1-\cos \left(\theta^{\prime}-\theta\right)}
$$

Excursion Measure

Let $\mu_{\partial D}(x, y)$ be the measure on excursions from x to y in D.

Proposition.

$$
\mu_{\partial D}(x, y)=\lim _{\varepsilon \rightarrow 0+} \frac{1}{\varepsilon} \mu_{D}\left(x+\varepsilon \mathbf{n}_{x}, y\right)
$$

$\mu_{\partial D}(x, y)$ is a finite measure with mass $H_{\partial D}(x, y)$.

Think of $H_{\partial D}(x, y)$ as " $\mathbb{P}^{x}\{$ excursion γ ends at $y\}$ ".

$$
\mu_{\partial D}^{\#}(x, y):=\frac{\mu_{\partial D}(x, y)}{H_{\partial D}(x, y)}
$$

is excursion measure normalized to be a probability measure.

Excursion Measure in D

Let

$$
\mu_{\partial D}=\int_{\partial D} \int_{\partial D} \mu_{\partial D}(x, y)|\mathrm{d} x||\mathrm{d} y|
$$

be excursion measure on excursion in D.

Note that $\mu_{\partial D}$ is an infinite, but σ-finite, measure.

Suppose that $\Gamma, \Upsilon \subset \partial D$ with $\Gamma \cap \Upsilon \neq \emptyset$.

Let $\mu_{\partial D}(\Gamma, \Upsilon)$ be $\mu_{\partial D}$ restricted to curves γ from Γ to Υ.

Conformal Invariance

Let $D, D^{\prime} \in \mathcal{D}$, let $f \in \mathcal{T}\left(D, D^{\prime}\right)$, and suppose that $\partial D, \partial D^{\prime}$ are locally analytic at x, y, and $f(x), f(y)$, resp.

Then

- $H_{\partial D}(x, y)=\left|f^{\prime}(x)\right|\left|f^{\prime}(y)\right| H_{\partial D^{\prime}}(f(x), f(y))$
- $f \circ \mu_{\partial D}(x, y)=\left|f^{\prime}(x)\right|\left|f^{\prime}(y)\right| \mu_{\partial D^{\prime}}(f(x), f(y))$
- $f \circ \mu_{\partial D}=\mu_{\partial D^{\prime}}$

Green's Functions for \mathbb{C}

For $x, y \in \mathbb{D}$, let

$$
g_{\mathbb{D}}(x, y)=\log \left|\frac{\bar{y} x-1}{y-x}\right|
$$

denote the standard Green's function in \mathbb{D}.

For $D \in \mathcal{D}, f \in \mathcal{T}(D, \mathbb{D})$ with $f(0)=0, f^{\prime}(0)>0$, the Green's function for D is

$$
g_{D}(x, y)=g_{\mathbb{D}}(f(x), f(y))
$$

for $x, y \in D$.

Fact. For $x \in D, x \neq 0$,

$$
g_{D}(x):=g_{D}(0, x)=g_{D}(x, 0)=\mathbb{E}^{x}\left[\log \left|B\left(T_{D}\right)\right|\right]-\log |x|
$$

Green's Functions for \mathbb{Z}^{2}

Suppose $A \subset \mathbb{Z}^{2}$. For $x, y \in A$, let

$$
G_{A}(x, y):=\mathbb{E}^{x}\left[\sum_{j=0}^{\tau_{A}-1} \mathbb{1}\left\{S_{j}=y\right\}\right]
$$

denote the Green's function (for simple random walk) on A.

This is the expected number of visits to y starting at x before exiting A.

Fact. For $x \in A$,

$$
G_{A}(x):=G_{A}(x, 0)=G_{A}(0, x)=\mathbb{E}^{x}\left[a\left(S\left(\tau_{A}\right)\right)\right]-a(x) .
$$

a is the potential kernel for SRW: $a(x)=\frac{2}{\pi} \log |x|+k_{0}+o\left(|x|^{-3 / 2}\right)$ as $|x| \rightarrow \infty$ with $k_{0}=(2 \varsigma+\ln 8) / \pi$ and ς is Euler's constant.

Note. $G_{A}(x)=\frac{2}{\pi} \mathbb{E}^{x}\left[\log \left|S\left(\tau_{A}\right)\right|-\log |x|\right]+$ error

Continuous and Discrete Beurling Estimates

Generalized Beurling Projection Theorem. There is a constant $c<\infty$ such that if $\gamma:[0,1] \rightarrow \mathbb{C}$ is a curve with $\gamma(0)=0,|\gamma(1)|=1, \gamma(0,1) \subset \mathbb{D}$, and $x \in \mathbb{D}$, then

$$
\mathbb{P}^{x}\left\{B\left[0, T_{\mathbb{D}}\right] \cap \gamma[0,1]=\emptyset\right\} \leq c|x|^{1 / 2} .
$$

Beurling Estimate. There is a constant $c<\infty$ such that if $x \in \tilde{A}$, then for all $r>0$,

$$
\mathbb{P}^{x}\left\{\left|B\left(T_{A}\right)-x\right|>r \operatorname{dist}(x, \partial \tilde{A})\right\} \leq c r^{-1 / 2} .
$$

Discrete Beurling Estimate There is a constant $c<\infty$ such that if $x \in A$, then for all $r>0$,

$$
\mathbb{P}^{x}\left\{\left|S\left(\tau_{A}\right)-x\right|>r \operatorname{dist}(x, \partial A)\right\} \leq c r^{-1 / 2}
$$

Consequences of the Beurling Estimate

Suppose that $A \in \mathcal{A}^{n}$ with associated domain $\tilde{A} \subset \mathbb{C}$.
Let $f_{A}=f_{\tilde{A}} \in \mathcal{T}(\tilde{A}, \mathbb{D})$ with $f_{A}(0)=0, f_{A}^{\prime}(0)>0$.
Let $g_{A}=g_{\tilde{A}}$ be the Green's function.
Fact. $f_{A}(x)=\exp \left\{-g_{A}(x)+i \theta_{A}(x)\right\}$
If $|x| \geq n / 4$, then

$$
g_{A}(x) \leq c n^{-1 / 2} \operatorname{dist}(x, \partial \tilde{A})^{1 / 2} .
$$

If $x \in \partial_{i} A$, then $g_{A}(x) \leq c n^{-1 / 2}$; hence

$$
f_{A}(x)=\exp \left\{i \theta_{A}(x)\right\}+O\left(n^{-1 / 2}\right) .
$$

If $A \in \mathcal{A}^{n}$ and $|x| \geq n / 4$, then

$$
G_{A}(x) \leq c n^{-1 / 2} \operatorname{dist}(x, \partial A)^{1 / 2} .
$$

If $x \in \partial_{i} A$, then $G_{A}(x) \leq c n^{-1 / 2}$.

Green's Function Estimates Away from the Boundary

Let D_{N} be the $1 / N$ scale discrete approximation to D and set $2 N D_{N}:=A_{N} \in \mathcal{A}^{n}$ with associated domain $\left(\widetilde{2 N D_{N}}\right)=\tilde{A}_{N}$.

For $A_{N} \in \mathcal{A}^{N}$, let

$$
A_{N}^{*}=\left\{x \in A_{N}: g_{A_{N}}(x) \geq N^{-1 / 16}\right\} .
$$

Let $x \in D_{N}$ be such that $2 N x \in A_{N}^{*}$.

Let $y \in D_{N}$ with $2 N y \in A_{N}$ and $|x-y| \geq N^{-29 / 36}$.

Then,

$$
G_{D_{N}}(x, y)=\frac{2}{\pi} g_{D_{N}}(x, y)+O\left(N^{-7 / 24} \log N\right)
$$

An Estimate for Hitting the Boundary

If BM has a good chance of exiting \tilde{A} at some subset of $\tilde{V} \subseteq \partial \tilde{A}$, then there is also a good chance that SRW exits A at the corresponding set $V \subseteq \partial A$.

Let $V \subseteq \partial A$ with associated set $\tilde{V} \subseteq \partial \tilde{A}$.

Let $\mathbb{P}^{x}\left\{S\left(\tau_{A}\right) \in V\right\}=\sum_{y \in V} H_{A}(x, y)=: h(x)$.

Let $\mathbb{P}^{z}\left\{B\left(T_{D}\right) \in V\right\}=\int_{V} H_{D}(z, y)|\mathrm{d} y|=: \tilde{h}(x)$.

Proposition. For every $\varepsilon>0$, there exists a $\delta>0$ such that if $A \in \mathcal{A}^{n}, V \subseteq \partial A$, and $x \in A$ with $h(x)>\varepsilon$, then $\tilde{h}(x)>\delta$.

Hitting Probability Estimates

We derive from (messy) Green's function estimates the following hitting probability estimates. There is a difference whether we start in A or in ∂A.

If $A \in \mathcal{A}^{n}, x \in \partial_{i} A, y \in \partial A$ with $\left|\theta_{A}(x)-\theta_{A}(y)\right| \geq \varepsilon_{n}$, then

$$
H_{A}(x, y)=\frac{(\pi / 2) G_{A}(x) H_{A}(0, y)}{1-\cos \left(\theta_{A}(x)-\theta_{A}(y)\right)}\left[1+O\left(\frac{\varepsilon_{n}^{3}}{\left|\theta_{A}(x)-\theta_{A}(y)\right|}\right)\right]
$$

Similarly, if $x \in \partial A, y \in \partial A$, let $H_{A}(x, y)$ be the probability that a simple random walk starting at x takes its first step into A and then exits A at y.

If $A \in \mathcal{A}^{n}, x, y \in \partial A$ with $\left|\theta_{A}(x)-\theta_{A}(y)\right| \geq \varepsilon_{n}$, then

$$
H_{A}(x, y)=\frac{(\pi / 2) H_{A}(0, x) H_{A}(0, y)}{1-\cos \left(\theta_{A}(x)-\theta_{A}(y)\right)}\left[1+O\left(\frac{\varepsilon_{n}^{3}}{\left|\theta_{A}(x)-\theta_{A}(y)\right|}\right)\right]
$$

Fomin's Identity, I

Suppose that $A \in \mathcal{A}^{n}$ and $x^{1}, x^{2}, \ldots, x^{N} \in \partial A$.

Let $S^{1}, S^{2}, \ldots, S^{N}$ be independent simple random walks starting at $x^{1}, x^{2}, \ldots, x^{N}$, respectively.

Set $\tau_{A}^{k}:=\inf \left\{j>0: S_{j}^{k} \notin A\right\}$.
Let $L^{k}=\Lambda\left(S^{k}\right)$ be the loop erasure of the path $\left[S^{k}(0)=x^{k}, S^{k}(1), \ldots, S^{k}\left(\tau_{A}^{k}\right)\right]$.
Let $\mathcal{E}=\mathcal{E}\left(x^{1}, \ldots, x^{N}, y^{1}, \ldots, y^{N} ; A\right)$ be the event

- $S^{k}\left(\tau_{A}^{k}\right)=y^{k}, \quad k=1, \ldots, N$, and
- $S^{k}\left[0, \tau_{A}^{k}\right] \cap\left\{L^{1} \cup \cdots \cup L^{k-1}\right\}=\emptyset, \quad k=2, \ldots, N$.

Fomin's Identity, II

Theorem (Fomin).

$$
\mathbb{P}\{\mathcal{E}\}=\operatorname{det}\left[\mathbf{H}_{A}\right],
$$

where $\mathbf{H}_{A}=\left[H_{A}\left(x^{k}, y^{\ell}\right)\right]$ is the $N \times N$ hitting matrix

$$
\mathbf{H}_{A}=\left[\begin{array}{ccc}
H_{A}\left(x^{1}, y^{1}\right) & \cdots & H_{A}\left(x^{1}, y^{N}\right) \\
\vdots & \ddots & \vdots \\
H_{A}\left(x^{N}, y^{1}\right) & \cdots & H_{A}\left(x^{N}, y^{N}\right)
\end{array}\right]
$$

Consequences

Theorem. Suppose that $A \in \mathcal{A}^{n}$ and $x^{1}, \ldots, x^{N}, y^{1}, \ldots, y^{N} \in \partial A$ with

$$
\delta=\min _{1 \leq k, \ell \leq N}\left\{\left|\theta_{A}\left(x^{k}\right)-\theta_{A}\left(y^{\ell}\right)\right|\right\} \geq \varepsilon_{n}
$$

Let $\varphi_{A}\left(x^{k}, y^{\ell}\right)=\left[1-\cos \left(\theta_{A}\left(x^{k}\right)-\theta_{A}\left(y^{\ell}\right)\right)\right]^{-1}$. If \mathcal{E} is the event defined as before, then

$$
\mathbb{P}\{\mathcal{E}\}=(\pi / 2)^{N}\left[\prod_{k=1}^{N} H_{A}\left(0, x^{k}\right)\right]\left[\prod_{\ell=1}^{N} H_{A}\left(0, y^{\ell}\right)\right] \operatorname{det}\left[\mathbf{\Phi}_{A}\right]\left[1+O\left(\varepsilon_{n}^{3} \delta^{-1}\right)\right]
$$

where $\boldsymbol{\Phi}_{A}$ is the $N \times N$ matrix $\boldsymbol{\Phi}_{A}=\left[\varphi_{A}\left(x^{k}, y^{\ell}\right)\right]$.

Note.

$$
\varphi_{A}\left(x^{k}, y^{\ell}\right)=2 \pi H_{\partial \mathbb{D}}\left(e^{\theta_{A}\left(x^{k}\right)}, e^{\theta_{A}\left(y^{\ell}\right)}\right)
$$

Scaling Limit

Suppose that $D \subseteq \mathbb{C}$ is a simply connected domain; ∂_{1} and ∂_{2} are disjoint non-trivial subarcs of $\partial D ; D_{N}$ is the N-scale approximate to $D ; \tilde{D_{N}}$ is the associated domain; $\partial_{N, 1}$ and $\partial_{\tilde{N}, 2}$ are the associated subarcs.
Then, as $N \rightarrow \infty$,

$$
\sum_{x^{1}, \ldots, x^{k} \in \partial_{1}^{N}} \sum_{y^{1}, \ldots, y^{k} \in \partial_{2}^{N}} \operatorname{det}\left[H_{\partial D^{N}}\left(x^{j}, y^{j^{\prime}}\right)\right]_{1 \leq j, j^{\prime} \leq k}
$$

converges to a conformally invariant limit. In fact, this limit is

$$
\int_{\left(\partial_{1}\right)^{k}} \int_{\left(\partial_{2}\right)^{k}} \operatorname{det}\left[H_{\partial D}\left(x^{j}, y^{j^{\prime}}\right)\right]_{1 \leq j, j^{\prime} \leq k}\left|\mathrm{~d} x^{1}\right| \cdots\left|\mathrm{d} x^{k}\right|\left|\mathrm{d} y^{1}\right| \cdots\left|\mathrm{d} y^{k}\right| .
$$

Furthermore, the measure on simple random walk excursions $\mu_{D, N}^{\mathrm{RW}}\left(\partial_{N, 1}, \partial_{N, 2}\right)$ coverges to the measure on excursions $\mu_{\partial D_{N}}\left(\partial_{N, 1}, \partial_{N, 2}\right)$.
And, the measure on excursions $\mu_{\partial D_{N}}\left(\partial_{N, 1}, \partial_{N, 2}\right)$ converges to $\mu_{\partial D}\left(\partial_{1}, \partial_{2}\right)$.

