Excursion Measure in the Plane

Michael Kozdron

Duke University & Cornell University

December 1, 2003

http://www.math.cornell.edu/~kozdron/

Background and Notation from Complex Analysis

Everything is exclusively two-dimensional. We write w, x, y, z for points in \mathbb{C} , and t, n for time $(\in \mathbb{R})$.

 $\mathbb{D}:=\{z\in\mathbb{C}:|z|<1\}$ denotes the open unit disk.

f is **analytic** at $z_0 \in \mathbb{C}$ if it is complex-differentiable at every point in some neighbourhood of z_0 .

A single-valued function f is **univalent** in a domain $D \subseteq \mathbb{C}$ if it is one-to-one in D.

An analytic, univalent function is called a conformal mapping.

 $f:D\to D'$ is a **conformal transformation** if f is a conformal mapping that is onto D'. It follows that $f'(z)\neq 0$ for $z\in D$, and $f^{-1}:D'\to D$ is also a conformal transformation.

Important Results from Complex Analysis

Riemann Mapping Theorem. Suppose D is a simply connected proper subset of $\mathbb C$ and $z_0 \in D$. Then there exists a unique conformal transformation f of D onto $\mathbb D$ satisfying $f(z_0) = 0$, $f'(z_0) > 0$.

Carathéodory Extension Theorem. Suppose that D is a domain bounded by a Jordan curve ∂D , and let $f:D\to \mathbb{D}$ be a conformal transformation. Then f can be extended to a homeomorphism of $\overline{D}=D\cup \partial D$ onto the closed disk $\overline{\mathbb{D}}$.

Koebe One-Quarter Theorem. If f is a conformal mapping of the unit disk with f(0) = 0, then the image of f contains the open disk of radius |f'(0)|/4 about the origin.

Subsets of \mathbb{Z}^2

Suppose that $A \subset \mathbb{Z}^2$.

Let $\mathcal{A} = \{A \subset \mathbb{Z}^2 : 0 \in A, A \text{ finite and s.c.}\}.$

If $A \in \mathcal{A}$, let $\operatorname{inrad}(A) := \inf\{|z| : z \in \mathbb{Z}^2 \setminus A\}$, $\operatorname{rad}(A) := \sup\{|z| : z \in A\}$, and let

$$\mathcal{A}^n = \{ A \in \mathcal{A} : n \le \operatorname{inrad}(A) \le 2n \}.$$

There are 3 reasonable ways to define the **boundary** of A.

- (outer) boundary: $\partial A := \{ y \in \mathbb{Z}^2 \setminus A : |y x| = 1 \text{ for some } x \in A \}$
- inner boundary:

$$\partial_i A := \partial(\mathbb{Z}^2 \setminus A) = \{x \in A : |y - x| = 1 \text{ for some } y \in \mathbb{Z}^2 \setminus A\}$$

• edge boundary: $\partial_e A := \{(x,y) : x \in A, y \in \mathbb{Z}^2 \setminus A, |x-y| = 1\}$

Subsets of $\mathbb C$

A domain $D \subset \mathbb{C}$ is an open subset of \mathbb{C} .

Define $\operatorname{inrad}(D) = \inf\{|z| : z \in \mathbb{C} \setminus D\}$ and $\operatorname{rad}(D) := \sup\{|z| : z \in \partial D\}$.

 $\mathcal{D}:=\{D\subset\mathbb{C}:0\in D;\ D \text{ s.c., bounded};\ \partial D \text{ Jordan, piecewise analytic}\}$

For $D, D' \in \mathcal{D}$, let $\mathcal{T}(D, D') := \{\text{conformal transformations } f: D \to D'\}.$

By the Riemann mapping theorem, $\mathcal{T}(D, D') \neq \emptyset$.

By the Carathéodory extension theorem, if $f \in \mathcal{T}(D, D')$, then f can be extended to a homeomorphism of \overline{D} onto $\overline{D'}$.

$ilde{A}\subset \mathbb{C}$ Associated to $A\subset \mathbb{Z}^2$

We associate a domain $\tilde{A} \subset \mathbb{C}$ to each finite $A \subset \mathbb{Z}^2$.

Put

$$\tilde{A} \cup \partial \tilde{A} = \bigcup_{x \in A} \mathcal{S}_x,$$

where S_x is the closed square of side one centred at x whose sides are parallel to the coordinate axes.

Let \tilde{A} denote the open subset of $\mathbb C$ bounded by $\partial \tilde{A}$ containing A.

Note. \tilde{A} is s.c. domain iff A is s.c. subset of \mathbb{Z}^2 .

Note. If $A \in \mathcal{A}$, then $\tilde{A} \in \mathcal{D}$.

Carathéodory Convergence

The notion of convergence of domains in \mathbb{C} in the Carathéodory sense is different than the usual topological convergence of domains.

Let domains $E_n, E \subset \mathbb{C}$.

Let

- $f_n \in \mathcal{T}(\mathbb{D}, E_n)$ with $f_n(0) = 0$, $f'_n(0) > 0$,
- $f \in \mathcal{T}(\mathbb{D}, E)$ and f(0) = 0, f'(0) > 0.

Definition and Theorem. E_n converges to E in the **Carathéodory sense** if $f_n \to f$ uniformly on every compact subsets of \mathbb{D} .

Let $D \subset \mathbb{C}$ be simply connected with $0 \in D$, $\operatorname{inrad}(D) = 1$, and $\operatorname{rad}(D) = R$.

Let
$$D'_N = \{x \in \frac{1}{N}\mathbb{Z}^2 \cap D : \frac{1}{N}\mathcal{S}_x \subseteq D\}.$$

Let D_N be connected component of D_N' containing the origin.

Let $ilde{D}_N$ be the union of scaled squares so that

$$\tilde{D}_N \cup \partial \tilde{D}_N = \bigcup_{x \in D_N} \frac{1}{N} \mathcal{S}_x.$$

Note. $\tilde{D}_N \in \mathcal{D}$.

Theorem.

$$\tilde{D}_N \overset{\mathsf{Cara}}{\to} D$$

Background from Probability

A probability space $(\Omega, \mathcal{F}, \mathbb{P})$ is a measure space with total measure $\mathbb{P}(\Omega) = 1$.

A random variable is a measurable mapping $Y:(\Omega,\mathcal{F},\mathbb{P})\to(\mathbb{C},\mathcal{B}).$

X induces a probability measure on (\mathbb{C},\mathcal{B}) called the **law** of Y, $\mathcal{L}_Y:=\mathbb{P}\circ Y^{-1}$, defined as $\mathcal{L}_Y(A)=\mathbb{P}(\{\omega\in\Omega:Y(\omega)\in A\})$ for each $A\in\mathcal{B}$.

A **stochastic process** is a collection of random variables $\{Y_i : i \in I\}$ for some indexing set I.

Simple Random Walk

Let X_i be i.i.d. with $\mathbb{P}\{X_i=e\}=1/4$, |e|=1, and set

$$S_n = x + X_1 + \dots + X_n.$$

The process $\{S_n : n \in \mathbb{N}\}$ is a **simple random walk** on \mathbb{Z}^2 starting at $x \in \mathbb{Z}^2$.

Write $S[0,j] = [S(0),S(1),\ldots,S(j)]$ for the set of points visited by the SRW (in order).

Write \mathbb{P}^x for the probability starting at x.

Complex Brownian Motion

The process $\{B_t, t \geq 0\}$ is a complex Brownian motion (starting at $x \in \mathbb{C}$) if

- $\mathbb{P}(B_0 = x) = 1$ and the function $t \mapsto B_t$ is continuous (wp1),
- for any $t_0 < t_1 < \ldots < t_n$ the increments $B_{t_0}, B_{t_1} B_{t_0}, \ldots, B_{t_{n-1}} B_{t_n}$ are independent,
- for any s, $t \ge 0$, the increment $B_{t+s} B_s \sim \mathcal{N}(0,t)$ is normally distributed.

Write $B[0,T] = \{z \in \mathbb{C} : B_s = z \text{ some } 0 \le s \le T\}.$

Write \mathbb{P}^x for the probability starting at x.

Exit Times

Suppose that $A \subset \mathbb{Z}^2$.

Let
$$\tau_A = \inf\{n : S_n \not\in A\} = \inf\{n : S_n \in \partial A\}.$$

We call τ_A the **exit time** of random walk from A (or the hitting time of A^c).

 τ_A is a **stopping time** for any A.

Suppose that $D \subset \mathbb{C}$.

Let
$$T_D = \inf\{t : B_t \not\in D\}.$$

We call T_D the **exit time** of Brownian motion from D (or the hitting time of D^c).

 T_D is a **stopping time** provided $D \in \mathcal{B}$.

Discrete Hitting Measure

Suppose that $x \in A$. For $y \in \mathbb{Z}^2$, let

$$H_A(x,y) = \mathbb{P}^x \{ S(\tau_A) = y \}$$

be the hitting probability of y from x.

Since $H_A(x,y)=0$ if $y \notin \partial A$, $H_A(x,\cdot)$ is a probability measure on \mathbb{Z}^2 concentrated on ∂A .

 $H_A(x,y)$ is the discrete analogue of the Poisson kernel.

If
$$V \subseteq \partial A$$
, then $\mathbb{P}^x \{ S(\tau_A) \in V \} = \sum_{y \in V} H_A(x, y)$.

Poisson Kernel

Suppose $D \in \mathcal{D}$.

Write $\mathbb{P}^z\{B_{T_D}\in dy\}$ for harmonic measure in D from $z\in D$.

Its density (Radon-Nikodým derivative) with respect to arclength is $H_D(z,y)$, the **Poisson kernel**.

i.e., $\mathbb{P}^z\{B_{T_D}\in dy\}=H_D(z,y)\,|dy|$, where |dy| is arclength measure on ∂D .

If
$$V \subseteq \partial D$$
, then $\mathbb{P}^z\{B(T_D) \in V\} = \int_V H_D(z,y) |dy|$.

Ex.
$$H_{\mathbb{D}}(z,y) = \frac{1}{2\pi} \, \frac{1-|z|^2}{|y-z|^2} \, \text{for } z \in \mathbb{D}, \ |y|=1.$$

Wiener Measure

Write $\mu_D(z)$ for Wiener measure, the measure on curves starting at z, ending at ∂D .

It is well-known that Wiener measure is the law of BM $\{B_t, 0 \le t \le T_D\}$.

Note. There is a question of the measure space of curves \mathcal{K} , and the appropriate σ -algebra, $\mathcal{B}(\mathcal{K})$. We do not go into those details here. However, when we write measures of the form $\mu_D(z)$, we really mean that there are two parameters associated with this measure, D and z, and that $\mu_D(z) := \mu_{D,z}(\cdot)$ for $\cdot \in \mathcal{B}(\mathcal{K})$.

We can write $\mu_D(z)=\int_{\partial D}\mu_D(z,y)\,|\mathrm{d}y|$ where $\mu_D(z,y)$ is the measure on curves starting at $z\in D$, ending at $y\in\partial D$.

 $\mu_D(z,y)$ is a finite measure with mass $H_D(z,y)$.

The probability measure

$$\mu_D^{\#}(z,y) = \frac{\mu_D(z,y)}{H_D(z,y)}$$

is the law of BM starting at z conditioned to exit D at y.

Conformal Invariance

Paul Lévy first showed that BM is conformally invariant.

Let $D, D' \in \mathcal{D}$ and let $f \in \mathcal{T}(D, D')$.

Then

•
$$\mathbb{P}^z\{B_{T_D} \in dy\} = \mathbb{P}^{f(z)}\{B'_{T_{D'}} \in f(dy)\}$$

•
$$f \circ \mu_D(z) = \mu_{D'}(f(z))$$

•
$$H_D(z,y) = |f'(y)| H_{D'}(f(z), f(y))$$

•
$$f \circ \mu_D(z, y) = |f'(y)| \mu_{D'}(f(z), f(y))$$

where B' is another Brownian motion.

i.e., the conformal image of Brownian motion in D is a time-change of another Brownian motion stopped on exiting D'.

Excursions

An excursion in D is a curve $\gamma:[0,t_{\gamma}]\to\mathbb{C}$ with

- $0 < t_{\gamma} < \infty$,
- $\gamma(0) \in \partial D$,
- $\gamma(t_{\gamma}) \in \partial D$, and
- $\gamma(0,t_{\gamma})\subset D$.

If $\gamma(0)=x$ and $\gamma(t_{\gamma})=y$, then γ is called an excursion from x to y in D.

Excursion Poisson Kernel

For $x, y \in \partial D$, the excursion Poisson kernel is

$$H_{\partial D}(x,y) = \lim_{\varepsilon \to 0+} \frac{1}{\varepsilon} H_D(x + \varepsilon \mathbf{n}_x, y)$$

where \mathbf{n}_x is the (inward pointing) unit normal vector to D at x.

i.e., the excursion Poisson kernel is the normal derivative of the (analytically continued) Poisson kernel.

Ex. If
$$x = e^{i\theta}$$
, $y = e^{i\theta'} \in \partial \mathbb{D}$, $y \neq x$, then

$$H_{\partial \mathbb{D}}(x,y) = \frac{1}{\pi} \frac{1}{|y-x|^2} = \frac{1}{2\pi} \frac{1}{1-\cos(\theta'-\theta)}.$$

Excursion Measure

Let $\mu_{\partial D}(x,y)$ be the measure on excursions from x to y in D.

 $\mu_{\partial D}(x,y)$ is a finite measure with mass $H_{\partial D}(x,y)$.

Think of $H_{\partial D}(x,y)$ as " $\mathbb{P}^x\{\text{excursion }\gamma \text{ ends at }y\}$ ".

Consider the measure

$$\mu_{\partial D}^{\#}(x,y) := \frac{\mu_{\partial D}(x,y)}{H_{\partial D}(x,y)},$$

excursion measure normalized to be a probability measure.

Proposition.

$$\mu_{\partial D}(x,y) = \lim_{\varepsilon \to 0+} \frac{1}{\varepsilon} \mu_D(x + \varepsilon \mathbf{n}_x, y)$$

Question of existence?

Conditioned BM. If $z \in D$, then using Doob's h-processes it is easy to construct Brownian motion conditioned to exit D at y.

Furthermore, the probability measure

$$\lim_{\varepsilon \downarrow 0} \mu_D(x + \varepsilon \mathbf{n}_x, y) =: \mu_{\partial D}^{\#}(x, y)$$

exists (in the Prohorov metric).

Thus, $\mu_{\partial D}(x,y) = \mu_{\partial D}^{\#}(x,y) \cdot H_{\partial D}(x,y)$ exists.

σ -finite Excursion Measures

Let

$$\mu_{\partial D}(x) = \int_{\partial D} \mu_{\partial D}(x, y) |dy|$$

be excursion measure on excursion from x in D.

Note that $\mu_{\partial D}(x)$ is an infinite, but σ -finite, measure.

Let

$$\mu_{\partial D} = \int_{\partial D} \mu_{\partial D}(x) |dx| = \int_{\partial D} \int_{\partial D} \mu_{\partial D}(x, y) |dx| |dy|$$

be excursion measure on excursion in D.

Note that $\mu_{\partial D}$ is also an infinite, but σ -finite, measure.

Conformal Invariance

Let D, $D' \in \mathcal{D}$, let $f \in \mathcal{T}(D, D')$, and suppose that ∂D , $\partial D'$ are locally analytic at x, y, and f(x), f(y), resp.

Then

- $H_{\partial D}(x,y) = |f'(x)| |f'(y)| H_{\partial D'}(f(x), f(y))$
- $f \circ \mu_{\partial D}(x, y) = |f'(x)| |f'(y)| \mu_{\partial D'}(f(x), f(y))$
- $f \circ \mu_{\partial D}(x) = |f'(x)| \mu_{\partial D'}(f(x))$
- $\bullet \ f \circ \mu_{\partial D} = \mu_{\partial D'}$

Green's Functions for $\mathbb C$

For $x, y \in \mathbb{D}$, let

$$g_{\mathbb{D}}(x,y) = \log \left| \frac{\overline{y}x - 1}{y - x} \right|$$

denote the standard Green's function in D.

If $x \in D$, we can define $g_D(x,\cdot)$ as the unique harmonic function on $D \setminus \{x\}$, vanishing on ∂D , with $g_D(x,y) = -\log|x-y| + O(1)$ as $|x-y| \to 0$.

This implies for x, $y \in D$, $x \neq y$,

$$g_D(x, y) = \mathbb{E}^x [\log |B(T_D) - y|] - \log |x - y|.$$

Note that $g_D(x, y) = g_D(y, x)$ and $g_D(x) := g_D(0, x) = g_D(x, 0)$.

If $D \in \mathcal{D}$, $f \in \mathcal{T}(D, \mathbb{D})$ with f(0) = 0, f'(0) > 0, then the Green's function for D is

$$g_D(x,y) = g_{\mathbb{D}}(f(x), f(y))$$

for $x, y \in D$.

Green's Functions for \mathbb{Z}^2

Suppose $A \subset \mathbb{Z}^2$. For $x, y \in A$, let

$$G_A(x,y) := \mathbb{E}^x \left[\sum_{j=0}^{\tau_A - 1} \mathbb{1} \{ S_j = y \} \right] = \sum_{j=0}^{\infty} \mathbb{P}^x \{ S_j = y, \tau_A > j \}$$

denote the Green's function (for simple random walk) on A.

This is the expected number of visits to y starting at x before exiting A.

Note that $G_A(x,y) = G_A(y,x)$ and $G_A(x) := G_A(x,0) = G_A(0,x)$.

Fact. For $x \in A$,

$$G_A(x) = \mathbb{E}^x[a(S(\tau_A))] - a(x)$$

where a is the potential kernel for simple random walk defined by

$$a(x) := \lim_{m \to \infty} \sum_{j=0}^{m} [\mathbb{P}^0 \{ S_j = 0 \} - \mathbb{P}^x \{ S_j = 0 \}].$$

Fact. $a(x) = \frac{2}{\pi} \log |x| + k_0 + o(|x|^{-3/2})$ as $|x| \to \infty$, where $k_0 = (2\varsigma + 3 \ln 2)/\pi$ and ς is Euler's constant.

Continuous and Discrete Beurling Estimates

Generalized Beurling Projection Theorem. There is a constant $c < \infty$ such that if $\gamma : [0,1] \to \mathbb{C}$ is a curve with $\gamma(0) = 0$, $|\gamma(1)| = 1$, $\gamma(0,1) \subset \mathbb{D}$, and $x \in \mathbb{D}$, then $\mathbb{P}^x\{B[0,T_{\mathbb{D}}] \cap \gamma[0,1] = \emptyset\} < c \, |x|^{1/2}.$

Beurling Estimate. There is a constant $c<\infty$ such that if $x\in \tilde{A}$, then for all r>0,

$$\mathbb{P}^x\{|B(T_A) - x| > r \operatorname{dist}(x, \partial \tilde{A})\} \le c r^{-1/2}.$$

Discrete Beurling Projection Theorem. If $A \in \mathcal{A}$ is of radius R, then

$$\lim_{|x| \to \infty} \mathbb{P}^x \{ S(\tau_{A^c}) = 0 \} = O(R^{-1/2}).$$

Discrete Beurling Estimate There is a constant $c < \infty$ such that if $x \in A$, then for all r > 0,

$$\mathbb{P}^x\{|S(\tau_A) - x| > r \operatorname{dist}(x, \partial A)\} \le c r^{-1/2}.$$

Consequences of the Continuous Beurling Estimate

Suppose that $A\in\mathcal{A}^n$ with associated domain $\tilde{A}\subset\mathbb{C}.$

Let
$$f_A = f_{\tilde{A}} \in \mathcal{T}(\tilde{A}, \mathbb{D})$$
 with $f_A(0) = 0$, $f'_A(0) > 0$.

Let $g_A=g_{\tilde{A}}$ be the Green's function.

Fact.
$$f_A(x) = \exp\{-g_A(x) + i\theta_A(x)\}$$

If $|x| \geq n/4$, then

$$g_A(x) \le c n^{-1/2} \operatorname{dist}(x, \partial \tilde{A})^{1/2}.$$

If $x \in \partial_i A$, then $g_A(x) \leq c n^{-1/2}$; hence

$$f_A(x) = \exp\{i\theta_A(x)\} + O(n^{-1/2}).$$

If $z \in \partial A$, let $\theta_A(z)$ be the average of $\theta_A(x)$ over all $x \in A$ with |x - z| = 1.

The Beurling estimate and a simple Harnack principle show that if $(x,z) \in \partial_e A$, then

$$\theta_A(z) = \theta_A(x) + O(n^{-1/2}).$$

Consequences of the Discrete Beurling Estimate

If $A \in \mathcal{A}^n$ and $|x| \ge n/4$, then

$$G_A(x) \le c \, n^{-1/2} \, \operatorname{dist}(x, \partial A)^{1/2}.$$

If $x \in \partial_i A$, then $G_A(x) \leq cn^{-1/2}$.

Fact. If $0 \neq x \in \partial_i A$, then

$$G_A(0) = G_{A\setminus\{x\}}(0) + \frac{G_A(x)^2}{G_A(x,x)}.$$

Thus, if we replace $A\setminus\{x\}$ in the above formula with the connected component of $A\setminus\{x\}$ containing the origin, then

$$G_A(0) - G_{A \setminus \{x\}}(0) \le G_A(x)^2 \le c n^{-1}$$
.

Relationship between g_A and G_A

Proposition. There exists a constant c such that for every n, B_t and S_t can be defined on the same probability space so that if $A \in \mathcal{A}^n$, $1 < r \le n^{20}$, and $x \in A$ with $|x| \le n^3$,

$$\mathbb{P}^{x}\{|B(T_{A}) - S(\tau_{A})| \ge c \ r \ \log n\} \le c \ r^{-1/2}.$$

Corollary. There exists a c such that if $A \in \mathcal{A}^n$ and $|x| \leq n^2$,

$$\|\mathbb{E}^x[\log |B(T_A)|] - \mathbb{E}^x[\log |S(\tau_A)|]\| \le c n^{-1/3} \log n.$$

Corollary. If $A \in \mathcal{A}^n$, then

$$G_A(x) = (2/\pi) g_A(x) + k_x + O(n^{-1/3} \log n),$$

 $k_x = k_0 + (2/\pi) \log |x| - a(x)$. Note $|k_x| \le c|x|^{-3/2}$.

For any $A \in \mathcal{A}^n$, let $A^{*,n} = \{x \in A : g_A(x) \ge n^{-1/16}\}$.

Corollary. If $A \in \mathcal{A}^n$, and $x \in A^{*,n}, y \in A$, then

$$G_A(x,y) = (2/\pi) g_A(x,y) + k_{y-x} + O(n^{-7/24} \log n).$$

Green's Function Estimates Away from the Boundary

Let D_N be the 1/N scale discrete approximation to D and set $2ND_N:=A_N\in\mathcal{A}^n$ with associated domain $(2\widetilde{ND_N})=\widetilde{A}_N$.

Recall that for $A_N \in \mathcal{A}^N$,

$$A_N^* = \{ x \in A_N : g_{A_N}(x) \ge N^{-1/16} \}.$$

Let $x \in D_N$ be such that $2Nx \in (2ND_N)^* = A_N^*$.

Let $y \in D_N$ with $2Ny \in A_N$ and $|x - y| \ge N^{-29/36}$.

Then,

$$G_{D_N}(x,y) = \frac{2}{\pi} g_{D_N}(x,y) + O(N^{-7/24} \log N).$$

An Estimate for Hitting the Boundary

If BM has a good chance of exiting \tilde{A} at some subset of $\tilde{V} \subseteq \partial \tilde{A}$, then there is also a good chance that SRW exits A at the corresponding set $V \subseteq \partial A$.

Let $V \subseteq \partial A$ with associated set $\tilde{V} \subseteq \partial \tilde{A}$.

Let
$$\mathbb{P}^x\{S(\tau_A)\in V\}=\sum_{y\in V}H_A(x,y)=:h(x).$$

Let
$$\mathbb{P}^z\{B(T_D)\in V\}=\int_V H_D(z,y)\,|\mathrm{d}y|=:\tilde{h}(x).$$

Proposition. For every $\varepsilon > 0$, there exists a $\delta > 0$ such that if $A \in \mathcal{A}^n$, $V \subseteq \partial A$, and $x \in A$ with $h(x) > \varepsilon$, then $\tilde{h}(x) > \delta$.

Green's Function Estimates

Fact. If $z = f_A(x) = (1 - r)e^{i\theta}$, $z' = f_A(y) \in \mathbb{D}$ with $|z - z'| \ge r$, then

$$g_A(x,y) = g_{\mathbb{D}}(z,z') = \frac{g_{\mathbb{D}}(z) (1-|z'|^2)}{|z'-e^{i\theta}|^2} [1+O(\frac{r}{|z-z'|})].$$

Similarly, if $z'=f_A(y)=(1-r')e^{i\theta'}$ with $r\geq r'$ and $|z-z'|\geq r$,

$$g_A(x,y) = g_{\mathbb{D}}(z,z') = \frac{g_{\mathbb{D}}(z) g_{\mathbb{D}}(z')}{1 - \cos(\theta - \theta')} [1 + O(\frac{r}{|\theta - \theta'|})].$$

Let
$$J_{x,n} = \{z \in A : |f_A(z) - \exp\{i\theta_A(x)\}| \ge n^{-1/16} \log^2 n\}.$$

Proposition. Suppose $A \in \mathcal{A}^n$ and $x \in A \setminus A^{*,n}$, $y \in J_{x,n}$. Then,

$$G_A(x,y) = G_A(x) \frac{1 - |f_A(y)|^2}{|f_A(y) - e^{i\theta_A(x)}|^2} \left[1 + O\left(\frac{n^{-1/16} \log n}{|f_A(y) - e^{i\theta_A(x)}|}\right) \right], \quad y \in A^{*,n},$$

$$G_A(x,y) = \frac{(\pi/2) G_A(x) G_A(y)}{1 - \cos(\theta_A(x) - \theta_A(y))} \left[1 + O\left(\frac{n^{-1/16} \log n}{|\theta_A(y) - \theta_A(x)|}\right) \right], \quad y \in A \setminus A^{*,n}.$$

Hitting Probability Estimates

If $A \in \mathcal{A}^n$, $x \in \partial_i A$, $y \in \partial A$ with $|\theta_A(x) - \theta_A(y)| \ge \varepsilon_n$, then

$$H_A(x,y) = \frac{(\pi/2) G_A(x) H_A(0,y)}{1 - \cos(\theta_A(x) - \theta_A(y))} [1 + O(\frac{\varepsilon_n^3}{|\theta_A(x) - \theta_A(y)|})].$$

Similarly, if $x \in \partial A$, $y \in \partial A$, let $H_A(x,y)$ be the probability that a simple random walk starting at x takes its first step into A and then exits A at y.

If $A \in \mathcal{A}^n$, x, $y \in \partial A$ with $|\theta_A(x) - \theta_A(y)| \ge \varepsilon_n$, then

$$H_A(x,y) = \frac{(\pi/2) H_A(0,x) H_A(0,y)}{1 - \cos(\theta_A(x) - \theta_A(y))} [1 + O(\frac{\varepsilon_n^3}{|\theta_A(x) - \theta_A(y)|})].$$

Loop-erased Random Walk

Suppose $S = [S(0), S(1), \dots, S(m)]$ is a simple random walk path of length m

Let $\Lambda(S)$ be the loop-erased part of S, which can be constructed as follows.

If S is already self-avoiding, set $\Lambda(S) = S$. Otherwise, let $s_0 = \max\{j : S(j) = S(0)\}.$

For i > 0, let $s_i = \max\{j : S(j) = S(s_{j-1} + 1)\}.$

If we let $n = \min\{i : s_i = m\}$, then $\Lambda(S) = [S(s_0), S(s_1), \dots, S(s_n)]$.

Although simple random walk in \mathbb{Z}^2 is recurrent, the loop-erasing procedure makes perfect sense for any finite segment.

In particular, since $\tau_A < \infty$ a.s., there is no problem discussing $\Lambda([S(0), S(1), \dots, S(\tau_A)])$.

Note. It is not possible to define loop-erased Brownian motion in an analogous way since loops exist at arbitrarily small scales.

Fomin's Identity, I

Suppose that $A \in \mathcal{A}^n$ and $x^1, x^2, \dots, x^N \in \partial A$.

Let S^1, S^2, \dots, S^N be independent simple random walks starting at x^1, x^2, \dots, x^N , respectively.

Set $\tau_A^k := \inf\{j > 0 : S_j^k \not\in A\}.$

Let $L^k = \Lambda(S^k)$ be the loop erasure of the path $[S^k(0) = x^k, S^k(1), \dots, S^k(\tau_A^k)]$.

Let $\mathcal{E} = \mathcal{E}(x^1,\dots,x^N,y^1,\dots,y^N;A)$ be the event

- $\bullet \ S^k(\tau_A^k) = y^k, \quad k=1,\dots,N \text{, and}$
- $S^k[0, \tau_A^k] \cap \{L^1 \cup \dots \cup L^{k-1}\} = \emptyset, \quad k = 2, \dots, N.$

Fomin's Identity, II

Theorem (Fomin).

$$\mathbb{P}\{\mathcal{E}\} = \det[\mathbf{H}_A],$$

where $\mathbf{H}_A = [H_A(x^k, y^\ell)]$ is the $N \times N$ hitting matrix

$$\mathbf{H}_A = \begin{bmatrix} H_A(x^1, y^1) & \cdots & H_A(x^1, y^N) \\ \vdots & \ddots & \vdots \\ H_A(x^N, y^1) & \cdots & H_A(x^N, y^N) \end{bmatrix}$$

Consequences

Theorem. Suppose that $A \in \mathcal{A}^n$ and $x^1, \dots, x^N, y^1, \dots, y^N \in \partial A$ with

$$\delta = \min_{1 \le k, \ell \le N} \{ |\theta_A(x^k) - \theta_A(y^\ell)| \} \ge \varepsilon_n.$$

Let $\varphi_A(x^k, y^\ell) = [1 - \cos(\theta_A(x^k) - \theta_A(y^\ell))]^{-1}$. If \mathcal{E} is the event defined as before, then

$$\mathbb{P}\{\mathcal{E}\} = (\pi/2)^N \left[\prod_{k=1}^N H_A(0, x^k) \right] \left[\prod_{\ell=1}^N H_A(0, y^{\ell}) \right] \det[\mathbf{\Phi}_A] \left[1 + O(\varepsilon_n^3 \delta^{-1}) \right]$$

where Φ_A is the $N \times N$ matrix $\Phi_A = [\varphi_A(x^k, y^\ell)]$.

Note.

$$\varphi_A(x^k, y^\ell) = 2\pi H_{\partial \mathbb{D}}(e^{\theta_A(x^k)}, e^{\theta_A(y^\ell)})$$

Scaling Limit

Suppose that $D\subseteq\mathbb{C}$ is a simply connected domain; ∂_1 and ∂_2 are disjoint non-trivial subarcs of ∂D ; D_N is the N-scale approximate to D; $\tilde{D_N}$ is the associated domain; $\tilde{\partial_{N,1}}$ and $\tilde{\partial_{N,2}}$ are the associated subarcs.

Then, as $N \to \infty$,

$$\sum_{x^1,...,x^k \in \partial_1^N} \sum_{y^1,...,y^k \in \partial_2^N} \det[H_{\partial D^N}(x^j,y^{j'})]_{1 \leq j,j' \leq k}$$

converges to a conformally invariant limit. In fact, this limit is

$$\int_{(\partial_1)^k} \int_{(\partial_2)^k} \det[H_{\partial D}(x^j, y^{j'})]_{1 \le j, j' \le k} |dx^1| \cdots |dx^k| |dy^1| \cdots |dy^k|.$$

Furthermore, the measure on simple random walk excursions $\mu_{D,N}^{\rm RW}(\partial_{N,1},\partial_{N,2})$ coverges to the measure on excursions $\mu_{\partial D_N}(\partial_{N,1}^{\tilde{r}},\partial_{N,2}^{\tilde{r}})$.

And, the measure on excursions $\mu_{\partial D_N}(\partial_{N,1}^{\tilde{r}},\partial_{N,2}^{\tilde{r}})$ converges to $\mu_{\partial D}(\partial_1,\partial_2)$.