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Review of SLE

Let H = {z ∈ C : ℑ(z) > 0} denote the upper half plane, and consider a simple

(non-self-intersecting) curve γ : [0,∞)→ H with γ(0) = 0 and γ(0,∞) ⊂ H.

For every fixed t ≥ 0, the slit plane H t := H \ γ(0, t] is simply connected and so by

the Riemann mapping theorem, there exists a unique conformal transformation

gt : H t → H satisfying gt(z)− z → 0 as z →∞ which can be expanded as

gt(z) = z +
b(t)

z
+O

`

|z|−2
´

, z →∞,

where b(t) = hcap(γ(0, t]) is the half-plane capacity of γ up to time t.H t H

(0) = 0 Ut := gt((t))gt[0; t℄ �!(t)

gt([0; t℄) � R
It can be shown that there is a unique point Ut ∈ R for all t ≥ 0 with

Ut := gt(γ(t)) and that the function t 7→ Ut is continuous.
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Review of SLE (cont)

gt(z) = z +
b(t)

z
+O

`

|z|−2
´

, z →∞, H t = H \ γ(0, t]

The evolution of the curve γ(t), or more precisely, the evolution of the conformal

transformations gt : H t → H, can be described by a PDE involving Ut.

This is due to C. Loewner (1923) who showed that if γ is a curve as above such

that its half-plane capacity b(t) is C1 and b(t)→∞ as t→∞, then for z ∈ H

with z 6∈ γ[0,∞), the conformal transformations {gt(z), t ≥ 0} satisfy the PDE

∂

∂t
gt(z) =

ḃ(t)

gt(z)− Ut
, g0(z) = z.

Note that if b(t) ∈ C1 is an increasing function, then we can reparametrize the

curve γ so that hcap(γ(0, t]) = b(t). This is the so-called parametrization by

capacity.
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Review of SLE (cont)

∂

∂t
gt(z) =

ḃ(t)

gt(z)− Ut
, g0(z) = z. (∗)

The obvious thing to do now is to start with a continuous function t 7→ Ut from

[0,∞) to R and solve the Loewner equation for gt.

Ideally, we would like to solve (∗) for gt, define simple curves γ(t), t ≥ 0, by setting

γ(t) = g−1
t (Ut), and have gt map H \ γ(0, t] conformally onto H.

Although this is the intuition, it is not quite precise because we see from the

denominator on the right-side of (∗) that problems can occur if gt(z)− Ut = 0.

Formally, if we let Tz be the supremum of all t such that the solution to (∗) is

well-defined up to time t with gt(z) ∈ H, and we define H t = {z : Tz > t}, then gt

is the unique conformal transformation of H t onto H with gt(z)− z → 0 as t→∞.
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Review of SLE (cont)

The novel idea of Schramm was to take the continuous function Ut to be a

one-dimensional Brownian motion starting at 0 with variance parameter κ ≥ 0.

The chordal Schramm-Loewner evolution with parameter κ ≥ 0 with the

standard parametrization (or simply SLEκ) is the random collection of conformal

maps {gt, t ≥ 0} obtained by solving the initial value problem

∂

∂t
gt(z) =

2

gt(z)−
√
κWt

, g0(z) = z, (LE)

where Wt is a standard one-dimensional Brownian motion.
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Review of SLE (cont)

The question is now whether there exists a curve associated with the maps gt.

• If 0 < κ ≤ 4, then there exists a random simple curve γ : [0,∞)→ H with

γ(0) = 0 and γ(0,∞) ⊂ H, i.e., the curve γ(t) = g−1
t (
√
κBt) never re-visits

R. As well, the maps gt obtained by solving (∗) are conformal transformations

of H \ γ(0, t] onto H. For this range of κ, our intuition matches the theory!

• For 4 < κ < 8, there exists a random curve γ : [0,∞)→ H. These curves have

double points and they do hit R, but they never cross themselves! As such,

H \ γ(0, t] is not simply connected. However, H \ γ(0, t] does have a unique

connected component containing ∞. This is H t and the maps gt are

conformal transformations of H t onto H. We think of H t = H \Kt where Kt

is the hull of γ(0, t] visualized by taking γ(0, t] and filling in the holes.

• For κ ≥ 8, there exists a random curve γ : [0,∞)→ H which is space-filling!

Furthermore, it has double points, but does not cross itself!

As a result, we also refer to the curve γ as chordal SLEκ. SLE paths are extremely

rough: the Hausdorff dimension of a chordal SLEκ path is min{1 + κ/8, 2}.
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κ = 1 κ = 2
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κ = 8
3 κ = 3
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Review of SLE (cont)

Since there exists a curve γ associated with the maps gt, it is possible to

reparametrize it.

It can be shown that if Ut is a standard one-dimensional Brownian motion, then

the solution to the initial value problem

∂

∂t
gt(z) =

2/κ

gt(z)− Ut
=

a

gt(z)− Ut
, g0(z) = z,

is chordal SLEκ parametrized so that hcap(γ(0, t]) = 2t/κ = at.

Finally, chordal SLE as we have defined it can also be thought of as a measure on

paths in the upper half plane H connecting the boundary points 0 and ∞.

SLE is conformally invariant and so we can define chordal SLEκ in any simply

connected domain D connecting distinct boundary points z and w to be the image

of chordal SLEκ in H from 0 to ∞ under a conformal transformation from H onto

D sending 0 7→ z and ∞ 7→ w.
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Excursion Poisson Kernel

Suppose that D ⊂ C is a simply connected Jordan domain and that ∂D is locally

analytic at x and y. The excursion Poisson kernel is defined as

H∂D(x, y) := lim
ε→0

1

ε
HD(x+ εnx, y)

where HD(z, y) for z ∈ D is the usual Poisson kernel, and nx is the unit normal at

x pointing into D.

D

y

x
x + εnx
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f
D D′

y

f(y)

f(x)

x

Proposition: If f : D→ D′ is a conformal transformation where D′ ⊂ C is also a

simply connected Jordan domain, and ∂D′ is locally analytic at f(x), f(y), then

H∂D(x, y) = |f ′(x)||f ′(y)|H∂D′(f(x), f(y)).

Example: Unit disk D: H∂D(x, y) =
1

π |y − x|2 =
1

2π(1− cos(arg y − arg x))
.

Example: Upper half plane H: H∂H(x, y) =
1

π (y − x)2 .
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SLE as a finite measure on paths

SLE is conformally invariant and so we can define chordal SLEκ in any simply

connected domain D connecting distinct boundary points z and w to be the image

of chordal SLEκ in H from 0 to ∞ under a conformal transformation from H onto

D sending 0 7→ z and ∞ 7→ w.

Let µ#
D(z, w) denote the chordal SLEκ probability measure on paths in D from z

to w.

Define the finite measure

QD(z,w) = H(D; z, w)µ#
D(z, w)

where H(D; z, w) is defined for the upper half plane H by setting

H(H; 0,∞) = 1 and H(H;x, y) =
1

|y − x|2b

and for other simply connected domains D by conformal covariance

H(D; z, w) = |f ′(z)|b |f ′(w)|bH(D′; f(z), f(w))

where f : D → D′ is a conformal transformation (assuming appropriate

smoothness) and b > 0 is a parameter.
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SLE as a finite measure on paths (cont)

If we choose b = 6−κ
2κ

, then for b ≥ 1
4

(i.e., 0 < κ < 4), the measure QD(z, w)

satisfies:

• Conformal covariance. If f : D→ f(D) is a conformal transformation and

f(D) is analytic at f(z), f(w), then

f ◦QD(z, w) = |f ′(z)|b |f ′(w)|bQf(D)(f(z), f(w))

• Boundary perturbation. If D ⊂ D′ and ∂D, ∂D′ agree near z, w, then

YD,D′ (z, w)(γ) =
dQD(z,w)

dQD′ (z, w)
(γ) = 1{γ ⊂ D}e−cΘ/2

where Θ is the measure of the set of Brownian loops in D′ that intersect both

γ and D, and c =
(3κ−8)(6−κ)

2κ
.

• In particular, if f : D′ → f(D′) is a conformal transformation, then

dQD(z, w)

dQD′ (z,w)
=

dQf(D)(f(z), f(w))

dQf(D′)(f(z), f(w))
.
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The Basic Setup for Multiple Paths

– D ⊂ C simply connected, ∂D Jordan

– z1, . . . , zn, wn, . . . , w1 distinct points ordered counterclockwise on ∂D

– write z = (z1, . . . , zn), w = (w1, . . . , wn)

– fix a parameter b > 0 (boundary scaling exponent or boundary conformal weight)

Goal: To define a measure

QD,b,n(z,w)

on mutually avoiding n-tuples (γ1, . . . , γn) of simple paths in D, and satisfying

certain properties:

(1) conformal covariance (2) boundary perturbation

(3) cascade relation (4) Markov property

Note that γi : [0, ti]→ C with γi(0) = zi, γ
i(ti) = wi, γ(0, t

i) ⊂ D.
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Conformal Covariance

If D is analytic at z, w, then QD,b,n(z,w) is a non-zero, finite measure supported

on n-tuples (γ1, . . . , γn) where γj is a simple curve in D connecting zj and wj and

γj ∩ γk = ∅, 1 ≤ j < k ≤ n.

Moreover, if f : D → f(D) is a conformal transformation and f(D) is analytic at

f(z), f(w), then

f ◦QD,b,n(z,w) = |f ′(z)|b |f ′(w)|b Qf(D),b,n(f(z), f(w)) (∗)

where f(z) = (f(z1), . . . , f(zn)) and f ′(z) = f ′(z1) · · · f ′(zn).
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Figure 1: Conformal Covariance
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Recall: f ◦QD,b,n(z,w) = |f ′(z)|b |f ′(w)|bQf(D),b,n(f(z), f(w)) (∗)

Write

QD,b,n(z,w) = HD,b,n(z,w)µ#
D,b,n(z,w),

where HD,b,n(z,w) = |QD,b,n(z,w)| and µ#
D,b,n(z,w) is a probability measure.

The conformal covariance condition (∗) then becomes the scaling rule for H,

HD,b,n(z,w) = |f ′(z)|b |f ′(w)|bHf(D),b,n(f(z), f(w)),

and the conformal invariance rule for µ#,

f ◦ µ#
D,b,n(z,w) = µ#

f(D),b,n
(f(z), f(w)).

Since µ# is a conformal invariant, we can define µ#
D,b,n(z,w) even if the

boundaries are not smooth at z, w.
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Boundary Perturbation

Suppose D ⊂ D′ are Jordan domains and ∂D, ∂D′ agree and are analytic in

neighbourhoods of z, w. Then QD,b,n(z,w) is absolutely continuous with respect

to QD′,b,n(z,w). Moreover, the Radon-Nikodym derivative

YD,D′,b,n(z,w) =
dQD,b,n(z,w)

dQD′,b,n(z,w)

is a conformal invariant.
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D0 nD w3
z1
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Recall: D ⊂ D′ and

YD,D′,b,n(z,w) =
dQD,b,n(z,w)

dQD′,b,n(z,w)

Saying that YD,D′,b,n(z,w) is a conformal invariant means that if f : D′ → f(D′)

is a conformal map that extends analytically in neighbourhoods of z, w, then

Yf(D),f(D′),b,n(f(z), f(w))(f ◦ γ̄) = YD,D′,b,n(z,w)(γ̄), (∗)

where γ̄ = (γ1, . . . , γn) and f ◦ γ̄ = (f ◦ γ1, . . . , f ◦ γn).

As with µ#
D,b,n(z,w), the last condition (∗) implies that YD,D′,b,n(z,w) is

well-defined even if the boundaries are not smooth at z,w.
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Cascade Relation

Let

ẑ = (z1, . . . , zj−1, zj+1, . . . , zn), ŵ = (w1, . . . , wj−1, wj+1, . . . , wn),

γ̂ = (γ1, . . . , γj−1, γj+1, . . . , γn).

The marginal distribution on γ̂ induced by QD,b,n(z,w) is absolutely continuous

with respect to QD,b,n−1(ẑ, ŵ) with Radon-Nikodym derivative HD̂,b,1(zj , wj).

Here D̂ is the subdomain of D \ γ̂ whose boundary includes zj , wj .
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Markov Property

In the measure µ#
D,b,1(z, w), the conditional distribution on γ given an initial

segment γ[0, t] is µ#
D\γ[0,t],b,1

(γ(t), w).

��
��
��
��

�
�
�
�

��
��
��
��

z
w(t)

Note: We have stated this condition in a way that does not use two dimensions

and conformal invariance.
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Existence of the Configurational Measure

Theorem (K-Lawler): For any b ≥ 1
4
, there exists a family of measures

QD,b,n(z,w) supported on n-tuples of mutually avoiding simple curves satisfying

• conformal covariance

• boundary perturbation

• cascade relation

• Markov property

Moreover, the simple curve γi is a chordal SLEκ from zi to wi in D where

κ =
6

2b+ 1
.

Note: b ≥ 1
4
←→ 0 < κ ≤ 4
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The Partition Function for Two Paths

By conformal invariance, it suffices to work in D = H.

If 0 < x1 < · · · < xn < yn < · · · < y1 <∞, let

H∗
H,b,n(x,y) = lim

w→∞
w2bHH,b,n+1((0,x), (w,y)).

Proposition: If b ≥ 1/4 and n+ 1 = 2, then

H∗
H,b,1(x, y) = (y − x)−2b Γ(2a) Γ(6a− 1)

Γ(4a) Γ(4a− 1)
(x/y)a F (2a, 1− 2a, 4a;x/y)

where F denotes the hypergeometric function and a =
2

κ
=

2b+ 1

3
.

Note: This result first appeared in J. Dubédat, and was derived non-rigorously by

M. Bauer, D. Bernard, and K. Kytölä. Our configurational approach provides

another rigorous derivation.
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Fomin’s identity: The Motivating Question

What is the probability that γ[0,∞), a chordal SLE2 from 0 to ∞ in the upper

half plane H, and β[0, tβ ], a Brownian excursion from x to y in H, do not intersect

(with 0 < x < y <∞)?

0 x y

∞

γ[0,∞), an SLE2 β[0, 1], a Brownian excursion

Question: What is P{ γ[0,∞) ∩ β[0, tβ ] = ∅ }?
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Motivation

The motivation for asking this question is that the probability under consideration

is the natural continuous analogue of the probability that arises in Fomin’s identity.

In fact, Fomin’s original identity expressed the probability of a particular functional

of loop-erased random walk in terms of the determinant of the hitting matrix for

simple random walk, and in that work he conjectured that this identity holds for

continuous processes:

“. . . we do not need the notion of loop-erased Brownian motion. Instead,

we discretize the model, compute the probability, and then pass to the

limit.”
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Fomin’s identity for two paths

Fomin’s original identity actually holds in much more generality and may be viewed

as an extension of the Karlin-McGregor formula.

The version we state is for the special case of two simple random walk paths in a

finite, simply connected subset A ⊂ Z2 connecting pairs of boundary points

x1, x2, y2, y1 ordered counterclockwise around ∂A.

x1

x2

y1

y2

The simple random walk path S1 and its loop-erasure L1.

The simple random walk path S2.

Note: In this example, L1 ∩ S2 = ∅ although S1 ∩ L2 6= ∅.
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x1

x2

y1

y2

The simple random walk path S1 and its loop-erasure L1.

The simple random walk path S2.

Theorem (Fomin): If L1 is the path of a loop-erased random walk excursion from

x1 to y1, and S2 is the path of a simple random walk excursion from x2 to y2, then

P{L1 ∩ S2 = ∅ } =
deth∂A(x,y)

h∂A(x1, y1)h∂A(x2, y2)

=
h∂A(x1, y1)h∂A(x2, y2)− h∂A(x1, y2)h∂A(x2, y1)

h∂A(x1, y1)h∂A(x2, y2)

where h∂A(x, y) := Px{SτA
= y, S1 ∈ A} is the discrete excursion Poisson kernel.
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The non-intersection probability of SLE2 and Brownian motion

Theorem (K-Lawler): If 0 < x < y <∞ are real numbers, γ : [0,∞)→ H is a

chordal SLE2 from 0 to ∞ in H, and β : [0, tβ ]→ H is a Brownian excursion from

x to y in H, then

P{ γ[0,∞) ∩ β[0, tβ ] = ∅ } =
detH∂D(f(x), f(y))

H∂D(f(0), f(∞))H∂D(f(x), f(y))
(∗)

where f : H→ D is a conformal transformation.

Strategy for the Proof

Our strategy for establishing this result will be as follows. We will first determine

an explicit expression for P{ γ[0,∞) ∩ β[0, tβ ] = ∅ }, and we will then show that

this explicit expression is the same as the right side of (∗).
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Proof

For 0 < t <∞, let Ht denote the slit-plane Ht = H \ γ(0, t] so that

P{γ[0, t] ∩ β[0, tβ ] = ∅} = E
x,y

»

H∂Ht
(x, y)

H∂H(x, y)

–

.

0 x y0 x y

γ[0, t]

Ht = H \ γ[0, t] H

Letting t→∞ implies

P{γ[0,∞) ∩ β[0, tβ ] = ∅} = E
x,y

»

lim
t→∞

H∂Ht
(x, y)

H∂H(x, y)

–

.

28



Let gt : Ht → H be the unique conformal transformation satisfying the

hydrodynamic normalization gt(z)− z = o(1) as z →∞ so that gt satisfies the

chordal Loewner equation

∂

∂t
gt(z) =

1

gt(z)− Ut
, g0(z) = z,

where Ut = −Bt is a standard Brownian motion.

0

γ[0, t]
gt : Ht → H

Ut = gt(γ(t))

We now map Ht to H by gt and use conformal covariance to conclude that

H∂Ht
(x, y) = g′t(x)g

′
t(y)H∂H(gt(x), gt(y))

and so

H∂Ht
(x, y)

H∂H(x, y)
=
g′t(x)g

′
t(y)H∂H(gt(x), gt(y))

H∂H(x, y)
= (y − x)2 · g′t(x)g

′
t(y)

(gt(y)− gt(x))2

where the last equality follows from the explicit form of H∂H.
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Recall:
H∂Ht

(x, y)

H∂H(x, y)
= (y − x)2 · g′t(x)g

′
t(y)

(gt(y)− gt(x))2

Let

Jt :=
g′t(x)g

′
t(y)

(gt(y)− gt(x))2
and set J∞ := lim

t→∞
Jt.

Let P (x, y) := P{γ[0,∞) ∩ β[0, tβ ] = ∅} so that

P (x, y) = (y − x)2E
x,y

»

lim
t→∞

g′t(x)g
′
t(y)

(gt(y)− gt(x))2

–

= (y − x)2E
x,y [J∞].

In order to determine P (x, y), we will derive and solve an ODE for it.
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Let Xt := gt(x) +Bt and Yt := gt(y) +Bt so that

dXt =
1

Xt
dt+ dBt and dYt =

1

Yt
dt+ dBt.

Some routine calculations give

∂

∂t
log g′t(x) = − 1

X2
t

,
∂

∂t
log g′t(y) = − 1

Y 2
t

, and
∂

∂t
log(gt(y)−gt(x)) = − 1

Xt Yt
,

and so we see that

Jt = J0 exp

Z t

0
∂s[log Js] ds

ff

=
1

(y − x)2 exp

(

−
Z t

0

„

1

Xs
− 1

Ys

«2

ds

)

.

Hence, putting things together we find

P (x, y) = E
x,y

"

exp

(

−
Z ∞

0

„

1

Xs
− 1

Ys

«2

ds

)#

.
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It now follows from the usual Markov property that Jt P (Xt, Yt) is a martingale.

That is, if Mt := Ex,y[J∞|Ft] so that Mt is a martingale, then

Mt = E
x,y

"

1

(y − x)2 exp

(

−
Z ∞

0

„

1

Xs
− 1

Ys

«2

ds

)

˛

˛

˛

˛

Ft

#

=
1

(y − x)2 exp

(

−
Z t

0

„

1

Xs
− 1

Ys

«2

ds

)

·

· Ex,y

"

exp

(

−
Z ∞

t

„

1

Xs
− 1

Ys

«2

ds

)

˛

˛

˛

˛

Ft

#

= Jt P (Xt, Yt).

Itô’s formula now implies that

−
„

1

x
− 1

y

«2

P +
1

x

∂P

∂x
+

1

y

∂P

∂y
+

1

2

∂2P

∂x2
+

1

2

∂2P

∂y2
+

∂2P

∂x∂y
= 0.

Since the probability in question only depends on the ratio x/y, we see that

P (x, y) = φ(x/y) for some function φ. Thus, letting u = x/y and noting that

0 < u < 1, we find

u2 (1− u)φ′′(u) + 2uφ′(u)− 2(1− u)φ(u) = 0.
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The constraint 0 < u < 1 allows us to consider ψ(u) := u−1(1− u)−3φ(u) which

satisfies the ODE

u (1− u)ψ′′(u) + (4− 8u)ψ′(u)− 10ψ(u) = 0.

This is the well-known hypergeometric differential equation, and so

ψ(u) = C1
2− u

(1− u)3
+ C2

1− 2u

u3(1− u)3

which implies that

φ(u) = C1u(2− u) + C2u
−2(1− 2u).

However, physical considerations dictate that φ(u)→ 0 as u→ 0+ and φ(u)→ 1

as u→ 1−, and so C2 = 0 and C1 = 1.

Thus, φ(u) = u(2− u) and so we find

P{γ[0,∞) ∩ β[0, tβ ] = ∅} = P (x, y) = φ(x/y) =
x

y

„

2− x

y

«

.
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As already noted, the probability in question only depends on the ratio x/y, and so

it suffices without loss of generality to assume that 0 < x < 1 and y = 1.

Furthermore, we may assume that the conformal transformation f : H→ D is

f(z) =
iz + 1

z + i
,

so that f(0) = −i, f(y) = f(1) = 1, f(∞) = i, and

f(x) =

„

2x

x2 + 1

«

+ i

„

x2 − 1

x2 + 1

«

= exp



−i arctan
„

1− x2

2x

«ff

.

Writing f(x) = eiθ, we find that

detH∂D(f(x), f(y))

H∂D(f(0), f(∞))H∂D(f(x), f(y))

=
H∂D(−i, i)H∂D(eiθ, 1)−H∂D(−i, 1)H∂D(eiθ, i)

H∂D(−i, i)H∂D(eiθ, 1)

=
2 cos θ + sin θ − 1

1 + sin θ
.
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Since θ = − arctan
“

1−x2

2x

”

we see that cos θ = 2x
x2+1

and sin θ = 1−x2

x2+1
which

upon substitution gives

2 cos θ + sin θ − 1

1 + sin θ
=

4x
x2+1

+ 1−x2

x2+1
− 1

1 + 1−x2

x2+1

=
4x− 2x2

2
= x(2− x).

Comparing this with our earlier result proves the theorem. �

An Example

Example: Let x = 1/2 and y = 1. Then f : H→ D has f(0) = i, f(1) = 1,

f(∞) = −i, and f(1/2) = exp{−i arctan(3/4)}. A simple calculation gives

P{γ[0,∞) ∩ β[0, tβ ] = ∅} =
2 · 4

5
+ 3

5
− 1

1 + 3
5

=
1

2

„

2− 1

2

«

=
3

4
.
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Corollary

Suppose that D ⊂ C is a bounded, simply connected planar domain, and that

x1, x2, y2, y1 are four points ordered counterclockwise around ∂D. The probability

a chordal SLE2 from x1 to y1 in D does not intersect a Brownian excursion from

x2 to y2 in D is Φ(x2)
`

2− Φ(x2)
´

where Φ : D → H is the conformal

transformation with Φ(x1) = 0, Φ(y1) =∞, Φ(y2) = 1.

x
1

x
2

y
2

y
1

chordal SLE

BM

This statement can be easily modified to cover the case when D is unbounded

and/or the case when ∞ is one of the boundary points.
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