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Review of SLE

Let H= {z € C: 3(z) > 0} denote the upper half plane, and consider a simple
(non-self-intersecting) curve v : [0, 00) — H with v(0) = 0 and ~(0, c0) C H.

For every fixed t > 0, the slit plane H¢ := H \ (0, t] is simply connected and so by
the Riemann mapping theorem, there exists a unique conformal transformation
gt : Hy — H satisfying g¢(z) — z — 0 as z — oo which can be expanded as

gt(z) =z + @ —|—O(\z|_2), z — 00,

where b(t) = hcap(v(0,t]) is the half-plane capacity of ~ up to time ¢.

9:(7[0,¢]) C R

It can be shown that there is a unique point U; € R for all ¢ > 0 with
Ut := g+(~(t)) and that the function ¢ — Uy is continuous.




Review of SLE (cont)

O (lz|7%), z—o00, H¢=H\~(0,¢

The evolution of the curve ~(t), or more precisely, the evolution of the conformal
transformations g+ : Hy — HI, can be described by a PDE involving Us.

This is due to C. Loewner (1923) who showed that if v is a curve as above such
that its half-plane capacity b(t) is C! and b(t) — oo as t — oo, then for z € H
with z & ~[0, c0), the conformal transformations {g:(z),t > 0} satisfy the PDE

0 b(t)

= gt(2) =

5 o) —Th go(z) = 2.

Note that if b(t) € C! is an increasing function, then we can reparametrize the
curve vy so that hcap(v(0,t]) = b(t). This is the so-called parametrization by
capacity.




Review of SLE (cont)

9 i b(t)
gt(z) ) o

5 go(z) = z. ()

The obvious thing to do now is to start with a continuous function t +— U from
[0,00) to R and solve the Loewner equation for g;.

|deally, we would like to solve (%) for g;, define simple curves ~(t), t > 0, by setting
v(t) = g; ' (Ut), and have g; map H \ v(0, t] conformally onto H.

Although this is the intuition, it is not quite precise because we see from the
denominator on the right-side of (x) that problems can occur if g:(z2) — U = 0.

Formally, if we let T, be the supremum of all ¢ such that the solution to (x) is
well-defined up to time ¢ with g+(z) € H, and we define Hy = {z : T, > t}, then g4
is the unique conformal transformation of H; onto H with g¢(2) — 2z — 0 as t — oo.




Review of SLE (cont)

The novel idea of Schramm was to take the continuous function U; to be a

one-dimensional Brownian motion starting at O with variance parameter x > 0.

The chordal Schramm-Loewner evolution with parameter « > 0 with the
standard parametrization (or simply SLE, ) is the random collection of conformal
maps {g+, t > 0} obtained by solving the initial value problem

PN —
g = gt(z) = VEW

z) = z, LE
Y go(z) (LE)
where W} i1s a standard one-dimensional Brownian motion.




Review of SLE (cont)

The question is now whether there exists a curve associated with the maps g;.

o If 0 < k < 4, then there exists a random simple curve v : [0, 00) — H with
v(0) = 0 and (0, 00) C H, i.e., the curve v(t) = g; * (v/kBt) never re-visits
R. As well, the maps g+ obtained by solving () are conformal transformations
of H \ «(0,t] onto H. For this range of k, our intuition matches the theory!

For 4 < k < 8, there exists a random curve ~ : [0,00) — H. These curves have
double points and they do hit R, but they never cross themselves! As such,

H \ (0, t] is not simply connected. However, H \ v(0, t] does have a unique
connected component containing co. This is H+ and the maps g; are
conformal transformations of H+ onto H. We think of H; = H \ K¢ where K,
is the hull of ~(0, t] visualized by taking (0, t] and filling in the holes.

For k > 8, there exists a random curve v : [0, 00) — H which is space-filling!
Furthermore, it has double points, but does not cross itself! As in the case

4 < Kk < 8, the maps g: are conformal transformations of H; = H \ K¢ onto H
where K} is the hull of (0, ¢].

As a result, we also refer to the curve « as chordal SLE,. SLE paths are extremely
rough: the Hausdorff dimension of a chordal SLE,; path is min{l 4 /8, 2}.




Review of SLE (cont)

Since there exists a curve v associated with the maps g¢, it is possible to
reparametrize it.

It can be shown that if U; is a standard one-dimensional Brownian motion, then
the solution to the initial value problem

égt(z) _ 2/k a
gt (

go(z) = z,

ot Z)—Ut - gt(z)—Ut’

is chordal SLE,, parametrized so that hcap(v(0,t]) = 2t/k = at.

Finally, chordal SLE as we have defined it can also be thought of as a measure on
paths in the upper half plane H connecting the boundary points 0 and oc.

SLE is conformally invariant and so we can define chordal SLE, in any simply
connected domain D connecting distinct boundary points z and w to be the image
of chordal SLE. in H from O to oo under a conformal transformation from H onto

D sending 0 — z and oo — w.










Our motivation

MK was interested in multiple SLEs and wanted to estimate the diameter of a
chordal SLE path in H connecting the boundary points 0 and x > 0.

TA was interested in Hausdorff dimension and wanted to estimate the probability
that a chordal SLE path in H connecting 0 and oo intersected a semicircle centred

on the real line.

The two problems are the same.

|deally, we hoped to determine these results asymptotically (~), but could only get

them up to constants (X).

Note. ~ implies < implies ~.




The main estimate

Theorem. Let > 0 bereal, 0 < r < 1/3, and C(x;rz) = {x +rze? : 0 < 0 < 7}
denote the semicircle of radius rx centred at x in the upper half plane, and
suppose that v : [0,00) — H is a chordal SLE, in H from 0 to co.

88—k

(a) If 0 < k < 8, then P{v¥[0,00) NC(z;7z) 0} <X r =

(b) If kK = 8/3, then P{~[0,00) NC(z;7rz) # 0} =1 — (1 —r2)%/8 ~ %TQ.




An equivalent formulation

Corollary. Let > 0 be real, R > 3, and C(0; Rx) = {Rxze’® : 0 < § < 7} denote
the circle of radius Rx centred at O in the upper half plane, and suppose that
v’ :[0,1] — H is a chordal SLE in H from 0 to =.

K—8

(a) If 0 < k <8, then P{7/[0,1]NC(0; Rx) #0} < R =

(b) If k =8/3, then P{y/[0,1]NC(0; Rx) # 0} =1— (1 — R"2)5/8 ~ 3 R™2,




Derivation of the corollary

The idea is to determine the appropriate sequence of conformal transformations
and use the conformal invariance of chordal SLE.

Suppose that 7/ : [0,1] — H is an SLE, in H from 0 to = > 0. Note that we are not
interested in the parametrization of the SLE path, but only in the points visited
by its trace. Suppose that R > 3, and consider C(0; Rx) = {Rxze'® : 0 < 6 < 7}.
For z € H, let
R? z
R2—-1x—=z
so that h: H — H is a conformal (Mobius) transformation with h(0) = 0 and
h(x) = oco. It is straightforward (though tedious) to verify that

h(z) =

h(C(0; Rz)) = C (-1; }i{) |




Derivation of the corollary (cont.)

If v:[0,00) — H is a chordal SLE,; in H from 0 to oo, then the conformal
invariance of SLE implies that

P{~'[0,1] N C(0; Rx) # 0} = P{h(~'[0,1]) N h(C(0; Rx)) # 0}

= P{v[O,oo) ne (—1, E) 4 (Z)}.

By the symmetry of SLE about the imaginary axis,

P {’y[O, o) N C (-1, %) £ (2)} By {’y[O, ) N C (1,

X

7[0, o0)




The k = 8/3 case

The key fact that is needed is the restriction property of chordal SLEg 3.

Fact. [Lawler-Schramm-Werner] If - : [0, 00) — H is a chordal SLEg /3 in H from
0 to oo, and A is a bounded subset of H such that H \ A is simply connected,
A=HNA, and 0 QZ, then

P{~[0,00) N A = 0} = [#,(0)]*®

where ® 4 : H\ A — H is the unique conformal transformation of H \ A to H with
®4(0) =0and Py(z) ~ 2z as z — 0.




The k = 8/3 case (cont.)

This implies that
P{~[0,00) N C(z;rx) =0} = [@’(O)P/S

where @ = & ;... (2) is the conformal transformation from H \ D(z;rz) onto H
with ®(0) = 0 and ®(z) ~ z as z — 0.
H\ D(x;rx)

N

‘ ¢ :H\D(r;rz) — H
®

0 r—rr x T+ rx

In fact, the exact form of ®(z) is given by

7,2332

d(z) =2+ + r?x.

z— X

Note that ®(0) = 0, ®(c0) = 0o, and ®’(co0) = 1. We calculate ®’(0) = 1 — r?
and therefore conclude that

P{7[0,00) NC(z;rx) = 0} = (1 — r?)5/8,




Rephrasing the main estimate

Theorem. Let x > 0 be a fixed real number, and suppose 0 < ¢ < z/3. If
7 : [0,00) — H is a chordal SLE, in H from 0 to co with 0 < k < 8 and a = 2/,

then
€

P{~[0,00) NC(x;€) # 0} < (;)4a_1

where C(z;€) is the semicircle of radius € centred at x in the upper half plane.

Written in this form, it is seen to generalize the result of Rohde and Schramm who
prove that for 4 < Kk < 8,

P{y[0,00) N[z — €,z + €] # 0} < (:z:




An application

Let 0 < r < 1/3, and suppose that 7 : [0,00) — H is a chordal SLE,; in H from 0
to oo with 4 < Kk < 8 and a = 2/k.

Theorem. There exist constants ¢/, and ¢!/ such that

1—c rteml < inf P{T, =Ty} < sup P{T, =T} <1—¢/r*o~1
2elyr z€Cy

where

Cr = (1—7“;%)

denotes the circle of radius /2 centred at 1 — r in the upper half plane.

~[0, 00)

Corollary. There exist constants ¢/, and ¢, such that

1—cr* < P{T, =T forall z€C.} <1—¢/r*o 1,




Proof of the application

The proof follows by combining the main result with a method due to Dubédat.

Suppose that 0 < r < 1/3 and consider the two semicircles

cT:c(1—7~;f)

2




Proof of the application (lower bound)

It follows from the rephrased main result that
P{y[0,00) NC.. # 0} =< rta—1
and so there exists a constant ¢/, such that
1 —criel < P{~[0,00) N C. = 0}.
However, it clearly follows that

P{~[0,00)NC, =0} < incf P{T. =T}
z€Cqp
where T, is the swallowing time of the point z € H (and the infimum is over all
z € Cr not z € C;.). From this we conclude that there exists a constant ¢, such
that

1—c il < inf P{T, =T1}.




Proof of the application (upper bound)

In order to derive an upper bound, we use a method due to Dubédat.

Let g+ denote the solution to the chordal Loewner equation with driving function
U: = —B: where By is a standard one-dimensional Brownian motion with Bg = 0.
For t < T, the swallowing time of the point 1, consider the conformal
transformation g; : H\ K; — H given by

gi(z) = gil) + By
gt(1) + Bt

Note that g:(y(t)) =0, g«(1) = 1, gt(00) = 00, and that g:(z) satisfies the
stochastic differential equation

go(z) = z.

a dt d B
dg:(z =|:~ + (1 —a)ge —1:| + |1 — g¢(2 :
S T R R T e

If we now perform a time-change and also denoted the time-changed flow by

{G+(z), t > 0}, then then g:(2) satisfies the SDE

@4@=[%i)+u—amwa—@dwul—aunﬂ%

Dubédat showed that for all k > 0, this does not explode in finite time (wpl).




Proof of the application (upper bound) (cont.)

Therefore, if F' is an analytic function on H such that {F'(g:(2)), t > 0} is a local
martingale, then 1t6’s formula implies that F' must be a solution to the differential
equation

w(l —w)F"(w) + [2a — (2 — 2a)w]F' (w) = 0.

An explicit solution is given by

I'(2a)

A ey

|-t

which is normalized so that F(0) =0 and F'(1) = 1.

Note that this is a Schwarz-Christoffel transformation of the upper half plane onto
the isosceles triangle whose interior angles are (1 — 2a)m, (1 — 2a)m, and (4a — 1)m.




Proof of the application (upper bound) (cont.)

o) T .
Fw) = s 2ar@a =1 /O =g

then the vertices of the traingle are at F'(0) =0, F'(1) =1, and

['(2a)I'(1 — 2a) o(1—2a)mi
I'(2 — 4a)'(4a — 1) '

F(oo) =




Proof of the application (upper bound) (cont.)

Apply the optional sampling theorem to the martingale F(gian7, a1y (2)) to find
that for z € H,

F(z) = FO)P{T, < T\} + F(1)P{T, = T1} + F(co)P{T, > T1}
— P{T, =T1} + F(c0)P{T. > T\ }. (%)

Consequently, identifying the imaginary and real parts of (x) implies that
R{F(z2)} = P{T, =T1} + R{F(oc0)} P{T> > T1}.

Since R{F(c0)} > 0, we conclude P{T, =T1} < R{F(2)} < |F(2)|.

But now integrating along the straight line from 0 to z gives

OISz OO [ e pyte=2,
|

I'(1 —2a)l'(4a — 1)

z|

which relied on the fact that 4a — 2 < 0.




Proof of the application (upper bound) (cont.)

If € Crsothat 0 <1 — 2L < |z] <1— L <1 by definition, then

b, da—2 2l—de 1
/lp_a(l—p)a’_ dp > T

2| ~ 4a —1

P{T, =T} < |F(2)| < 1—cjrte!

,  2174a I'(2a)
Cq = :
“ 4a—-1T(1—-2a)'(4a —1)

Taking the supremum of the previous expression over all z € C,- gives us the

required upper bound.




