Intersection probabilities for a chordal SLE path and a semicircle

Michael J. Kozdron
University of Regina

http://stat.math.uregina.ca/~kozdron/

Recent Progress in Two-Dimensional Statistical Mechanics Banff International Research Station

$$
\begin{aligned}
& \text { July 1, } 2008 \text { Happy Canada Day! } \\
& \text { July 2, } 2008
\end{aligned}
$$

This talk is based on joint work with Tom Alberts of the Courant Institute.

Review of SLE

Let $\mathbb{H}=\{z \in \mathbb{C}: \Im(z)>0\}$ denote the upper half plane, and consider a simple (non-self-intersecting) curve $\gamma:[0, \infty) \rightarrow \overline{\mathbb{H}}$ with $\gamma(0)=0$ and $\gamma(0, \infty) \subset \mathbb{H}$.

For every fixed $t \geq 0$, the slit plane $\mathbb{H}_{t}:=\mathbb{H} \backslash \gamma(0, t]$ is simply connected and so by the Riemann mapping theorem, there exists a unique conformal transformation $g_{t}: \mathbb{H}_{t} \rightarrow \mathbb{H}$ satisfying $g_{t}(z)-z \rightarrow 0$ as $z \rightarrow \infty$ which can be expanded as

$$
g_{t}(z)=z+\frac{b(t)}{z}+O\left(|z|^{-2}\right), \quad z \rightarrow \infty
$$

where $b(t)=\operatorname{hcap}(\gamma(0, t])$ is the half-plane capacity of γ up to time t.

It can be shown that there is a unique point $U_{t} \in \mathbb{R}$ for all $t \geq 0$ with $U_{t}:=g_{t}(\gamma(t))$ and that the function $t \mapsto U_{t}$ is continuous.

Review of SLE (cont)

$$
g_{t}(z)=z+\frac{b(t)}{z}+O\left(|z|^{-2}\right), \quad z \rightarrow \infty, \quad \mathbb{H}_{t}=\mathbb{H} \backslash \gamma(0, t]
$$

The evolution of the curve $\gamma(t)$, or more precisely, the evolution of the conformal transformations $g_{t}: \mathbb{H}_{t} \rightarrow \mathbb{H}$, can be described by a PDE involving U_{t}.

This is due to C. Loewner (1923) who showed that if γ is a curve as above such that its half-plane capacity $b(t)$ is C^{1} and $b(t) \rightarrow \infty$ as $t \rightarrow \infty$, then for $z \in \mathbb{H}$ with $z \notin \gamma[0, \infty)$, the conformal transformations $\left\{g_{t}(z), t \geq 0\right\}$ satisfy the PDE

$$
\frac{\partial}{\partial t} g_{t}(z)=\frac{\dot{b}(t)}{g_{t}(z)-U_{t}}, \quad g_{0}(z)=z
$$

Note that if $b(t) \in C^{1}$ is an increasing function, then we can reparametrize the curve γ so that $\operatorname{hcap}(\gamma(0, t])=b(t)$. This is the so-called parametrization by capacity.

Review of SLE (cont)

$$
\begin{equation*}
\frac{\partial}{\partial t} g_{t}(z)=\frac{\dot{b}(t)}{g_{t}(z)-U_{t}}, \quad g_{0}(z)=z \tag{*}
\end{equation*}
$$

The obvious thing to do now is to start with a continuous function $t \mapsto U_{t}$ from $[0, \infty)$ to \mathbb{R} and solve the Loewner equation for g_{t}.

Ideally, we would like to solve $(*)$ for g_{t}, define simple curves $\gamma(t), t \geq 0$, by setting $\gamma(t)=g_{t}^{-1}\left(U_{t}\right)$, and have g_{t} map $\mathbb{H} \backslash \gamma(0, t]$ conformally onto \mathbb{H}.

Although this is the intuition, it is not quite precise because we see from the denominator on the right-side of $(*)$ that problems can occur if $g_{t}(z)-U_{t}=0$.

Formally, if we let T_{z} be the supremum of all t such that the solution to $(*)$ is well-defined up to time t with $g_{t}(z) \in \mathbb{H}$, and we define $\mathbb{H}_{t}=\left\{z: T_{z}>t\right\}$, then g_{t} is the unique conformal transformation of \mathbb{H}_{t} onto \mathbb{H} with $g_{t}(z)-z \rightarrow 0$ as $t \rightarrow \infty$.

```
Review of SLE (cont)
```

The novel idea of Schramm was to take the continuous function U_{t} to be a one-dimensional Brownian motion starting at 0 with variance parameter $\kappa \geq 0$.

The chordal Schramm-Loewner evolution with parameter $\kappa \geq 0$ with the standard parametrization (or simply SLE_{κ}) is the random collection of conformal maps $\left\{g_{t}, t \geq 0\right\}$ obtained by solving the initial value problem

$$
\begin{equation*}
\frac{\partial}{\partial t} g_{t}(z)=\frac{2}{g_{t}(z)-\sqrt{\kappa} W_{t}}, \quad g_{0}(z)=z \tag{LE}
\end{equation*}
$$

where W_{t} is a standard one-dimensional Brownian motion.

Review of SLE (cont)

The question is now whether there exists a curve associated with the maps g_{t}.

- If $0<\kappa \leq 4$, then there exists a random simple curve $\gamma:[0, \infty) \rightarrow \overline{\mathbb{H}}$ with $\gamma(0)=0$ and $\gamma(0, \infty) \subset \mathbb{H}$, i.e., the curve $\gamma(t)=g_{t}^{-1}\left(\sqrt{\kappa} B_{t}\right)$ never re-visits \mathbb{R}. As well, the maps g_{t} obtained by solving $(*)$ are conformal transformations of $\mathbb{H} \backslash \gamma(0, t]$ onto \mathbb{H}. For this range of κ, our intuition matches the theory!
- For $4<\kappa<8$, there exists a random curve $\gamma:[0, \infty) \rightarrow \overline{\mathbb{H}}$. These curves have double points and they do hit \mathbb{R}, but they never cross themselves! As such, $\mathbb{H} \backslash \gamma(0, t]$ is not simply connected. However, $\mathbb{H} \backslash \gamma(0, t]$ does have a unique connected component containing ∞. This is \mathbb{H}_{t} and the maps g_{t} are conformal transformations of \mathbb{H}_{t} onto \mathbb{H}. We think of $\mathbb{H}_{t}=\mathbb{H} \backslash K_{t}$ where K_{t} is the hull of $\gamma(0, t]$ visualized by taking $\gamma(0, t]$ and filling in the holes.
- For $\kappa \geq 8$, there exists a random curve $\gamma:[0, \infty) \rightarrow \overline{\mathbb{H}}$ which is space-filling! Furthermore, it has double points, but does not cross itself! As in the case $4<\kappa<8$, the maps g_{t} are conformal transformations of $\mathbb{H}_{t}=\mathbb{H} \backslash K_{t}$ onto \mathbb{H} where K_{t} is the hull of $\gamma(0, t]$.
As a result, we also refer to the curve γ as chordal SLE $_{\kappa}$. SLE paths are extremely rough: the Hausdorff dimension of a chordal $\operatorname{SLE}_{\kappa}$ path is $\min \{1+\kappa / 8,2\}$.

Review of SLE (cont)

Since there exists a curve γ associated with the maps g_{t}, it is possible to reparametrize it.

It can be shown that if U_{t} is a standard one-dimensional Brownian motion, then the solution to the initial value problem

$$
\frac{\partial}{\partial t} g_{t}(z)=\frac{2 / \kappa}{g_{t}(z)-U_{t}}=\frac{a}{g_{t}(z)-U_{t}}, \quad g_{0}(z)=z,
$$

is chordal $\operatorname{SLE}_{\kappa}$ parametrized so that $\operatorname{hcap}(\gamma(0, t])=2 t / \kappa=a t$.
Finally, chordal SLE as we have defined it can also be thought of as a measure on paths in the upper half plane \mathbb{H} connecting the boundary points 0 and ∞.

SLE is conformally invariant and so we can define chordal SLE $_{\kappa}$ in any simply connected domain D connecting distinct boundary points z and w to be the image of chordal SLE_{κ} in \mathbb{H} from 0 to ∞ under a conformal transformation from \mathbb{H} onto D sending $0 \mapsto z$ and $\infty \mapsto w$.

Our motivation

MK was interested in multiple SLEs and wanted to estimate the diameter of a chordal SLE path in \mathbb{H} connecting the boundary points 0 and $x>0$.

TA was interested in Hausdorff dimension and wanted to estimate the probability that a chordal SLE path in \mathbb{H} connecting 0 and ∞ intersected a semicircle centred on the real line.

The two problems are the same.

Ideally, we hoped to determine these results asymptotically (\sim), but could only get them up to constants (\asymp).

Note. \sim implies \asymp implies \approx.

The main estimate

Theorem. Let $x>0$ be real, $0<r \leq 1 / 3$, and $\mathcal{C}(x ; r x)=\left\{x+r x e^{i \theta}: 0<\theta<\pi\right\}$ denote the semicircle of radius $r x$ centred at x in the upper half plane, and suppose that $\gamma:[0, \infty) \rightarrow \overline{\mathbb{H}}$ is a chordal SLE $_{\kappa}$ in \mathbb{H} from 0 to ∞.
(a) If $0<\kappa<8$, then $P\{\gamma[0, \infty) \cap \mathcal{C}(x ; r x) \neq \emptyset\} \asymp r^{\frac{8-\kappa}{\kappa}}$.
(b) If $\kappa=8 / 3$, then $P\{\gamma[0, \infty) \cap \mathcal{C}(x ; r x) \neq \emptyset\}=1-\left(1-r^{2}\right)^{5 / 8} \sim \frac{5}{8} r^{2}$.

An equivalent formulation

Corollary. Let $x>0$ be real, $R \geq 3$, and $\mathcal{C}(0 ; R x)=\left\{R x e^{i \theta}: 0<\theta<\pi\right\}$ denote the circle of radius $R x$ centred at 0 in the upper half plane, and suppose that $\gamma^{\prime}:[0,1] \rightarrow \overline{\mathbb{H}}$ is a chordal $\operatorname{SLE}_{\kappa}$ in \mathbb{H} from 0 to x.
(a) If $0<\kappa<8$, then $P\left\{\gamma^{\prime}[0,1] \cap \mathcal{C}(0 ; R x) \neq \emptyset\right\} \asymp R^{\frac{\kappa-8}{\kappa}}$.
(b) If $\kappa=8 / 3$, then $P\left\{\gamma^{\prime}[0,1] \cap \mathcal{C}(0 ; R x) \neq \emptyset\right\}=1-\left(1-R^{-2}\right)^{5 / 8} \sim \frac{5}{8} R^{-2}$.

Derivation of the corollary

The idea is to determine the appropriate sequence of conformal transformations and use the conformal invariance of chordal SLE.
Suppose that $\gamma^{\prime}:[0,1] \rightarrow \overline{\mathbb{H}}$ is an $\operatorname{SLE}_{\kappa}$ in \mathbb{H} from 0 to $x>0$. Note that we are not interested in the parametrization of the SLE path, but only in the points visited by its trace. Suppose that $R \geq 3$, and consider $\mathcal{C}(0 ; R x)=\left\{R x e^{i \theta}: 0<\theta<\pi\right\}$. For $z \in \mathbb{H}$, let

$$
h(z)=\frac{R^{2}}{R^{2}-1} \frac{z}{x-z}
$$

so that $h: \mathbb{H} \rightarrow \mathbb{H}$ is a conformal (Möbius) transformation with $h(0)=0$ and $h(x)=\infty$. It is straightforward (though tedious) to verify that

$$
h(\mathcal{C}(0 ; R x))=\mathcal{C}\left(-1 ; \frac{1}{R}\right)
$$

Derivation of the corollary (cont.)

If $\gamma:[0, \infty) \rightarrow \overline{\bar{H}}$ is a chordal $\operatorname{SLE}_{\kappa}$ in \mathbb{H} from 0 to ∞, then the conformal invariance of SLE implies that

$$
\begin{aligned}
P\left\{\gamma^{\prime}[0,1] \cap \mathcal{C}(0 ; R x) \neq \emptyset\right\} & =P\left\{h\left(\gamma^{\prime}[0,1]\right) \cap h(\mathcal{C}(0 ; R x)) \neq \emptyset\right\} \\
& =P\left\{\gamma[0, \infty) \cap \mathcal{C}\left(-1, \frac{1}{R}\right) \neq \emptyset\right\}
\end{aligned}
$$

By the symmetry of SLE about the imaginary axis,

$$
P\left\{\gamma[0, \infty) \cap \mathcal{C}\left(-1, \frac{1}{R}\right) \neq \emptyset\right\}=P\left\{\gamma[0, \infty) \cap \mathcal{C}\left(1, \frac{1}{R}\right) \neq \emptyset\right\} \asymp R^{1-4 a} .
$$

$$
\text { The } \kappa=8 / 3 \text { case }
$$

The key fact that is needed is the restriction property of chordal $\mathrm{SLE}_{8 / 3}$.

Fact. [Lawler-Schramm-Werner] If $\gamma:[0, \infty) \rightarrow \overline{\bar{H}}$ is a chordal SLE $_{8 / 3}$ in \mathbb{H} from 0 to ∞, and A is a bounded subset of \mathbb{H} such that $\mathbb{H} \backslash A$ is simply connected, $A=\mathbb{H} \cap \bar{A}$, and $0 \notin \bar{A}$, then

$$
P\{\gamma[0, \infty) \cap A=\emptyset\}=\left[\Phi_{A}^{\prime}(0)\right]^{5 / 8}
$$

where $\Phi_{A}: \mathbb{H} \backslash A \rightarrow \mathbb{H}$ is the unique conformal transformation of $\mathbb{H} \backslash A$ to \mathbb{H} with $\Phi_{A}(0)=0$ and $\Phi_{A}(z) \sim z$ as $z \rightarrow \infty$.

$$
\text { The } \kappa=8 / 3 \text { case (cont.) }
$$

This implies that

$$
P\{\gamma[0, \infty) \cap \mathcal{C}(x ; r x)=\emptyset\}=\left[\Phi^{\prime}(0)\right]^{5 / 8}
$$

where $\Phi=\Phi_{\mathcal{D}(x ; r x)}(z)$ is the conformal transformation from $\mathbb{H} \backslash \mathcal{D}(x ; r x)$ onto \mathbb{H} with $\Phi(0)=0$ and $\Phi(z) \sim z$ as $z \rightarrow \infty$.

\mathbb{H}

In fact, the exact form of $\Phi(z)$ is given by

$$
\Phi(z)=z+\frac{r^{2} x^{2}}{z-x}+r^{2} x
$$

Note that $\Phi(0)=0, \Phi(\infty)=\infty$, and $\Phi^{\prime}(\infty)=1$. We calculate $\Phi^{\prime}(0)=1-r^{2}$ and therefore conclude that

$$
P\{\gamma[0, \infty) \cap \mathcal{C}(x ; r x)=\emptyset\}=\left(1-r^{2}\right)^{5 / 8} .
$$

Rephrasing the main estimate

Theorem. Let $x>0$ be a fixed real number, and suppose $0<\epsilon \leq x / 3$. If $\gamma:[0, \infty) \rightarrow \overline{\mathbb{H}}$ is a chordal $\operatorname{SLE}_{\kappa}$ in \mathbb{H} from 0 to ∞ with $0<\kappa<8$ and $a=2 / \kappa$, then

$$
P\{\gamma[0, \infty) \cap \mathcal{C}(x ; \epsilon) \neq \emptyset\} \asymp\left(\frac{\epsilon}{x}\right)^{4 a-1}
$$

where $\mathcal{C}(x ; \epsilon)$ is the semicircle of radius ϵ centred at x in the upper half plane.

Written in this form, it is seen to generalize the result of Rohde and Schramm who prove that for $4<\kappa<8$,

$$
P\{\gamma[0, \infty) \cap[x-\epsilon, x+\epsilon] \neq \emptyset\} \asymp\left(\frac{\epsilon}{x}\right)^{4 a-1}
$$

An application

Let $0<r \leq 1 / 3$, and suppose that $\gamma:[0, \infty) \rightarrow \overline{\mathbb{H}}$ is a chordal $\operatorname{SLE}_{\kappa}$ in \mathbb{H} from 0 to ∞ with $4<\kappa<8$ and $a=2 / \kappa$.

Theorem. There exist constants c_{a}^{\prime} and $c_{a}^{\prime \prime}$ such that

$$
1-c_{a}^{\prime} r^{4 a-1} \leq \inf _{z \in \mathcal{C}_{r}} P\left\{T_{z}=T_{1}\right\} \leq \sup _{z \in \mathcal{C}_{r}} P\left\{T_{z}=T_{1}\right\} \leq 1-c_{a}^{\prime \prime} r^{4 a-1}
$$

where

$$
\mathcal{C}_{r}=\mathcal{C}\left(1-r ; \frac{r}{2}\right)
$$

denotes the circle of radius $r / 2$ centred at $1-r$ in the upper half plane.

Corollary. There exist constants c_{a}^{\prime} and $c_{a}^{\prime \prime}$ such that

$$
1-c_{a}^{\prime} r^{4 a-1} \leq P\left\{T_{z}=T_{1} \text { for all } z \in \mathcal{C}_{r}\right\} \leq 1-c_{a}^{\prime \prime} r^{4 a-1} .
$$

Proof of the application

The proof follows by combining the main result with a method due to Dubédat.
Suppose that $0<r \leq 1 / 3$ and consider the two semicircles

$$
\mathcal{C}_{r}=\mathcal{C}\left(1-r ; \frac{r}{2}\right)
$$

and

$$
\mathcal{C}_{r}^{\prime}=\mathcal{C}\left(1-\frac{3 r}{4} ; \frac{3 r}{4}\right) .
$$

Proof of the application (lower bound)

It follows from the rephrased main result that

$$
P\left\{\gamma[0, \infty) \cap \mathcal{C}_{r}^{\prime} \neq \emptyset\right\} \asymp r^{4 a-1}
$$

and so there exists a constant c_{a}^{\prime} such that

$$
1-c_{a}^{\prime} r^{4 a-1} \leq P\left\{\gamma[0, \infty) \cap \mathcal{C}_{r}^{\prime}=\emptyset\right\}
$$

However, it clearly follows that

$$
P\left\{\gamma[0, \infty) \cap \mathcal{C}_{r}^{\prime}=\emptyset\right\} \leq \inf _{z \in \mathcal{C}_{r}} P\left\{T_{z}=T_{1}\right\}
$$

where T_{z} is the swallowing time of the point $z \in \overline{\mathbb{H}}$ (and the infimum is over all $z \in \mathcal{C}_{r}$ not $\left.z \in \mathcal{C}_{r}^{\prime}\right)$. From this we conclude that there exists a constant c_{a}^{\prime} such that

$$
1-c_{a}^{\prime} r^{4 a-1} \leq \inf _{z \in \mathcal{C}_{r}} P\left\{T_{z}=T_{1}\right\}
$$

Proof of the application (upper bound)

In order to derive an upper bound, we use a method due to Dubédat.
Let g_{t} denote the solution to the chordal Loewner equation with driving function $U_{t}=-B_{t}$ where B_{t} is a standard one-dimensional Brownian motion with $B_{0}=0$. For $t<T_{1}$, the swallowing time of the point 1 , consider the conformal transformation $\tilde{g}_{t}: \mathbb{H} \backslash K_{t} \rightarrow \mathbb{H}$ given by

$$
\tilde{g}_{t}(z)=\frac{g_{t}(z)+B_{t}}{g_{t}(1)+B_{t}}, \quad \tilde{g}_{0}(z)=z
$$

Note that $\tilde{g}_{t}(\gamma(t))=0, \tilde{g}_{t}(1)=1, \tilde{g}_{t}(\infty)=\infty$, and that $\tilde{g}_{t}(z)$ satisfies the stochastic differential equation

$$
d \tilde{g}_{t}(z)=\left[\frac{a}{\tilde{g}_{t}(z)}+(1-a) \tilde{g}_{t}(z)-1\right] \frac{d t}{\left(g_{t}(1)+B_{t}\right)^{2}}+\left[1-\tilde{g}_{t}(z)\right] \frac{d B_{t}}{g_{t}(1)+B_{t}}
$$

If we now perform a time-change and also denoted the time-changed flow by $\left\{\tilde{g}_{t}(z), t \geq 0\right\}$, then then $\tilde{g}_{t}(z)$ satisfies the SDE

$$
d \tilde{g}_{t}(z)=\left[\frac{a}{\tilde{g}_{t}(z)}+(1-a) \tilde{g}_{t}(z)-1\right] d t+\left[1-\tilde{g}_{t}(z)\right] d B_{t}
$$

Dubédat showed that for all $\kappa>0$, this does not explode in finite time (wp1).

Proof of the application (upper bound) (cont.)

Therefore, if F is an analytic function on \mathbb{H} such that $\left\{F\left(\tilde{g}_{t}(z)\right), t \geq 0\right\}$ is a local martingale, then Itô's formula implies that F must be a solution to the differential equation

$$
w(1-w) F^{\prime \prime}(w)+[2 a-(2-2 a) w] F^{\prime}(w)=0 .
$$

An explicit solution is given by

$$
F(w)=\frac{\Gamma(2 a)}{\Gamma(1-2 a) \Gamma(4 a-1)} \int_{0}^{w} \zeta^{-2 a}(1-\zeta)^{4 a-2} d \zeta
$$

which is normalized so that $F(0)=0$ and $F(1)=1$.

Note that this is a Schwarz-Christoffel transformation of the upper half plane onto the isosceles triangle whose interior angles are $(1-2 a) \pi,(1-2 a) \pi$, and $(4 a-1) \pi$.

Proof of the application (upper bound) (cont.)

If

$$
F(w)=\frac{\Gamma(2 a)}{\Gamma(1-2 a) \Gamma(4 a-1)} \int_{0}^{w} \zeta^{-2 a}(1-\zeta)^{4 a-2} d \zeta,
$$

then the vertices of the traingle are at $F(0)=0, F(1)=1$, and

$$
F(\infty)=\frac{\Gamma(2 a) \Gamma(1-2 a)}{\Gamma(2-4 a) \Gamma(4 a-1)} e^{(1-2 a) \pi i}
$$

Proof of the application (upper bound) (cont.)

Apply the optional sampling theorem to the martingale $F\left(\tilde{g}_{t \wedge T_{z} \wedge T_{1}}(z)\right)$ to find that for $z \in \mathbb{H}$,

$$
\begin{align*}
F\left(\tilde{g}_{0}(z)\right)=F(z) & =F(0) P\left\{T_{z}<T_{1}\right\}+F(1) P\left\{T_{z}=T_{1}\right\}+F(\infty) P\left\{T_{z}>T_{1}\right\} \\
& =P\left\{T_{z}=T_{1}\right\}+F(\infty) P\left\{T_{z}>T_{1}\right\} . \tag{*}
\end{align*}
$$

Consequently, identifying the imaginary and real parts of $(*)$ implies that

$$
\Re\{F(z)\}=P\left\{T_{z}=T_{1}\right\}+\Re\{F(\infty)\} P\left\{T_{z}>T_{1}\right\} .
$$

Since $\Re\{F(\infty)\} \geq 0$, we conclude $P\left\{T_{z}=T_{1}\right\} \leq \Re\{F(z)\} \leq|F(z)|$.
But now integrating along the straight line from 0 to z gives

$$
|F(z)| \leq 1-\frac{\Gamma(2 a)}{\Gamma(1-2 a) \Gamma(4 a-1)} \int_{|z|}^{1} \rho^{-2 a}(1-\rho)^{4 a-2} d \rho
$$

which relied on the fact that $4 a-2<0$.

Proof of the application (upper bound) (cont.)

If $z \in \mathcal{C}_{r}$ so that $0<1-\frac{3 r}{2} \leq|z| \leq 1-\frac{r}{2}<1$ by definition, then

$$
\int_{|z|}^{1} \rho^{-2 a}(1-\rho)^{4 a-2} d \rho \geq \frac{2^{1-4 a}}{4 a-1} r^{4 a-1} .
$$

Hence,

$$
P\left\{T_{z}=T_{1}\right\} \leq|F(z)| \leq 1-c_{a}^{\prime \prime} r^{4 a-1}
$$

where

$$
c_{a}^{\prime \prime}=\frac{2^{1-4 a}}{4 a-1} \frac{\Gamma(2 a)}{\Gamma(1-2 a) \Gamma(4 a-1)}
$$

Taking the supremum of the previous expression over all $z \in \mathcal{C}_{r}$ gives us the required upper bound.

