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Review of SLE

Let H = {z ∈ C : ℑ(z) > 0} denote the upper half plane, and consider a simple

(non-self-intersecting) curve γ : [0,∞) → H with γ(0) = 0 and γ(0,∞) ⊂ H.

For every fixed t ≥ 0, the slit plane H t := H \ γ(0, t] is simply connected and so by

the Riemann mapping theorem, there exists a unique conformal transformation

gt : H t → H satisfying gt(z) − z → 0 as z → ∞ which can be expanded as

gt(z) = z +
b(t)

z
+ O

`

|z|−2
´

, z → ∞,

where b(t) = hcap(γ(0, t]) is the half-plane capacity of γ up to time t.H t H

(0) = 0 Ut := gt((t))gt[0; t℄ �!(t)

gt([0; t℄) � R
It can be shown that there is a unique point Ut ∈ R for all t ≥ 0 with

Ut := gt(γ(t)) and that the function t 7→ Ut is continuous.
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Review of SLE (cont)

gt(z) = z +
b(t)

z
+ O

`

|z|−2
´

, z → ∞, H t = H \ γ(0, t]

The evolution of the curve γ(t), or more precisely, the evolution of the conformal

transformations gt : H t → H, can be described by a PDE involving Ut.

This is due to C. Loewner (1923) who showed that if γ is a curve as above such

that its half-plane capacity b(t) is C1 and b(t) → ∞ as t → ∞, then for z ∈ H

with z 6∈ γ[0,∞), the conformal transformations {gt(z), t ≥ 0} satisfy the PDE

∂

∂t
gt(z) =

ḃ(t)

gt(z) − Ut
, g0(z) = z.

Note that if b(t) ∈ C1 is an increasing function, then we can reparametrize the

curve γ so that hcap(γ(0, t]) = b(t). This is the so-called parametrization by

capacity.
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Review of SLE (cont)

∂

∂t
gt(z) =

ḃ(t)

gt(z) − Ut
, g0(z) = z. (∗)

The obvious thing to do now is to start with a continuous function t 7→ Ut from

[0,∞) to R and solve the Loewner equation for gt.

Ideally, we would like to solve (∗) for gt, define simple curves γ(t), t ≥ 0, by setting

γ(t) = g−1
t (Ut), and have gt map H \ γ(0, t] conformally onto H.

Although this is the intuition, it is not quite precise because we see from the

denominator on the right-side of (∗) that problems can occur if gt(z) − Ut = 0.

Formally, if we let Tz be the supremum of all t such that the solution to (∗) is

well-defined up to time t with gt(z) ∈ H, and we define H t = {z : Tz > t}, then gt

is the unique conformal transformation of H t onto H with gt(z)− z → 0 as t → ∞.
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Review of SLE (cont)

The novel idea of Schramm was to take the continuous function Ut to be a

one-dimensional Brownian motion starting at 0 with variance parameter κ ≥ 0.

The chordal Schramm-Loewner evolution with parameter κ ≥ 0 with the

standard parametrization (or simply SLEκ) is the random collection of conformal

maps {gt, t ≥ 0} obtained by solving the initial value problem

∂

∂t
gt(z) =

2

gt(z) −√
κ Wt

, g0(z) = z, (LE)

where Wt is a standard one-dimensional Brownian motion.
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Review of SLE (cont)

The question is now whether there exists a curve associated with the maps gt.

• If 0 < κ ≤ 4, then there exists a random simple curve γ : [0,∞) → H with

γ(0) = 0 and γ(0,∞) ⊂ H, i.e., the curve γ(t) = g−1
t (

√
κBt) never re-visits

R. As well, the maps gt obtained by solving (∗) are conformal transformations

of H \ γ(0, t] onto H. For this range of κ, our intuition matches the theory!

• For 4 < κ < 8, there exists a random curve γ : [0,∞) → H. These curves have

double points and they do hit R, but they never cross themselves! As such,

H \ γ(0, t] is not simply connected. However, H \ γ(0, t] does have a unique

connected component containing ∞. This is H t and the maps gt are

conformal transformations of H t onto H. We think of H t = H \ Kt where Kt

is the hull of γ(0, t] visualized by taking γ(0, t] and filling in the holes.

• For κ ≥ 8, there exists a random curve γ : [0,∞) → H which is space-filling!

Furthermore, it has double points, but does not cross itself! As in the case

4 < κ < 8, the maps gt are conformal transformations of H t = H \ Kt onto H

where Kt is the hull of γ(0, t].

As a result, we also refer to the curve γ as chordal SLEκ. SLE paths are extremely

rough: the Hausdorff dimension of a chordal SLEκ path is min{1 + κ/8, 2}.
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Review of SLE (cont)

Since there exists a curve γ associated with the maps gt, it is possible to

reparametrize it.

It can be shown that if Ut is a standard one-dimensional Brownian motion, then

the solution to the initial value problem

∂

∂t
gt(z) =

2/κ

gt(z) − Ut
=

a

gt(z) − Ut
, g0(z) = z,

is chordal SLEκ parametrized so that hcap(γ(0, t]) = 2t/κ = at.

Finally, chordal SLE as we have defined it can also be thought of as a measure on

paths in the upper half plane H connecting the boundary points 0 and ∞.

SLE is conformally invariant and so we can define chordal SLEκ in any simply

connected domain D connecting distinct boundary points z and w to be the image

of chordal SLEκ in H from 0 to ∞ under a conformal transformation from H onto

D sending 0 7→ z and ∞ 7→ w.
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κ = 1 κ = 2
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κ = 8
3 κ = 3
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Our motivation

MK was interested in multiple SLEs and wanted to estimate the diameter of a

chordal SLE path in H connecting the boundary points 0 and x > 0.

TA was interested in Hausdorff dimension and wanted to estimate the probability

that a chordal SLE path in H connecting 0 and ∞ intersected a semicircle centred

on the real line.

The two problems are the same.

Ideally, we hoped to determine these results asymptotically (∼), but could only get

them up to constants (≍).

Note. ∼ implies ≍ implies ≈.
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The main estimate

Theorem. Let x > 0 be real, 0 < r ≤ 1/3, and C(x; rx) = {x + rxeiθ : 0 < θ < π}
denote the semicircle of radius rx centred at x in the upper half plane, and

suppose that γ : [0,∞) → H is a chordal SLEκ in H from 0 to ∞.

(a) If 0 < κ < 8, then P{γ[0,∞) ∩ C(x; rx) 6= ∅} ≍ r
8−κ

κ .

(b) If κ = 8/3, then P{γ[0,∞) ∩ C(x; rx) 6= ∅} = 1 − (1 − r2)5/8 ∼ 5
8
r2.

C(x; rx)

0 x − rx x + rx

γ[0,∞)
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An equivalent formulation

Corollary. Let x > 0 be real, R ≥ 3, and C(0; Rx) = {Rxeiθ : 0 < θ < π} denote

the circle of radius Rx centred at 0 in the upper half plane, and suppose that

γ′ : [0, 1] → H is a chordal SLEκ in H from 0 to x.

(a) If 0 < κ < 8, then P{γ′[0, 1] ∩ C(0; Rx) 6= ∅} ≍ R
κ−8

κ .

(b) If κ = 8/3, then P{γ′[0, 1] ∩ C(0; Rx) 6= ∅} = 1 − (1 − R−2)5/8 ∼ 5
8
R−2.

0 x Rx

C(0;Rx)

γ′[0, 1]
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Derivation of the corollary

The idea is to determine the appropriate sequence of conformal transformations

and use the conformal invariance of chordal SLE.

Suppose that γ′ : [0, 1] → H is an SLEκ in H from 0 to x > 0. Note that we are not

interested in the parametrization of the SLE path, but only in the points visited

by its trace. Suppose that R ≥ 3, and consider C(0; Rx) = {Rxeiθ : 0 < θ < π}.
For z ∈ H, let

h(z) =
R2

R2 − 1

z

x − z

so that h : H → H is a conformal (Möbius) transformation with h(0) = 0 and

h(x) = ∞. It is straightforward (though tedious) to verify that

h (C(0; Rx)) = C
„

−1;
1

R

«

.

0 x Rx

C(0;Rx)

γ′[0, 1]

h : H→ H
C

(

−1; 1

R

)

0−1 + 1

R
−1 −

1

R

γ[0,∞)
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Derivation of the corollary (cont.)

If γ : [0,∞) → H is a chordal SLEκ in H from 0 to ∞, then the conformal

invariance of SLE implies that

P{γ′[0, 1] ∩ C(0; Rx) 6= ∅} = P{h(γ′[0, 1]) ∩ h(C(0; Rx)) 6= ∅}

= P



γ[0,∞) ∩ C
„

−1,
1

R

«

6= ∅
ff

.

By the symmetry of SLE about the imaginary axis,

P



γ[0,∞) ∩ C
„

−1,
1

R

«

6= ∅
ff

= P



γ[0,∞) ∩ C
„

1,
1

R

«

6= ∅
ff

≍ R1−4a.

C
(

−1; 1

R

)

0−1 + 1

R
−1 −

1

R

γ[0,∞)

⇔ C
(

1; 1

R

)

0 1 + 1

R
1 −

1

R

γ[0,∞)
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The κ = 8/3 case

The key fact that is needed is the restriction property of chordal SLE8/3.

Fact. [Lawler-Schramm-Werner] If γ : [0,∞) → H is a chordal SLE8/3 in H from

0 to ∞, and A is a bounded subset of H such that H \ A is simply connected,

A = H ∩ A, and 0 6∈ A, then

P{γ[0,∞) ∩ A = ∅} =
ˆ

Φ′
A(0)

˜5/8

where ΦA : H \ A → H is the unique conformal transformation of H \ A to H with

ΦA(0) = 0 and ΦA(z) ∼ z as z → ∞.

H \ A H

0 0

A
ΦA : H \ A → H
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The κ = 8/3 case (cont.)

This implies that

P{γ[0,∞) ∩ C(x; rx) = ∅} =
ˆ

Φ′(0)
˜5/8

where Φ = ΦD(x;rx)(z) is the conformal transformation from H \ D(x; rx) onto H

with Φ(0) = 0 and Φ(z) ∼ z as z → ∞.

H \ D(x; rx) H

0 0

Φ : H \ D(r; rx) → HD(x; rx)

xx − rx x + rx

In fact, the exact form of Φ(z) is given by

Φ(z) = z +
r2x2

z − x
+ r2x.

Note that Φ(0) = 0, Φ(∞) = ∞, and Φ′(∞) = 1. We calculate Φ′(0) = 1 − r2

and therefore conclude that

P{γ[0,∞) ∩ C(x; rx) = ∅} = (1 − r2)5/8.
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Rephrasing the main estimate

Theorem. Let x > 0 be a fixed real number, and suppose 0 < ǫ ≤ x/3. If

γ : [0,∞) → H is a chordal SLEκ in H from 0 to ∞ with 0 < κ < 8 and a = 2/κ,

then

P{γ[0,∞) ∩ C(x; ǫ) 6= ∅} ≍
“ ǫ

x

”4a−1

where C(x; ǫ) is the semicircle of radius ǫ centred at x in the upper half plane.

Written in this form, it is seen to generalize the result of Rohde and Schramm who

prove that for 4 < κ < 8,

P{γ[0,∞) ∩ [x − ǫ, x + ǫ] 6= ∅} ≍
“ ǫ

x

”4a−1
.
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An application

Let 0 < r ≤ 1/3, and suppose that γ : [0,∞) → H is a chordal SLEκ in H from 0

to ∞ with 4 < κ < 8 and a = 2/κ.

Theorem. There exist constants c′a and c′′a such that

1 − c′ar4a−1 ≤ inf
z∈Cr

P{Tz = T1} ≤ sup
z∈Cr

P{Tz = T1} ≤ 1 − c′′ar4a−1

where

Cr = C
“

1 − r;
r

2

”

denotes the circle of radius r/2 centred at 1 − r in the upper half plane.

11 − r1 −
3r

2

Cr

1 −
r

20

γ[0,∞)

Corollary. There exist constants c′a and c′′a such that

1 − c′ar4a−1 ≤ P{Tz = T1 for all z ∈ Cr} ≤ 1 − c′′ar4a−1.
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Proof of the application

The proof follows by combining the main result with a method due to Dubédat.

Suppose that 0 < r ≤ 1/3 and consider the two semicircles

Cr = C
“

1 − r;
r

2

”

and

C′
r = C

„

1 − 3r

4
;
3r

4

«

.

11 − r
1 −

3r

2

C′

r

Cr

1 −
3r

4
1 −

r

2
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Proof of the application (lower bound)

It follows from the rephrased main result that

P{γ[0,∞) ∩ C′
r 6= ∅} ≍ r4a−1

and so there exists a constant c′a such that

1 − c′ar4a−1 ≤ P{γ[0,∞) ∩ C′
r = ∅}.

However, it clearly follows that

P{γ[0,∞) ∩ C′
r = ∅} ≤ inf

z∈Cr

P{Tz = T1}

where Tz is the swallowing time of the point z ∈ H (and the infimum is over all

z ∈ Cr not z ∈ C′
r). From this we conclude that there exists a constant c′a such

that

1 − c′ar4a−1 ≤ inf
z∈Cr

P{Tz = T1}.
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Proof of the application (upper bound)

In order to derive an upper bound, we use a method due to Dubédat.

Let gt denote the solution to the chordal Loewner equation with driving function

Ut = −Bt where Bt is a standard one-dimensional Brownian motion with B0 = 0.

For t < T1, the swallowing time of the point 1, consider the conformal

transformation g̃t : H \ Kt → H given by

g̃t(z) =
gt(z) + Bt

gt(1) + Bt
, g̃0(z) = z.

Note that g̃t(γ(t)) = 0, g̃t(1) = 1, g̃t(∞) = ∞, and that g̃t(z) satisfies the

stochastic differential equation

dg̃t(z) =

»

a

g̃t(z)
+ (1 − a)g̃t(z) − 1

–

dt

(gt(1) + Bt)2
+ [1 − g̃t(z)]

dBt

gt(1) + Bt
.

If we now perform a time-change and also denoted the time-changed flow by

{g̃t(z), t ≥ 0}, then then g̃t(z) satisfies the SDE

dg̃t(z) =

»

a

g̃t(z)
+ (1 − a)g̃t(z) − 1

–

dt + [1 − g̃t(z)] dBt

Dubédat showed that for all κ > 0, this does not explode in finite time (wp1).
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Proof of the application (upper bound) (cont.)

Therefore, if F is an analytic function on H such that {F (g̃t(z)), t ≥ 0} is a local

martingale, then Itô’s formula implies that F must be a solution to the differential

equation

w(1 − w)F ′′(w) + [2a − (2 − 2a)w]F ′(w) = 0.

An explicit solution is given by

F (w) =
Γ(2a)

Γ(1 − 2a)Γ(4a − 1)

Z w

0
ζ−2a(1 − ζ)4a−2dζ

which is normalized so that F (0) = 0 and F (1) = 1.

Note that this is a Schwarz-Christoffel transformation of the upper half plane onto

the isosceles triangle whose interior angles are (1− 2a)π, (1− 2a)π, and (4a− 1)π.
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Proof of the application (upper bound) (cont.)

If

F (w) =
Γ(2a)

Γ(1 − 2a)Γ(4a − 1)

Z w

0
ζ−2a(1 − ζ)4a−2dζ,

then the vertices of the traingle are at F (0) = 0, F (1) = 1, and

F (∞) =
Γ(2a)Γ(1 − 2a)

Γ(2 − 4a)Γ(4a − 1)
e(1−2a)πi.

F (0) = 0 F (1) = 1

(1 − 2a)π (4a − 1)π

(1 − 2a)π

F (∞)
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Proof of the application (upper bound) (cont.)

Apply the optional sampling theorem to the martingale F (g̃t∧Tz∧T1
(z)) to find

that for z ∈ H,

F (g̃0(z)) = F (z) = F (0)P{Tz < T1} + F (1)P{Tz = T1} + F (∞)P{Tz > T1}
= P{Tz = T1} + F (∞)P{Tz > T1}. (∗)

Consequently, identifying the imaginary and real parts of (∗) implies that

ℜ{F (z)} = P{Tz = T1} + ℜ{F (∞)}P{Tz > T1}.

Since ℜ{F (∞)} ≥ 0, we conclude P{Tz = T1} ≤ ℜ{F (z)} ≤ |F (z)|.
But now integrating along the straight line from 0 to z gives

|F (z)| ≤ 1 − Γ(2a)

Γ(1 − 2a)Γ(4a − 1)

Z 1

|z|
ρ−2a(1 − ρ)4a−2dρ

which relied on the fact that 4a − 2 < 0.
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Proof of the application (upper bound) (cont.)

If z ∈ Cr so that 0 < 1 − 3r
2

≤ |z| ≤ 1 − r
2

< 1 by definition, then

Z 1

|z|
ρ−2a(1 − ρ)4a−2dρ ≥ 21−4a

4a − 1
r4a−1.

Hence,

P{Tz = T1} ≤ |F (z)| ≤ 1 − c′′ar4a−1

where

c′′a =
21−4a

4a − 1

Γ(2a)

Γ(1 − 2a)Γ(4a − 1)
.

Taking the supremum of the previous expression over all z ∈ Cr gives us the

required upper bound.
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