Bayes' rule for quantum random variables and positive operator valued measures

Michael J. Kozdron University of Regina

http://stat.math.uregina.ca/~kozdron/

CMS Winter Meeting, Montréal December 8, 2012

References

(F-P-S) Classical and nonclassical randomness in quantum measurements by Douglas Farenick, Sarah Plosker, and Jerrod Smith. J. Math. Phys., 52:122204, 2011.

(F-K) Conditional expectation and Bayes rule for quantum random variables and positive operator valued measures by Douglas Farenick and MJK. J. Math. Phys., 53:042201, 2012.

Background

A measurement of a quantum system is represented mathematically by a positive operator valued measure ν which is defined on a σ -algebra of measurement events such that whenever a measurement is made with the system in state ρ , the measurement event E will occur with probability

 $\operatorname{Tr}(\rho\nu(E)).$

Reference. The Quantum Theory of Measurement by Busch, Lahti, Mittelstaedt, LNP, Springer, 1991.

In practice, quantum measurements of an actual physical system are made by way of some apparatus and so X is often assumed to by finite.

Mathematically, however, there is no need for such a restriction and so one of our goals is to approach the theory of quantum measurement under the assumption that X be arbitrary.

Some notation

- \boldsymbol{X} , a locally compact Hausdorff space
- $\mathcal{O}(X),$ the Borel $\sigma\text{-algebra}$ of subsets of X

 $\mathcal{F}(X),$ a sub- $\sigma\text{-algebra}$ of $\mathcal{O}(X)$

 \mathcal{H} , a d-dimensional Hilbert space

 $\mathcal{B}(\mathcal{H})$, the space of (bounded) linear operators on \mathcal{H}

 $\mathrm{Tr}:\mathcal{B}(\mathcal{H})\rightarrow\mathbb{C},$ the canonical trace functional

 $\mathcal{B}(\mathcal{H})_+ = \{ a \in \mathcal{B}(\mathcal{H}) : \langle a\zeta, \zeta \rangle \geq 0 \ \forall \ \zeta \in \mathcal{H} \}, \text{ the space of positive operators}$

Positive operator valued measures

A set function $\nu: \mathcal{F}(X) \to \mathcal{B}(\mathcal{H})$ is called a positive operator valued measure on $(X, \mathcal{F}(X))$ if

- 1. $\nu(E)$ is a quantum effect for every $E \in \mathcal{F}(X)$, i.e., $\nu(E)$ is a positive operator with eigenvalues in [0, 1],
- 2. $\nu(X) \neq 0$, and
- 3. for every countable collection $\{E_k\}_{k\in\mathbb{N}}\subseteq \mathcal{F}(X)$ with $E_j\cap E_k=\emptyset$ for $j\neq k$ we have

$$\nu\left(\bigcup_{k\in\mathbb{N}}E_k\right)=\sum_{k\in\mathbb{N}}\nu(E_k)$$

where the convergence on the right side of the previous equality is with respect to the σ -weak topology of $\mathcal{B}(\mathcal{H})$.

If $\nu(X) = 1 \in \mathcal{B}(\mathcal{H})$, we call it a positive operator valued probability measure.

Notation. $\operatorname{POVM}_{\mathcal{H}}(X)$ or $\operatorname{POVM}^{1}_{\mathcal{H}}(X)$

Quantum random variables

 $S(\mathcal{H})$, the state space of \mathcal{H} , is the set of all density operators $\rho \in \mathcal{B}(\mathcal{H})_+$ with $Tr(\rho) = 1$.

Ex. If dim
$$\mathcal{H} = d$$
, then $\rho = \frac{1}{d} \mathbf{1} \in \mathcal{S}(\mathcal{H})$.

A quantum random variable on X is a function $\psi:X\to \mathcal{B}(\mathcal{H})$ such that

 $x \mapsto \operatorname{Tr}(\rho \psi(x))$

is a complex random variable on X for every density operator $\rho \in S(\mathcal{H})$.

Quantum averaging (F-P-S, F-K)

Theorem. There is a definition of integral whereby a quantum random variable ψ may be integrated against the positive operator valued probability measure ν to produce an operator

$$\mathbb{E}_{\nu} \left[\psi \right] := \int_{X} \psi \, \mathrm{d}\nu \in \mathcal{B}(\mathcal{H}).$$

Example. If $X = \{x_1, x_2, \dots, x_n\}$, then

$$\mathbb{E}_{\nu} \left[\psi \right] = \sum_{j=1}^{n} h_j^{1/2} \psi(x_j) h_j^{1/2}$$

where $h_j = \nu(x_j)$.

The principal Radon-Nikodým derivative (F-P-S)

Let $\nu \in \text{POVM}_{\mathcal{H}}(X, \mathcal{F}(X))$ so that $\mu(E) = \frac{1}{d} \operatorname{Tr}(\nu(E))$ is a Borel measure.

Let $\{e_1, \ldots, e_d\}$ be an orthonormal basis of \mathcal{H} .

Let $\nu_{ij} : \mathcal{F}(X) \to \mathbb{C}$ be defined by $\nu_{ij}(E) = \langle \nu(E)e_j, e_i \rangle$ so that $\nu_{ij} \ll_{\mathrm{ac}} \mu$. By classical R-N Theorem, there exists a unique function

$$\frac{\mathrm{d}\nu_{ij}}{\mathrm{d}\mu} \in L^1(X, \mathcal{F}(X), \mu)$$

such that

$$\nu_{ij}(E) = \int_E \frac{\mathrm{d}\nu_{ij}}{\mathrm{d}\mu} \,\mathrm{d}\mu.$$

The function

$$\frac{\mathrm{d}\nu}{\mathrm{d}\mu} = \sum_{i,j=1}^{d} \frac{\mathrm{d}\nu_{ij}}{\mathrm{d}\mu} \otimes e_{ij}$$

where $e_{ij} \in \mathcal{B}(\mathcal{H})$ sends e_j to e_i and e_k to 0 is called the principal Radon-Nikodým derivative of ν .

Quantum averaging (F-P-S, F-K)

$$\nu \in \mathrm{POVM}_X(\mathcal{H}) \text{ and } \mu(E) = \frac{1}{d} \operatorname{Tr}(\nu(E))$$

 $I(\psi;\nu) = \int_X \psi \, \mathrm{d}\nu : \mathcal{H} \to \mathcal{H}$ is the unique operator having the property that

$$\operatorname{Tr}\left(\rho\int_{X}\psi\,\mathrm{d}\nu\right) = \int_{X}\operatorname{Tr}\left(\rho\left(\frac{\mathrm{d}\nu}{\mathrm{d}\mu}(x)\right)^{1/2}\psi(x)\left(\frac{\mathrm{d}\nu}{\mathrm{d}\mu}(x)\right)^{1/2}\right)\,\mathrm{d}\mu$$

for every $\rho \in \mathcal{S}(X)$.

Example. If $X = \{x_1, x_2, ..., x_n\}$, then

$$\mathbb{E}_{\nu} \left[\psi \right] = \sum_{j=1}^{n} h_j^{1/2} \psi(x_j) h_j^{1/2}$$

where $h_j = \nu(x_j)$.

The non-principal Radon-Nikodým derivative (F-P-S)

Theorem. If $\nu_1, \nu_2 \in \text{POVM}_{\mathcal{H}}(X, \mathcal{F}(X))$, then the following statements are equivalent.

- 1. $\nu_2 \ll_{ac} \nu_1$, i.e., $\nu_2(E) = 0$ whenever $\nu_1(E) = 0$.
- 2. There exists a bounded ν_1 -integrable $\mathcal{F}(X)$ -measurable function $\varphi: (X, \mathcal{F}(X)) \to \mathcal{B}(\mathcal{H})$, unique up to sets of ν_1 -measure zero, such that

$$\nu_2(E) = \int_E \varphi \,\mathrm{d}\nu_1 \tag{1}$$

for every $E \in \mathcal{F}(X)$.

Moreover, if the equivalent conditions above hold and if $\mu_j = \mu_{\nu_j}$ is the finite Borel measure induced by ν_j , then $\mu_2 \ll_{ac} \mu_1$ and

$$\varphi = \left(\frac{\mathrm{d}\mu_2}{\mathrm{d}\mu_1}\right) \left[\left(\frac{\mathrm{d}\nu_1}{\mathrm{d}\mu_1}\right)^{-1/2} \left(\frac{\mathrm{d}\nu_2}{\mathrm{d}\mu_2}\right) \left(\frac{\mathrm{d}\nu_1}{\mathrm{d}\mu_1}\right)^{-1/2} \right]$$
(2)

i.e., φ is the non-principal Radon-Nikodým derivative of ν_2 wrt ν_1 so we write

$$\frac{\mathrm{d}\nu_2}{\mathrm{d}\nu_1} = \varphi$$

A non-commutative multiplication (F-K)

If $a, b \in \mathcal{B}(\mathcal{H})_+$ are both invertible, then the geometric mean of a and b is defined by setting

$$a \# b = a^{1/2} (a^{-1/2} b a^{-1/2})^{1/2} a^{1/2}.$$

Definition. Suppose that ν_1 , $\nu_2 \in \text{POVM}^1_{\mathcal{H}}(X)$ with $\nu_2 \ll_{\text{ac}} \nu_1$, and let $\mu_j = \mu_{\nu_j}$ be the induced Borel probability measures. If $\psi : X \to \mathcal{B}(\mathcal{H})$ is a quantum random variable, then

$$\psi \boxtimes \frac{\mathrm{d}\nu_2}{\mathrm{d}\nu_1} = \left(\left(\frac{\mathrm{d}\nu_1}{\mathrm{d}\mu_1}\right)^{-1} \# \frac{\mathrm{d}\nu_2}{\mathrm{d}\nu_1} \right) \left(\frac{\mathrm{d}\nu_1}{\mathrm{d}\mu_1}\right)^{1/2} \psi \left(\frac{\mathrm{d}\nu_1}{\mathrm{d}\mu_1}\right)^{1/2} \left(\left(\frac{\mathrm{d}\nu_1}{\mathrm{d}\mu_1}\right)^{-1} \# \frac{\mathrm{d}\nu_2}{\mathrm{d}\nu_1} \right)$$

Remark. In the commutative setting—and, in particular, in the classical case of $\mathcal{H} = \mathbb{C}$ —the multiplication defined by \boxtimes reduces to ordinary multiplication. That is, if $a, b \in \mathcal{B}(\mathcal{H})_+$ commute, then $a \# b = a^{1/2} b^{1/2} = b^{1/2} a^{1/2} = b \# a$. Thus, if ψ , $\frac{d\nu_1}{d\mu_1}$, and $\frac{d\nu_2}{d\nu_1}$ are pairwise commuting, then

$$\psi \boxtimes \frac{\mathrm{d}\nu_2}{\mathrm{d}\nu_1} = \psi \frac{\mathrm{d}\nu_2}{\mathrm{d}\nu_1} = \frac{\mathrm{d}\nu_2}{\mathrm{d}\nu_1}\psi.$$

Change of quantum measurement (F-K)

Theorem. Suppose that ν_1 , $\nu_2 \in \text{POVM}^1_{\mathcal{H}}(X)$ with $\nu_2 \ll_{\text{ac}} \nu_1$, and let $\mu_j = \mu_{\nu_j}$ be the induced Borel probability measures. If $\psi : X \to \mathcal{B}(\mathcal{H})$ is a ν_2 -integrable quantum random variable, then

$$\psi \boxtimes \frac{\mathrm{d}\nu_2}{\mathrm{d}\nu_1}$$

is a u_1 -integrable quantum random variable and

$$\mathbb{E}_{\nu_2}\left[\psi\right] = \mathbb{E}_{\nu_1}\left[\psi \boxtimes \frac{\mathrm{d}\nu_2}{\mathrm{d}\nu_1}\right]$$

or, equivalently,

$$\int_X \psi \, \mathrm{d}\nu_2 = \int_X \psi \boxtimes \frac{\mathrm{d}\nu_2}{\mathrm{d}\nu_1} \, \mathrm{d}\nu_1.$$

Theorems for the Radon-Nikodým derivatives (F-K)

Theorem (Chain Rule). If $\nu_1, \nu_2, \nu_3 \in \text{POVM}^1_{\mathcal{H}}(X)$ with $\nu_1 \ll_{\text{ac}} \nu_2 \ll_{\text{ac}} \nu_3$, then

$$\frac{\mathrm{d}\nu_1}{\mathrm{d}\nu_2} \boxtimes \frac{\mathrm{d}\nu_2}{\mathrm{d}\nu_3} = \frac{\mathrm{d}\nu_1}{\mathrm{d}\nu_3}$$

Corollary. If $\nu_1, \nu_2 \in \text{POVM}^1_{\mathcal{H}}(X)$ with $\nu_2 \ll_{\text{ac}} \nu_1$ and $\nu_1 \ll_{\text{ac}} \nu_2$, then

$$\frac{\mathrm{d}\nu_1}{\mathrm{d}\nu_2} \boxtimes \frac{\mathrm{d}\nu_2}{\mathrm{d}\nu_1} = \frac{\mathrm{d}\nu_2}{\mathrm{d}\nu_1} \boxtimes \frac{\mathrm{d}\nu_1}{\mathrm{d}\nu_2} = 1.$$

Quantum conditional expectation (F-K)

Theorem. Suppose that $\nu \in \text{POVM}^1_{\mathcal{H}}(X)$ and that $\psi : X \to \mathcal{B}(\mathcal{H})_+$ is a ν -integrable quantum random variable with $\mathbb{E}_{\nu} [\psi] \neq 0$. If $\mathcal{F}(X)$ is a sub- σ -algebra of $\mathcal{O}(X)$, then there exists a function $\varphi : X \to \mathcal{B}(\mathcal{H})$ such that

- 1. φ is $\mathcal{F}(X)$ -measurable,
- 2. φ is ν -integrable, and
- 3. $\mathbb{E}_{\nu} [\psi \chi_E] = \mathbb{E}_{\nu} [\varphi \chi_E]$ for every $E \in \mathcal{F}(X)$.

Moreover, if $\tilde{\varphi}$ is any other ν -integrable $\mathcal{F}(X)$ -measurable function satisfying $\mathbb{E}_{\nu} [\psi \chi_E] = \mathbb{E}_{\nu} [\tilde{\varphi} \chi_E]$ for every $E \in \mathcal{F}(X)$, then $\nu(\{x \in X : \varphi(x) \neq \tilde{\varphi}(x)\}) = 0$. We write

$$\varphi = \mathbb{E}_{\nu} \left[\psi | \mathcal{F}(X) \right].$$

Quantum Bayes' rule (F-K)

Theorem. Let ν_1 , $\nu_2 \in \text{POVM}^1_{\mathcal{H}}(X)$ with $\nu_2 \ll_{\text{ac}} \nu_1$ and $\nu_1 \ll_{\text{ac}} \nu_2$.

If $\psi: X \to \mathcal{B}(\mathcal{H})_+$ is a quantum random variable with $\mathbb{E}_{\nu_2} [\psi] \neq 0$ and $\mathcal{F}(X)$ is a sub- σ -algebra of $\mathcal{O}(X)$, then

$$\mathbb{E}_{\nu_2}\left[\psi|\mathcal{F}(X)\right] \boxtimes \mathbb{E}_{\nu_1}\left[\frac{\mathrm{d}\nu_2}{\mathrm{d}\nu_1}\middle|\mathcal{F}(X)\right] = \mathbb{E}_{\nu_1}\left[\psi \boxtimes \frac{\mathrm{d}\nu_2}{\mathrm{d}\nu_1}\middle|\mathcal{F}(X)\right].$$

Some operator algebra results (F-K)

The quantum expectation of a constant is **not** necessarily constant.

Theorem. The set of $z \in \mathcal{B}(\mathcal{H})$ with $\mathbb{E}_{\nu}[z] = z$ is a unital C^{*}-subalgebra of $\mathcal{B}(\mathcal{H})$.

That is, if $\nu \in \text{POVM}^1_{\mathcal{H}}(X)$ and $z \in \mathcal{B}(\mathcal{H})$, then

 $\mathbb{E}_{\nu}\left[z\right] \in \mathcal{C}^* \operatorname{conv}\left\{z\right\}.$

Moreover, the function $\mathcal{E}_{\nu}: \mathcal{B}(\mathcal{H}) \to \mathcal{B}(\mathcal{H})$ defined by

$$\mathcal{E}_{\nu}(z) = \int_{X} z \, \mathrm{d}\nu, \ z \in \mathcal{B}(\mathcal{H}),$$

is a unital quantum channel (i.e., a trace-preserving completely positive linear map).

Some operator algebra results (F-K)

Theorem. If $\nu \in \text{POVM}^1_{\mathcal{H}}(X)$ and

$$\mathcal{A}_{\nu} = \operatorname{Span}_{\mathbb{C}} \left\{ \rho \in \operatorname{S}(\mathcal{H}) : \mathbb{E}_{\nu} \left[\rho \right] = \rho \right\},\$$

then

- 1. \mathcal{A}_{ν} is a unital C*-subalgebra of $\mathcal{B}(\mathcal{H})$, and
- 2. (Ergodic Property) there exists a trace-preserving unital completely positive linear map $\mathfrak{E}_{\nu} : \mathcal{B}(\mathcal{H}) \to \mathcal{B}(\mathcal{H})$ satisfying $\mathfrak{E}_{\nu} \circ \mathfrak{E}_{\nu} = \mathfrak{E}_{\nu}$ and having range \mathcal{A}_{ν} such that

$$\lim_{N \to \infty} \frac{1}{N} \left(\mathcal{I} + \sum_{j=1}^{N-1} \underbrace{\mathcal{E}_v \circ \cdots \circ \mathcal{E}_\nu}_{j} \right) = \mathfrak{E}_\nu.$$