Bayes' rule for quantum random variables and positive operator valued measures

Michael J. Kozdron
University of Regina
http://stat.math.uregina.ca/~kozdron/

CMS Winter Meeting, Montréal
December 8, 2012

References

(F-P-S) Classical and nonclassical randomness in quantum measurements by Douglas Farenick, Sarah Plosker, and Jerrod Smith. J. Math. Phys., 52:122204, 2011.
(F-K) Conditional expectation and Bayes rule for quantum random variables and positive operator valued measures by Douglas Farenick and MJK. J. Math. Phys., 53:042201, 2012.

Background

A measurement of a quantum system is represented mathematically by a positive operator valued measure ν which is defined on a σ-algebra of measurement events such that whenever a measurement is made with the system in state ρ, the measurement event E will occur with probability

$$
\operatorname{Tr}(\rho \nu(E))
$$

Reference. The Quantum Theory of Measurement by Busch, Lahti, Mittelstaedt, LNP, Springer, 1991.

In practice, quantum measurements of an actual physical system are made by way of some apparatus and so X is often assumed to by finite.

Mathematically, however, there is no need for such a restriction and so one of our goals is to approach the theory of quantum measurement under the assumption that X be arbitrary.

Some notation

X, a locally compact Hausdorff space
$\mathcal{O}(X)$, the Borel σ-algebra of subsets of X
$\mathcal{F}(X)$, a sub- σ-algebra of $\mathcal{O}(X)$
\mathcal{H}, a d-dimensional Hilbert space
$\mathcal{B}(\mathcal{H})$, the space of (bounded) linear operators on \mathcal{H}
$\operatorname{Tr}: \mathcal{B}(\mathcal{H}) \rightarrow \mathbb{C}$, the canonical trace functional
$\mathcal{B}(\mathcal{H})_{+}=\{a \in \mathcal{B}(\mathcal{H}):\langle a \zeta, \zeta\rangle \geq 0 \forall \zeta \in \mathcal{H}\}$, the space of positive operators

Positive operator valued measures

A set function $\nu: \mathcal{F}(X) \rightarrow \mathcal{B}(\mathcal{H})$ is called a positive operator valued measure on $(X, \mathcal{F}(X))$ if

1. $\nu(E)$ is a quantum effect for every $E \in \mathcal{F}(X)$, i.e., $\nu(E)$ is a positive operator with eigenvalues in $[0,1]$,
2. $\nu(X) \neq 0$, and
3. for every countable collection $\left\{E_{k}\right\}_{k \in \mathbb{N}} \subseteq \mathcal{F}(X)$ with $E_{j} \cap E_{k}=\emptyset$ for $j \neq k$ we have

$$
\nu\left(\bigcup_{k \in \mathbb{N}} E_{k}\right)=\sum_{k \in \mathbb{N}} \nu\left(E_{k}\right)
$$

where the convergence on the right side of the previous equality is with respect to the σ-weak topology of $\mathcal{B}(\mathcal{H})$.

If $\nu(X)=1 \in \mathcal{B}(\mathcal{H})$, we call it a positive operator valued probability measure.
Notation. $\operatorname{POVM}_{\mathcal{H}}(X)$ or $\operatorname{POVM}_{\mathcal{H}}^{1}(X)$

Quantum random variables

$\mathrm{S}(\mathcal{H})$, the state space of \mathcal{H}, is the set of all density operators $\rho \in \mathcal{B}(\mathcal{H})+$ with $\operatorname{Tr}(\rho)=1$.

Ex. If $\operatorname{dim} \mathcal{H}=d$, then $\rho=\frac{1}{d} 1 \in \mathrm{~S}(\mathcal{H})$.

A quantum random variable on X is a function $\psi: X \rightarrow \mathcal{B}(\mathcal{H})$ such that

$$
x \mapsto \operatorname{Tr}(\rho \psi(x))
$$

is a complex random variable on X for every density operator $\rho \in \mathrm{S}(\mathcal{H})$.

Quantum averaging (F-P-S, F-K)

Theorem. There is a definition of integral whereby a quantum random variable ψ may be integrated against the positive operator valued probability measure ν to produce an operator

$$
\mathbb{E}_{\nu}[\psi]:=\int_{X} \psi \mathrm{~d} \nu \in \mathcal{B}(\mathcal{H}) .
$$

Example. If $X=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$, then

$$
\mathbb{E}_{\nu}[\psi]=\sum_{j=1}^{n} h_{j}^{1 / 2} \psi\left(x_{j}\right) h_{j}^{1 / 2}
$$

where $h_{j}=\nu\left(x_{j}\right)$.

The principal Radon-Nikodým derivative (F-P-S)

Let $\nu \in \operatorname{POVM}_{\mathcal{H}}(X, \mathcal{F}(X))$ so that $\mu(E)=\frac{1}{d} \operatorname{Tr}(\nu(E))$ is a Borel measure.
Let $\left\{e_{1}, \ldots, e_{d}\right\}$ be an orthonormal basis of \mathcal{H}.
Let $\nu_{i j}: \mathcal{F}(X) \rightarrow \mathbb{C}$ be defined by $\nu_{i j}(E)=\left\langle\nu(E) e_{j}, e_{i}\right\rangle$ so that $\nu_{i j} \ll$ ac μ. By classical R - N Theorem, there exists a unique function

$$
\frac{\mathrm{d} \nu_{i j}}{\mathrm{~d} \mu} \in L^{1}(X, \mathcal{F}(X), \mu)
$$

such that

$$
\nu_{i j}(E)=\int_{E} \frac{\mathrm{~d} \nu_{i j}}{\mathrm{~d} \mu} \mathrm{~d} \mu .
$$

The function

$$
\frac{\mathrm{d} \nu}{\mathrm{~d} \mu}=\sum_{i, j=1}^{d} \frac{\mathrm{~d} \nu_{i j}}{\mathrm{~d} \mu} \otimes e_{i j}
$$

where $e_{i j} \in \mathcal{B}(\mathcal{H})$ sends e_{j} to e_{i} and e_{k} to 0 is called the principal Radon-Nikodým derivative of ν.

Quantum averaging (F-P-S, F-K)

$\nu \in \operatorname{POVM}_{X}(\mathcal{H})$ and $\mu(E)=\frac{1}{d} \operatorname{Tr}(\nu(E))$
$I(\psi ; \nu)=\int_{X} \psi \mathrm{~d} \nu: \mathcal{H} \rightarrow \mathcal{H}$ is the unique operator having the property that

$$
\operatorname{Tr}\left(\rho \int_{X} \psi \mathrm{~d} \nu\right)=\int_{X} \operatorname{Tr}\left(\rho\left(\frac{\mathrm{~d} \nu}{\mathrm{~d} \mu}(x)\right)^{1 / 2} \psi(x)\left(\frac{\mathrm{d} \nu}{\mathrm{~d} \mu}(x)\right)^{1 / 2}\right) \mathrm{d} \mu
$$

for every $\rho \in \mathrm{S}(X)$.

Example. If $X=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$, then

$$
\mathbb{E}_{\nu}[\psi]=\sum_{j=1}^{n} h_{j}^{1 / 2} \psi\left(x_{j}\right) h_{j}^{1 / 2}
$$

where $h_{j}=\nu\left(x_{j}\right)$.

The non-principal Radon-Nikodým derivative (F-P-S)

Theorem. If $\nu_{1}, \nu_{2} \in \operatorname{POVM}_{\mathcal{H}}(X, \mathcal{F}(X))$, then the following statements are equivalent.

1. $\nu_{2} \ll$ ac ν_{1}, i.e., $\nu_{2}(E)=0$ whenever $\nu_{1}(E)=0$.
2. There exists a bounded ν_{1}-integrable $\mathcal{F}(X)$-measurable function $\varphi:(X, \mathcal{F}(X)) \rightarrow \mathcal{B}(\mathcal{H})$, unique up to sets of ν_{1}-measure zero, such that

$$
\begin{equation*}
\nu_{2}(E)=\int_{E} \varphi \mathrm{~d} \nu_{1} \tag{1}
\end{equation*}
$$

for every $E \in \mathcal{F}(X)$.
Moreover, if the equivalent conditions above hold and if $\mu_{j}=\mu_{\nu_{j}}$ is the finite Borel measure induced by ν_{j}, then $\mu_{2} \ll \mathrm{ac} \mu_{1}$ and

$$
\begin{equation*}
\varphi=\left(\frac{\mathrm{d} \mu_{2}}{\mathrm{~d} \mu_{1}}\right)\left[\left(\frac{\mathrm{d} \nu_{1}}{\mathrm{~d} \mu_{1}}\right)^{-1 / 2}\left(\frac{\mathrm{~d} \nu_{2}}{\mathrm{~d} \mu_{2}}\right)\left(\frac{\mathrm{d} \nu_{1}}{\mathrm{~d} \mu_{1}}\right)^{-1 / 2}\right] \tag{2}
\end{equation*}
$$

i.e., φ is the non-principal Radon-Nikodým derivative of ν_{2} wrt ν_{1} so we write

$$
\frac{\mathrm{d} \nu_{2}}{\mathrm{~d} \nu_{1}}=\varphi
$$

A non-commutative multiplication (F-K)

If $a, b \in \mathcal{B}(\mathcal{H})+$ are both invertible, then the geometric mean of a and b is defined by setting

$$
a \# b=a^{1 / 2}\left(a^{-1 / 2} b a^{-1 / 2}\right)^{1 / 2} a^{1 / 2} .
$$

Definition. Suppose that $\nu_{1}, \nu_{2} \in \operatorname{POVM}_{\mathcal{H}}^{1}(X)$ with $\nu_{2} \ll \mathrm{ac} \nu_{1}$, and let $\mu_{j}=\mu_{\nu_{j}}$ be the induced Borel probability measures. If $\psi: X \rightarrow \mathcal{B}(\mathcal{H})$ is a quantum random variable, then

$$
\psi \boxtimes \frac{\mathrm{d} \nu_{2}}{\mathrm{~d} \nu_{1}}=\left(\left(\frac{\mathrm{d} \nu_{1}}{\mathrm{~d} \mu_{1}}\right)^{-1} \# \frac{\mathrm{~d} \nu_{2}}{\mathrm{~d} \nu_{1}}\right)\left(\frac{\mathrm{d} \nu_{1}}{\mathrm{~d} \mu_{1}}\right)^{1 / 2} \psi\left(\frac{\mathrm{~d} \nu_{1}}{\mathrm{~d} \mu_{1}}\right)^{1 / 2}\left(\left(\frac{\mathrm{~d} \nu_{1}}{\mathrm{~d} \mu_{1}}\right)^{-1} \# \frac{\mathrm{~d} \nu_{2}}{\mathrm{~d} \nu_{1}}\right) .
$$

Remark. In the commutative setting-and, in particular, in the classical case of $\mathcal{H}=\mathbb{C}$-the multiplication defined by \boxtimes reduces to ordinary multiplication. That is, if $a, b \in \mathcal{B}(\mathcal{H})_{+}$commute, then $a \# b=a^{1 / 2} b^{1 / 2}=b^{1 / 2} a^{1 / 2}=b \# a$. Thus, if $\psi, \frac{\mathrm{d} \nu_{1}}{\mathrm{~d} \mu_{1}}$, and $\frac{\mathrm{d} \nu_{2}}{\mathrm{~d} \nu_{1}}$ are pairwise commuting, then

$$
\psi \boxtimes \frac{\mathrm{d} \nu_{2}}{\mathrm{~d} \nu_{1}}=\psi \frac{\mathrm{d} \nu_{2}}{\mathrm{~d} \nu_{1}}=\frac{\mathrm{d} \nu_{2}}{\mathrm{~d} \nu_{1}} \psi .
$$

Change of quantum measurement (F-K)

Theorem. Suppose that $\nu_{1}, \nu_{2} \in \operatorname{POVM}_{\mathcal{H}}^{1}(X)$ with $\nu_{2} \ll{ }_{\mathrm{ac}} \nu_{1}$, and let $\mu_{j}=\mu_{\nu_{j}}$ be the induced Borel probability measures. If $\psi: X \rightarrow \mathcal{B}(\mathcal{H})$ is a ν_{2}-integrable quantum random variable, then

$$
\psi \boxtimes \frac{\mathrm{d} \nu_{2}}{\mathrm{~d} \nu_{1}}
$$

is a ν_{1}-integrable quantum random variable and

$$
\mathbb{E}_{\nu_{2}}[\psi]=\mathbb{E}_{\nu_{1}}\left[\psi \boxtimes \frac{\mathrm{~d} \nu_{2}}{\mathrm{~d} \nu_{1}}\right]
$$

or, equivalently,

$$
\int_{X} \psi \mathrm{~d} \nu_{2}=\int_{X} \psi \boxtimes \frac{\mathrm{~d} \nu_{2}}{\mathrm{~d} \nu_{1}} \mathrm{~d} \nu_{1} .
$$

Theorems for the Radon-Nikodým derivatives (F-K)

Theorem (Chain Rule). If $\nu_{1}, \nu_{2}, \nu_{3} \in \operatorname{POVM}_{\mathcal{H}}^{1}(X)$ with $\nu_{1} \ll$ ac $\nu_{2} \ll$ ac ν_{3}, then

$$
\frac{\mathrm{d} \nu_{1}}{\mathrm{~d} \nu_{2}} \boxtimes \frac{\mathrm{~d} \nu_{2}}{\mathrm{~d} \nu_{3}}=\frac{\mathrm{d} \nu_{1}}{\mathrm{~d} \nu_{3}} .
$$

Corollary. If $\nu_{1}, \nu_{2} \in \operatorname{POVM}_{\mathcal{H}}^{1}(X)$ with $\nu_{2} \ll$ ac ν_{1} and $\nu_{1} \ll$ ac ν_{2}, then

$$
\frac{\mathrm{d} \nu_{1}}{\mathrm{~d} \nu_{2}} \boxtimes \frac{\mathrm{~d} \nu_{2}}{\mathrm{~d} \nu_{1}}=\frac{\mathrm{d} \nu_{2}}{\mathrm{~d} \nu_{1}} \boxtimes \frac{\mathrm{~d} \nu_{1}}{\mathrm{~d} \nu_{2}}=1 .
$$

Quantum conditional expectation (F-K)

Theorem. Suppose that $\nu \in \operatorname{POVM}_{\mathcal{H}}^{1}(X)$ and that $\psi: X \rightarrow \mathcal{B}(\mathcal{H})_{+}$is a ν-integrable quantum random variable with $\mathbb{E}_{\nu}[\psi] \neq 0$. If $\mathcal{F}(X)$ is a sub- σ-algebra of $\mathcal{O}(X)$, then there exists a function $\varphi: X \rightarrow \mathcal{B}(\mathcal{H})$ such that

1. φ is $\mathcal{F}(X)$-measurable,
2. φ is ν-integrable, and
3. $\mathbb{E}_{\nu}\left[\psi \chi_{E}\right]=\mathbb{E}_{\nu}\left[\varphi \chi_{E}\right]$ for every $E \in \mathcal{F}(X)$.

Moreover, if $\tilde{\varphi}$ is any other ν-integrable $\mathcal{F}(X)$-measurable function satisfying $\mathbb{E}_{\nu}\left[\psi \chi_{E}\right]=\mathbb{E}_{\nu}\left[\tilde{\varphi} \chi_{E}\right]$ for every $E \in \mathcal{F}(X)$, then $\nu(\{x \in X: \varphi(x) \neq \tilde{\varphi}(x)\})=0$.

We write

$$
\varphi=\mathbb{E}_{\nu}[\psi \mid \mathcal{F}(X)] .
$$

Quantum Bayes' rule (F-K)

Theorem. Let $\nu_{1}, \nu_{2} \in \operatorname{POVM}_{\mathcal{H}}^{1}(X)$ with $\nu_{2} \ll$ ac ν_{1} and $\nu_{1} \ll$ ac ν_{2}.

If $\psi: X \rightarrow \mathcal{B}(\mathcal{H})_{+}$is a quantum random variable with $\mathbb{E}_{\nu_{2}}[\psi] \neq 0$ and $\mathcal{F}(X)$ is a sub- σ-algebra of $\mathcal{O}(X)$, then

$$
\mathbb{E}_{\nu_{2}}[\psi \mid \mathcal{F}(X)] \boxtimes \mathbb{E}_{\nu_{1}}\left[\left.\frac{\mathrm{~d} \nu_{2}}{\mathrm{~d} \nu_{1}} \right\rvert\, \mathcal{F}(X)\right]=\mathbb{E}_{\nu_{1}}\left[\left.\psi \boxtimes \frac{\mathrm{~d} \nu_{2}}{\mathrm{~d} \nu_{1}} \right\rvert\, \mathcal{F}(X)\right] .
$$

Some operator algebra results (F-K)

The quantum expectation of a constant is not necessarily constant.

Theorem. The set of $z \in \mathcal{B}(\mathcal{H})$ with $\mathbb{E}_{\nu}[z]=z$ is a unital C^{*}-subalgebra of $\mathcal{B}(\mathcal{H})$.
That is, if $\nu \in \operatorname{POVM}_{\mathcal{H}}^{1}(X)$ and $z \in \mathcal{B}(\mathcal{H})$, then

$$
\mathbb{E}_{\nu}[z] \in \mathrm{C}^{*} \operatorname{conv}\{z\}
$$

Moreover, the function $\mathcal{E}_{\nu}: \mathcal{B}(\mathcal{H}) \rightarrow \mathcal{B}(\mathcal{H})$ defined by

$$
\mathcal{E}_{\nu}(z)=\int_{X} z \mathrm{~d} \nu, \quad z \in \mathcal{B}(\mathcal{H})
$$

is a unital quantum channel (i.e., a trace-preserving completely positive linear map).

Some operator algebra results (F-K)

Theorem. If $\nu \in \operatorname{POVM}_{\mathcal{H}}^{1}(X)$ and

$$
\mathcal{A}_{\nu}=\operatorname{Span}_{\mathbb{C}}\left\{\rho \in \mathrm{S}(\mathcal{H}): \mathbb{E}_{\nu}[\rho]=\rho\right\},
$$

then

1. \mathcal{A}_{ν} is a unital C^{*}-subalgebra of $\mathcal{B}(\mathcal{H})$, and
2. (Ergodic Property) there exists a trace-preserving unital completely positive linear map $\mathfrak{E}_{\nu}: \mathcal{B}(\mathcal{H}) \rightarrow \mathcal{B}(\mathcal{H})$ satisfying $\mathfrak{E}_{\nu} \circ \mathfrak{E}_{\nu}=\mathfrak{E}_{\nu}$ and having range \mathcal{A}_{ν} such that

$$
\lim _{N \rightarrow \infty} \frac{1}{N}(\mathcal{I}+\sum_{j=1}^{N-1} \underbrace{\mathcal{E}_{v} \circ \cdots \circ \mathcal{E}_{\nu}}_{j})=\mathfrak{E}_{\nu}
$$

