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Heuristic derivation of the Green’s function

Consider D, the unit disk centred at 0 in the complex plane.

Consider a random curve γ lying in D.

D

Bε(z)

z

Suppose we are interested in d, the “fractal dimension” of the curve. By definition,

Nε ≈ ε−d

as ε ↓ 0 where Nε is the number of balls of radius ε needed to cover the curve.

(Actually, this is box-counting dimension and provides an upper bound for the more

commonly used Hausdorff dimension.)

Let’s try to figure out

P {γ[0,∞) ∩Bε(z) 6= ∅} .
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Assume that γ is “equally likely” to pass through any ball covering D. Randomly

select a ball of radius ε. This suggests

P {γ[0,∞) ∩Bε(z) 6= ∅} ≈
# of balls needed to cover γ[0,∞)

# of balls needed to cover D
≈
Nε

ε2
≈
ε−d

ε2

= ε2−d

so that

lim
ε↓0

εd−2
P {γ[0,∞) ∩Bε(z) 6= ∅} (∗)

should exist.

If our random curve is a radial SLEκ path, then (∗) should be the Green’s function

for radial SLE.
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A note on terminology

Why do we call this a Green’s function?

Recall that the usual Green’s function for the Laplacian for D has a Brownian

motion interpretation.

It is the expected number of visits to (a neighbourhood of) z by BM starting at 0

before exiting D (suitably normalized).

By construction

lim
ε↓0

εd−2
P {γ[0,∞) ∩Bε(z) 6= ∅}

is the expected spatial density for the radial SLE curve.
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A brief history

The question about the Hausdorff dimension of the SLE path was posed very early

on in the development of SLE (∼ 2000).

Rohde and Schramm (2005) studied chordal SLE and gave an upper bound for the

Hausdorff dimension by basically analyzing the Green’s function for chordal SLE.

Beffara (2008) completed the proof of the Hausdorff dimension of the chordal SLE

path

d = min
{

1 +
κ

8
, 2
}

by rigorously proving a lower bound.

However, the phrase Green’s function for SLE was not really used until 2010.

Lawler and Werness (2012) proved the existence of the multi-point Green’s

function for chordal SLE and gave a new proof of Beffara’s estimate.
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A brief history

The Green’s function for radial SLE has not been previously studied.

Our original motivation comes from joint work in progress with Tom Alberts and

Robert Masson. We are trying to prove convergence of loop-erased random walk to

radial SLE2 in the natural parametrization.

Basically, the SLE natural parametrization occupation measure should be

absolutely continuous with respect to Lebesgue measure and its density is the

radial SLE Green’s function:

E[µ(dz)] = G(z) dz.

However, G(z) was not known to exist so we needed to prove its existence.

At the same time, Kang and Makarov were developing a general framework for

studying SLE martingale observables using conformal field theory. The chordal and

radial SLE Green’s functions fit in their framework, but they were unable to find an

explicit formula for the radial SLE Green’s function.

Since we were able to find a formula and prove existence, we decided to publish it

separately. (Actually, both pieces turn out to be non-trivial and interesting.)
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A technicality

Note that

P {γ[0,∞) ∩Bε(z) 6= ∅} = P {dist(γ[0,∞), z) < ε} .

However, instead of working with Euclidean distance (which is seemingly more

natural), we need to work with conformal distance.

It is not known whether or not

lim
ε↓0

εd−2
P {dist(γ[0,∞), z) < ε}

exists. Instead we work with

lim
ε↓0

εd−2
P {Υ∞(z) < ε}

where

Υ∞(z) = lim
t→∞

Υt(z)

and Υt(z) is 1/2 times the conformal radius of D \ γ[0, t]. Recall that

CRA(z) =
1

|f ′(z)|

where f : A→ D with f(z) = 0.
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Definitions of the chordal and radial SLE Green’s functions

By the Koebe 1/4-theorem,

Υ∞(z) ≍ dist(γ[0,∞), z).

Chordal SLE (D = H)

lim
ε↓0

εd−2
P {Υ∞(z) < ε} = c∗GH(z; 0,∞)

Radial SLE (D = D)

lim
ε↓0

εd−2
P {Υ∞(z) < ε} = c∗GD(z; 0, 1)

The normalizing constant c∗ is the same for both radial and chordal.
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Existence of the chordal SLE Green’s function

In the case of chordal SLE, explicit calculations are possible to show that the

Green’s function exists. Rohde and Schramm, Beffara, and Lawler have all

contributed separately to this statement.

lim
ε↓0

εd−2
P {Υ∞(z) < ε}

exists and equals

c∗GH(z; 0,∞)

where

GH(z; 0,∞) = [Im(z)]d−2 sin4a−1(arg z)

and

c∗ = 2

[∫ π

0
sin4a θ dθ

]−1

with

d = 1 +
κ

8
and a =

2

κ
.

8



Almost complete derivation of chordal SLE Green’s function

Suppose that

lim
ε↓0

εd−2
P {Υ∞(z) < ε} = c∗GH(z; 0,∞).

Let

Ft = σ(γ(s), 0 ≤ s ≤ t) and ρ = inf{t : Υt(z) = ε}.

This means

Nt = P {Υ∞(z) ≤ ε | Ft}

should be a local martingale for 0 ≤ t ≤ ρ.

If so,

Mt = E[GH(z; 0,∞)|Ft]

should be a local martingale.
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γ(t)

0

z gt(z)

Ut = gt(γ(t))

gt

Zt(z)

0

Zt(z) = gt(z)− Ut −Ut

By the domain Markov property of SLE and assumed conformal covariance of

Green’s function,

Mt = E[GH(z; 0,∞)|Ft] = GH\γ[0,t](z; γ(t),∞)

= |g′t(z)|
2−dGH(gt(z);Ut,∞)

= |g′t(z)|
2−dGH(Zt(z); 0,∞).
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Hence, we have a local martingale Mt = |g′t(z)|
2−dG(Zt).

Observe that

dZt = dgt(z)− dUt =
2

Zt
dt− dUt.

Using Itô’s formula on Mt gives

dMt = dUt + dt.

Let z = (x, y). Since Mt is a local martingale, we must have the coefficient for dt

equal to 0. This gives a PDE for G:

1

2
Hxx(x, y)−

ay

x2 + y2
Hy(x, y) +

ax

x2 + y2
Hx(x, y) +

(4a− 1)y2

2(x2 + y2)2
H(x, y) = 0

where H(x, y) = y2−dG(x, y).

Chordal SLE scaling implies H(x, y) = φ(y/x) so we find an ODE for φ that can

be solved explicitly.

G(x, y) = yd−2

(

y
√

x2 + y2

)4a−1

.
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Similar calculations for the radial SLE Green’s function

Suppose that γ : [0,∞) → D \ {0} is a radial SLEκ and that gt are the usual

conformal transformations with gt(γ(t)) = ei2Bt . If z ∈ D, then gt(z) satisfies the

differential equation

∂tgt(z) = 2agt(z)
ei2Bt + gt(z)

ei2Bt − gt(z)
, g0(z) = z.

Let

Zt(z) = e−2iBtgt(z)

and suppose we try to do the same thing for radial SLE. This suggest that

Mt = |g′t(z)|
2−dGD(Zt(z); 0, 1)

is a local martingale. Using Itô’s formula on Mt gives

dMt = dBt + dt.

Since Mt is a local martingale, we must have the coefficient for dt equal to 0.
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The PDE for the radial SLE Green’s function

When working with chordal SLE in the upper half plane, the most natural

coordinates are cartesian: z = x+ iy. Chordal scaling (i.e., conformal invariance)

suggests that chordal SLE martingales should be functions of the ratio y/x. There

are numerous examples of chordal PDEs that reduce to ODEs and yield exact

solutions: Cardy’s formula, Schramm’s left passage probability, Fomin’s identity for

SLE2, multiple SLE, etc.

Working with radial SLE in the unit disk D suggests that the most natural

coordinates are polar: z = reiθ. Unfortunately there is no obvious radial scaling

that reduces PDEs to ODEs. As such, most research with radial SLE avoids the

martingale-to-PDE approach. Here is one example of a radial PDE that yields an

exact solution: the Green’s function for radial SLE4.
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The PDE for the radial SLE Green’s function

Working in polar coordinates z = reiθ and doing a lot of calculations implies

0 = Hθθ +
2ar sin θ

1 + r2 − 2r cos θ
Hθ+

ar(1− r2)

1 + r2 − 2r cos θ
Hr

+

(

a−
1

4

)(

∂

∂θ

2r sin θ

1 + r2 − 2r cos θ

)

H.

where

H(r, θ) = r2−dGD(re
iθ; 0, 1)

Remark. It took a long time to determine that this was the cleanest formulation of

the PDE. It also took a while to understand why the Poisson kernel and its

complex conjugate appear as coefficients.
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An explicit solution when κ = 4

A natural guess for the solution is

H(r, θ) =

(

1− r2

1 + r2 − 2r cos θ

)ζ

for some ζ.

After substituting, we find that the PDE is satisfied for this guess iff ζ = a = 1/2.

Note that a = 2/κ so

a =
1

2
iff κ = 4.

Remark. There are other natural guesses for the solution to the PDE. However,

none of them actually produces a solution.
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An explicit solution when κ = 4

The Green’s function for radial SLE4 from 1 to 0 in D is

GD(re
iθ; 0, 1) = r−1/2

(

1− r2

1 + r2 − 2r cos θ

)1/2

or, equivalently,

GD(z; 0, 1) =

√

1− |z|2

|z| · |1− z|2

where z = reiθ ∈ D.
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D may not always be the most natural radial SLE domain

This has not really been emphasized much in the radial SLE literature, and

certainly it has not been exploited for explicit calculations like ours, but the

covering space of D is a useful canonical domain for analyzing radial SLE.

Let H∗ denotes the upper half plane modulo π.

H
∗ is the covering space of D and can be identified with a half-infinite cylinder of

circumference π.

If z = x+ iy with Re(z) ∈ [−π/2, π/2), then

i

π
cot z =

1

π

sinh y cosh y

| sin z|2
+
i

π

sinx cosx

| sin z|2
.

The real part is the Poisson kernel for H∗.
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u(z) = u(x, y) =
sinh y cosh y

sin2 x+ sinh2 y
, v(z) = v(x, y) =

sinx cos x

sin2 x+ sinh2 y
.

−vx(z) = Re(csc2 z) =
sin2 x cosh2 y − cos2 x sinh2 y

(sin2 x+ sinh2 y)2
.

Lemma. If p = (4a− 1)− 2(2− d), ζ = (4a− 1)− (2− d), and

H(z) = | sin z|p u(z)ζ ,

then H satisfies the differential equation

1

2
Hxx(z) + av(z)Hx(z)− au(z)Hy(z)−

(

1

4
− a

)

vx(z)H(z) + apH(z) = 0.

In particular,

Nt = Nt(z) = eapt|g′t(z)|
2−dH(Zt(z))

is a local martingale.
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Chordal in H

G(x, y) = yd−2H(x, y)

1

2
Hxx(z)−

ay

x2 + y2
Hy(z) +

ax

x2 + y2
Hx(z) +

(4a− 1)y2

2(x2 + y2)2
H(z) = 0

Mt = |g′t(z)|
2−dGH(Zt(z))

Radial in H
∗

1

2
Hxx(z)− au(z)Hy(z) + av(z)Hx(z) +

4a− 1

4
vx(z)H(z) + apH(z) = 0.

Nt = eapt|g′t(z)|
2−dH(Zt(z))
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The main theorem

Suppose that p = (4a− 1)− (2− d), ζ = (4a− 1)− 2(2− d), and

H(z) = | sin z|pu(z)ζ .

The Green’s function for radial SLE in H
∗ is

G(z) = H(z)Φ(z),

where

Φ(z) = E
∗[e−apT ].

In other words, if z ∈ H
∗, then

lim
ε↓0

εd−2
P{Υ∞(z) ≤ ε} = c∗G(z) where c∗ = 2

[∫ π

0
sin8/κ θ dθ

]−1

.

If κ = 4, then G(z) = H(z).
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Φ(z) = E
∗[e−apT ]

E
∗ denotes expectation with respect to the SLE measure weighted by the local

martingale Nt, i.e., an expectation with respect to SLE conditioned to go through

z.

SLE: originally driven by Brownian motion Bt.

weighted SLE: use Girsanov to weight by local martingale Nt

dNt = JtNt dBt so dBt = Jt dt+ dWt

where Wt is a standard BM wrt new measure

Zt(z): map that sends tip of the curve to the origin

T = inf{Zt(z) = 0}
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Elements of proof of the theorem

• A very careful comparison of chordal SLE in H with radial SLE in H
∗ in disk of

radius r ≪ 1 centred at 0. For small times, these processes are close.

• One can compare chordal SLEκ from 0 to ∞ in H and radial SLE from 0 to i

in H by tilting by a particular local martingale.

• Radial SLEκ in H
∗ can be obtained from radial SLEκ in H from 0 to i by the

(multiple valued) transformation

f(z) = ψ−1 ◦ φ(z) =
1

2i
log

[

z − i

z + i

]

where ψ(z) = e2iz which is a conformal transformation of H∗ onto D \ {0}

and φ(z) = (z − i)/(z + i) which is a conformal transformation of H onto D.

• In both cases, one sees that the driving function changes from a standard

Brownian motion to one with a drift. Under our conditions, the drift is

uniformly bounded, and since time is bounded by O(r1/2), we can bound the

Radon-Nikodým derivative in the change of measure.
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To do

Prove loop-erased random walk converges to SLE2 in the natural parametrization.

Determine what is intrinsic to radial SLE4 that enables us to find an explicit form

of the Green’s function.
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