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Introduction

The plan is to discuss a strategy for showing convergence of loop-erased random

walk on the two-dimensional square lattice to SLE(2), in the supremum norm

topology that takes the time parametrization of the curves into account.
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From LERW to SLE

• Let D ∋ 0 be a simply connected planar domain with 1

n
Z2 grid domain

approximation Dn ⊂ C; that is, Dn is the connected component containing 0

in the complement of the closed faces of n−1Z2 intersecting ∂D.

• ψDn : Dn → D, ψDn (0) = 0, ψ′
Dn

(0) > 0.

• γn: time-reversed LERW from 0 to ∂Dn (on 1

n
Z2).

• γ̂n = ψDn (γn) is a path in D. Parameterize by capacity.
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Loop-Erased Random Walk Converges to SLE(2)

Consider the following metric on the space of curves in C:

ρ(γ1, γ2) = inf
φ

sup
0≤t≤1

|γ̃1(t)− γ̃2(t)|

where the infimum is over all choices of parametrizations γ̃1 and γ̃2 in [0, 1] of γ1

and γ2.

Let µn denote the law of γn, time-reversed LERW from 0 to ∂Dn, and let µ

denote the law of the image in D of radial SLE(2).

Theorem. (Lawler-Schramm-Werner)

The measures µn converge weakly to µ as n→ ∞ with respect to the metric ρ on

the space of curves.

Important. This theorem tells us that the LERW and SLE(2) traces are close. It

does not tell us that they are close in space at roughly the same time.
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Our Goal

Suppose that X is a LERW on Z2 started at the origin and let τn be the first time

the curve hits the circle of radius n. We would like

(i) to show that there is a speed function t 7→ σn(t) so that

t 7→
1

n
X(σn(t) ∧ τn)

converges in law under the strong topology, and

(ii) to identify the limiting curve as SLE(2) in the natural time parametrization

that was recently introduced by Lawler-Sheffield and Lawler-Zhou.

Outline

• To discuss a strategy for (i) proving that the limit exists.

• To discuss a strategy for (ii) identifying the limit.

• We’ll see how to choose the speed function σn(t) to execute both strategies
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Strategy for (i) Proving that the Limit Exists

Prove tightness!

There are a number of techniques for proving tightness of a stochastic process.

But. . . most of them were designed for Markov processes.

So we’ll move to a different setting using an occupation measure.

5



An Occupation Measure

If γ is a curve, then its occupation measure νγ identifies the amount of time γ

spends in each Borel subset of C.

Formally,

νγ(A) :=

∫ tγ

0

1{γ(s) ∈ A}ds

where A is a Borel subset of C.

Note. Implicit in the statement that γ is a curve is its time parametrization.

• νγ is supported on γ

• The total mass of νγ is tγ

Key observation.

occupation measure + curve modulo reparametrization ⇒ original curve
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LERW Yn parameterized
by (scaled) natural time

(Ỹn, νYn
) (γ̃, µ)

SLE(2) parameterized
by natural time

SLE(2) parameterized
by capacity time

T S

(d)

(d)

Lawler-Sheffield

Yn =
1

n
X(σn(t) ∧ τn)

The topology on the top is the product topology Ω̃×M: equivalence classes of

curves induced by ρ along with weak convergence on the space of positive Borel

measures on C.

Convergence on top implies convergence on bottom if T and S are continuous. T

is actually Lipshitz, but S is not continuous (or even well-defined) but it is at all

the limit points we will encounter.
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LERW Yn parameterized
by (scaled) natural time

(Ỹn, νYn
) (γ̃, µ)

SLE(2) parameterized
by natural time

SLE(2) parameterized
by capacity time

T S

(d)

(d)

Lawler-Sheffield

Yn =
1

n
X(σn(t) ∧ τn)

Strategy: prove tightness for (Ỹn, νYn ), then prove uniqueness of subsequential

limits.

Advantage: the Ỹn → γ̃ part has already been done! (LSW)

For tightness of νYn , it is sufficient to prove that the lifetimes of Yn are tight.
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Consequence: Loop-Erased Random Walk Converges to SLE(2)

Let γ be a radial SLE(2) started uniformly on ∂D.

Suppose that X(t), 0 ≤ t ≤Mn, denotes the time reversal of a loop-erased

random walk on Z2 started at the origin and stopped at Mn, the time the

loop-erased random walk reaches the circle of radius n.

If z ∈ D, ǫ > 0, and

Yn(t) =
1

n
X(σn(t))

where σn(t) is a speed function, then

lim
n→∞

P

(
Ỹn ∩B(z; ǫ) 6= ∅

)
= P (γ̃ ∩B(z; ǫ) 6= ∅) .
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Strategy for (ii) Identifying the Limit

If γ is SLE in the natural time parametrization, then (γ̃, νγ) has certain natural

properties, namely it satisfies conformal convariance and the domain Markov

property.

In fact, (γ̃, νγ) is the unique pair having both properties.

Given tightness, the strategy is to show that all subsequential limits have these

properties.

It mimics the original LSW proof.
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Properties of (γ̃, νγ)

(We conjecture that) there is a unique probability measure on Ω̃×M such that for

a pair (γ̃, µ),

• γ̃ is SLE(2) in the unit disk D,

• µ is measurable with respect to γ̃,

• if γ ∈ γ̃, then µ(· ∩ γ[0, t]) is measurable wrt γ̃[0, t],

• E[dµ(z)] = G(z) dz where G is the Green’s function for SLE defined by

G(z) = lim
ǫ→0+

ǫ−3/4
P {γ ∩B(z; ǫ) 6= ∅} ,

and

• the domain Markov property holds for µ.

Uniqueness is easy, but existence is hard.
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Strategy for (ii) Identifying the Limit

Show that all subsequential limits (γ̃, µ) of (Ỹn, νYn ) have the properties that

• γ̃ is SLE(2) in the unit disk D,

• µ is measurable with respect to γ̃,

• if γ ∈ γ̃, then µ(· ∩ γ[0, t]) is measurable wrt γ̃[0, t],

• E[dµ(z)] = G(z) dz where G is the Green’s function for SLE, and

• the domain Markov property holds for µ.
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How should the speed function by chosen?

Yn(t) :=
1

n
X(σn(t) ∧ τn)

Most desirable choice is σn(t) = n5/4t

Based on the long-standing conjecture that Mn “grows like” n5/4 where Mn is the

number of steps in the LERW (i.e., Mn = τn)

Very, very difficult to prove! This would imply that

Mn

n5/4

has a limiting distribution as n → ∞.

Strongest known result is still that

lim
n→∞

logMn

logn
=

5

4
.

(Originally proved by Kenyon, later by Masson.)

But we don’t even know how to get tightness!
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How should the speed function by chosen?

Yn(t) :=
1

n
X(σn(t) ∧ τn)

Second choice is σn(t) = E[Mn]t

This implies that the total lifetime of Yn is Mn/E[Mn]

Barlow and Masson give tightness bounds for this. In fact, they also give

exponential tail bounds

P

{
α−1 ≤

Mn

E[Mn]
≤ α

}
≥ 1− Ce−cα1/2

.

“Historical” remark: This result is what really motivated the present work.

Another advantage: If this works, then showing convergence for the first choice of

speed function reduces to showing that

E[Mn] ∼ cn5/4.
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How should the speed function by chosen?

Yn(t) :=
1

n
X(σn(t) ∧ τn)

So let’s use our second choice:

σn(t) = E[Mn]t.

There are five properties that all subsequential limits need to satisfy. The

measurability properties seem okay.

But, we still need to show that all subsequential limits satisfy conformal covariance

and the domain Markov property.

Let’s focus on trying to prove that

E[dµ(z)] = G(z) dz

for all subsequential limits µ of νYn .
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How should the speed function by chosen?

In the special case of a ball B(z; ǫ) ⊂ D, we believe that the simple geometry can

be helpful. Write

E [νYn (B(z; ǫ))] = E

[
νYn (B(z; ǫ)) | Ỹn ∩ B(z; ǫ) 6= ∅

]
P

(
Ỹn ∩B(z; ǫ) 6= ∅

)
.

The second term on the right above converges to P (γ̃ ∩B(z; ǫ) 6= ∅).

For the first term, we roughly expect that the loop-erased walk goes through

B(z; ǫ) as if it were a loop-erased walk in that domain, i.e., it should not be

influenced too much by its future or past. This leads to the conjecture that

E [νYn (B(z; ǫ)) | Yn ∩B(z; ǫ) 6= ∅] =
E [Mǫn]

E [Mn]
+ o(1).
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How should the speed function by chosen?

To complete the convergence to the Green’s function via this strategy, we also

expect that

lim
n→∞

E [Mǫn]

E [Mn]
= ǫ5/4[1 + o(1)]

as ǫ→ 0.

Combining with the previous estimates, this will show that

lim
n→∞

E [νYn (B(z; ǫ))] = ǫ5/4P (γ̃ ∩B(z; ǫ) 6= ∅) [1 + o(1)]

= ǫ2G(z)[1 + o(1)].
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How should the speed function by chosen?

Theorem. If z ∈ D and ǫ > 0 is sufficiently small, then

E [νYn (B(z; ǫ)) | Yn ∩B(z; ǫ) 6= ∅] ≤ C log(1/ǫ)ǫ5/4.

Conjecture. If z ∈ D and ǫ > 0 is sufficiently small, then

E [νYn (B(z; ǫ)) | Yn ∩B(z; ǫ) 6= ∅] =
E[Mǫn]

E[Mn]
+ o(1)

as n → ∞.

To prove the conjecture, need a strong separation lemma. This is currently out of

reach.

Says that the curve up until it hits the ball of radius ǫ does not too strongly affect

how the curve behaves inside the ball of radius ǫ.
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How should the speed function by chosen?

Write σn(t) = cnt.

It is sufficient to prove that

∑

e∈An

[
2n2

cn
P

(
ze ∈ Ỹn

)
−G(ze)

]
= o(n2)

where An = A ∩ n−1Z2 so that the sum is over all (undirected) edges e of An,

and ze is the midpoint of the edge e.

Carrying out this estimate appears to be genuinely difficult. It is a hard problem to

describe asymptotics for the probability that loop-erased walk passes through a

particular edge, and even harder to show that the limit is the SLE Green’s function.

Recently, C. Beneš, G. Lawler, and F. Johansson Viklund proved that the chordal

loop-erased random walk Green’s function converges to the chordal SLE Green’s

function. However, it is not clear if their techniques can be modified to work in the

radial case.
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