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Abstract

Inequalities are at the heart of mathematical and statistical theory. No inequality

is completely perfect, but the Hájek-Rényi inequality, which is the main subject of

this thesis, is arguably the closest to absolute perfection of all the inequalities within

all theories of probability. It has many applications in proving limit theorems, and

examples of these are presented in this thesis. The strong law of large numbers for

sequences of random variables and the strong growth rate for sums of random variables

were obtained through utilizing the Hájek-Rényi inequality. This thesis will further

extend and improve the proof of the strong law of large numbers. Additionally, the

approach, utilizing the Hájek-Rényi inequality to prove limit theorems, is also applied

to the weak law of large numbers for tail series.
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4.3 Applications of the Hájek-Rényi inequality to the strong laws of large

numbers for AQSI sequence . . . . . . . . . . . . . . . . . . . . . . . 26

5 The Hájek-Rényi Inequality for Asymptotically Almost Negatively

Associated (AANA) Random Variables 28

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
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Chapter 1

Introduction

The strong law of large numbers allows for the transformation of a sequence made

up of cumulative sums of random variables into a nonrandom sequence. This is

completed through normalizing the initial sequence using a sequence of nonrandom

numbers before approaching the limit. Proving the strong law of large numbers

can be done by determining the desired result for a particular subsequence, before

taking the whole sequence and reducing the problem, so that the subsequence result

is applicable. The determination of a maximal inequality for the whole sequence

of cumulative sums is necessary. Previous research in probability theory has found

numerous maximal inequalities for various classes of random variables. Therefore,

individual determination may not be necessary. An alternative method to prove

the strong law of large numbers is more difficult, but can be done by applying a
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maximal inequality for normalized sums. This inequality is referred to as the Hájek-

Rényi inequality, in honour of a paper written by Hájek and Rényi (1955) describing

independent summands. This thesis will illustrate that the Hájek-Rényi inequality

is a result of choosing the correct maximal inequality for a sequence of cumulative

sums.

1.1 Literature review

Discussion will begin in the literature pertaining to the Hájek-Rényi inequality.

Most of the research will focus on the strong law of large numbers, which applies to

the main topic of this thesis. We start with Hájek-Rényi (1955). The authors proved

the following important inequality: if {Xn, n ≥ 1} is a sequence of independent

random variables with EXn = 0 and EX2
n < ∞, n ≥ 1, and {bn, n ≥ 1} is a positive

nondecreasing real sequence, for any ε > 0, any positive integer m < n,

P

(
max

m≤k≤n

∣∣∣∣∣
∑k

j=1 Xj

bn

∣∣∣∣∣ ≥ ε

)
≤ ε−2

(
n∑

j=m+1

EX2
j

b2
j

+
m∑

j=1

EX2
j

b2
m

)
.

The following result is proved by Chow (1960). Let {yk, k ≥ 1} be a semimartingale,

let c1 ≥ c2 ≥ · · · be positive constants, and let ε > 0, then

εP{ max
m≥k≥1

ckyk ≥ ε} ≤
m−1∑

1

(ck − ck+1)E{yk
+}+ cmE{ym

+}.
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where y+ = max [y, 0]. This inequality reduces to one proved by Hájek-Rényi (1955).

Three theorems are proved by Bickel (1969). Let {Xk} be a sequence of independent

random variables, {Sk} the sequence of their partial sums, and {Ck} a decreasing

sequence of positive real numbers. Let g be a positive convex function.

Theorem 1: If the Xk have a symmetric distribution, then

P [ max
1≤k≤n

Ckg(Sk) ≥ ε] ≤ 2P [{Cng(Sn) +
n∑

j=1

(cj − cj+1)g(Sj)} ≥ ε].

Theorem 2: Let S(t) be a stochastic process with symmetric independent increments

on an interval [a, b], and let the function −c(t) + c(a) generate a positive measure on

[a, b], then

P [ sup
a<t<b

c(t)g(S(t)) ≥ ε] ≤ 2P [{
∫ b−

a+

g(S(t)) d[−c(t)] + c(b) lim sup t→b g(S(t))} ≥ ε].

Theorem 3: If, in addition to the conditions imposed in Theorem 2, the Xk has zero

expectation and g is even and satisfies g(x + y) ≤ K{g(x) + g(y)}, for all real x, y

and some constant K, then

E(sup
n

cng(Sn)) ≤ 4K[
∞∑
1

(cn − cn+1)E(g(Sn))] + lim sup cnE(g(Sn)).
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An inequality, similar to the Hájek-Rényi inequality, is derived by Sen (1972). The

inequality is based on a decomposition of the U -statistic and a semi-martingale exten-

sion of the Hájek-Rényi inequality by Chow (1960). Moreover, the Kolmogorov type

inequality for generalized U -statistics is presented. An extension of the well-known

Hájek-Rényi inequality for the sum of a sequence of random variables, which does

not involve any moment conditions or the assumption of independence, is obtained

by Szynal (1973). This extension allows him to establish the almost sure convergence

of certain sequences of random variables which other known inequalities are unable to

accomplish. Chandra and Ghosal (1996) introduce two classes of sequences of random

variables: the class of asymptotically quadrant sub-independent sequences (AQSI)

and the class of asymptotically almost negatively associated sequences (AANA). By

definition, {Xn, n ≥ 1} ∈ AQSI if there exists a nonnegative sequence {q(m), m ≥ 1}

such that, for all distinct i and j:

P [Xi > s,Xj > t]− P [Xi > s]P [Xj > t] ≤ q(|i− j|)αi,j(s, t), s, t ≥ 0;

and

P [Xi < s,Xj < t]− P [Xi < s]P [Xj < t] ≤ q(|i− j|)βi,j(s, t), s, t ≤ 0.

where q(m) → 0 as n → ∞ and αi,j(s, t) ≥ 0, βi,j(s, t) ≥ 0. However, {Xn, n ≥ 1} ∈

AANA if there is a nonnegative sequence q(m) → 0 such that

cov(f(Xm), g(Xm+1, · · · , Xm+k)) ≤ q(m)(var(f(Xm))var(g(Xm+1, · · · , Xm+k)))
1/2
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for all m, k ≥ 1 and for all coordinatewise increasing continuous functions f and g,

whenever the right-hand side is finite.

In Gan (1997), a p-smoothable Banach space is characterized in terms of the

Hájek-Rényi inequality for Banach space valued martingales. As applications of this

inequality, the strong law of large numbers and integrability of the supremum of

Banach space valued martingales are also given. In Liu, Gan, and Chen (1999),

the Hájek-Rényi inequality is obtained and the Marcinkiewicz-Zygmund strong law

of large numbers for negatively associated random variables is discussed. In par-

ticular, for independent and identically distributed random variables, the classical

Marcinkiewicz strong law of large numbers is generalized to the case of negatively

associated random variables. The material from this paper is discussed in detail in

Chapter 2 of this thesis.

In Fazekas and Klesov (2002), the authors obtain a maximal inequality for the

partial sums, Sn, of random variables without any assumptions of independence or

distribution on the random variables. Using the maximal inequality, they prove the

following strong law of large numbers: Let {bn} be a nondecreasing unbounded se-

quence of positive numbers and {αn} be a sequence of non-negative numbers. Assume

that

E

(
max
1≤k≤n

|Sk|
)r

≤
n∑

k=1

αk and
∞∑

k=1

ak/b
r
k < ∞,

5



for all n ≥ 1 and a fixed number r > 0. Then limn→∞ Sn/bn = 0 a.s. In Cai (2000),

the Hájek-Rényi inequality for ρ∗-mixing sequences of random variables is proved.

The material from this paper is discussed in detail in Chapter 3. In Yang and Su

(2000), a general method based on the Hájek-Rényi inequality for establishing the

strong law of large numbers is provided. The material from this paper is discussed in

detail in Chapter 6.

Rosalsky and Volodin (2001) study the rate of convergence of the tail of a conver-

gent sequence of random variables. Let {Vj}∞j=1 be a sequence of random variables

with values in a separable space such that
∑∞

j=1 Vj exists a.s.. The authors investigate

under which additional conditions b−p
n (limm→∞E(maxn≤k≤m ‖

∑k
j=n Vj‖p)) = O(1)

implies that b−p
n supk≥n ‖

∑∞
j=k Vj‖p is bounded in probability, where {bn}∞n=1 is a se-

quence of positive numbers and p > 0. The authors generalize the above situation to

the case where, instead of f(x) = |x|p, the nondecreasing function f : [0,∞) → [0,∞),

such that f(0) = 0 and f(x) > 0 for x > 0, is used.

In Rao (2002), the following result is proved. Let X1, X2, . . . , Xn be positively

associated random variables. The author deduces an upper bound for

P ( max
1≤k≤n

|(1/bn)
k∑

i=1

(Xi − EXi)| ≥ ε),

where 0 < b1 ≤ b2 ≤ b3 ≤ . . . and ε > 0.
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In Kim, Ko, and Han (2005), the following result is provided. Let {Xn, n ≥ 1}

be a sequence of asymptotically quadrant subindependent (AQSI) random variables.

Under some restrictions on αij, βij and q, it is shown that there exists c > 0 and a

nondecreasing sequence, {bn, n ≥ 1}, of positive numbers such that for any ε > 0,

P

{
max
1≤k≤n

∣∣∣∣∣
∑k

i=1 (Xi − EXi)

bk

∣∣∣∣∣ ≥ ε log n

}
≤ c

(
log n (log 3) + 2

ε log n

)2 n∑
i=1

1 + EX2
i

b2
i

.

Also, it is shown that (bn log n)−1 Sn → 0 as n →∞ a.s. and for any 0 < r < 2

E sup
n

(
|Sn|

bn log n

)r

< ∞,

where Sn =
∑n

i=1(Xi − EXi). This paper is discussed in detail in Chapter 4.

In Ko, Kim, and Lin (2005), the Hájek-Rényi type inequality and the strong law of

large numbers are proved for weighted sums of asymptotically almost negatively asso-

ciated sequences of random variables. This paper is discussed in detail in Chapter 5.

In Qiu and Gan (2005), the Hájek-Rényi inequality for NA (negatively associated)

and arbitrary random variables are established, and the strong law of large numbers

for NA sequences is obtained by using the inequality. In Hu, Hu, and Zhang (2005),

the authors show that the Hájek-Rényi type inequality holds for any random variables

7



X1, X2, . . . , if

E( max
m≤i≤n

|
i∑

j=m

(Xj − EXj)/bj|2) ≤ C1E(
n∑

j=m

(Xj − EXj)/bj)
2,

holds for any 1 ≤ m ≤ n and a positive constant C1, where {bn} is a nondecreasing

positive real-valued sequence.

1.2 Organization of the thesis

The thesis is organized as follows. In Chapter 2, the Hájek-Rényi inequality for

negatively associated random variables is introduced. The material is based on the

paper by Liu, Gan, and Chen (1997). In Chapter 3, the Hájek-Rényi inequality for ρ∗-

mixing sequences of random variable is introduced. The material is based on the paper

by Cai (2000). In Chapter 4, the Hájek-Rényi inequality for asymptotically quadrant

subindependent random variables is introduced. The material of this chapter is based

on the paper by Kim, Ko, and Han (2005). In Chapter 5, the Hájek-Rényi inequality

for asymptotically almost negatively associated random variables is introduced. This

chapter is based on the paper by Ko, Kim, and Lin (2005). In Chapter 6, the Hájek-

Rényi inequality is utilized, in order to prove the strong law of large numbers for

general summands. The material is based on the preprint by Yang, and Su (2000).

Chapter 7 contains new contributions to the study of the Hájek-Rényi inequality and

8



the strong law of large numbers.

1.3 Contributions of the thesis

Using the Hájek-Rényi type maximal inequality, Fazekas and Klesov (2000) ob-

tained the strong law of large numbers for sequences of random variables. Under the

same conditions, as found in Fazekas and Klesov (2000), Hu and Hu (2006) obtained

the strong growth rate for sums of random variables which improves the result of

Fazekas and Klesov (2000). In the last chapter, we find a new method for obtaining

the strong growth rate for sums of random variables through using the approach of

Fazekas and Klesov (2000). It allows us to generalize and sharpen the method of Hu

and Hu (2006). Our method can be applied to almost all cases of the dependence

structure considered in Hu and Hu (2006), and we can obtain better results. Ad-

ditionally, the approach of using the Hájek-Rényi type maximal inequality to prove

limit theorems, is also applied to the weak law of large numbers for tail series.
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Chapter 2

The Hájek-Rényi Inequality for Negatively

Associated (NA) Random Variables

The results of this chapter are based on the paper by Liu, Gan, and Chen (1997).

2.1 Introduction

Let (Ω,F , P ) be a probability space and {Xn, n ≥ 1} be a sequence of random

variables defined on (Ω,F , P ).

Definition 2.1.1 A finite family of random variables {X1, . . . , Xn} is said to be neg-

atively associated (abbreviated to NA) if Cov(f(Xi, i ∈ A), g(Xj, j ∈ B)) ≤ 0 for

any disjoint subsets A, B ⊂ {1, . . . , n} and any real coordinatewise nondecreasing

functions f on RA and g on RB.
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An infinite family of random variables is said to be NA if every finite subfamily

is NA.

2.2 The Hájek-Rényi inequality for NA random variables

Theorem 2.2.1 Let {Xn, n ≥ 1} be NA random variables with EX2
n < ∞, n ≥ 1

and {bn, n ≥ 1} be a positive nondecreasing real number sequence. For ε > 0, the

following inequality is true

P

(
max
1≤k≤n

∣∣∣∣∣ 1

bn

k∑
i=1

(Xi − EXi)

∣∣∣∣∣ ≥ ε

)
≤ 32ε−2

n∑
j=1

σ2
j

b2
j

,

where σ2
j = Var(Xj), j ≥ 1, the variance of the random variable Xj.

Proof. We suppose that EXj = 0, j ≥ 1, without loss of generality and let b0 = 0,

we have

Sk =
k∑

j=1

bj
Xj

bj

=
k∑

j=1

(
j∑

i=1

(bi − bi−1)
Xj

bj

)
=

k∑
i=1

(bi − bi−1)
∑

i≤j≤k

Xj

bj

.

Note that 1
bk

∑k
j=1(bj − bj−1) = 1, then

{|Sk/bk| ≥ ε} ⊂ {max
1≤i≤k

|
∑

i≤j≤k

Xj

bj

| ≥ ε}.
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Therefore,

{
∣∣∣∣max
1≤k≤n

Sk

bk

∣∣∣∣ ≥ ε} ⊂ {max
1≤k≤n

max
1≤i≤k

∣∣∣∣∣ ∑
i≤j≤k

Xj

bj

∣∣∣∣∣ ≥ ε} = { max
1≤i≤k≤n

∣∣∣∣∣∑
j≤k

Xj

bj

−
∑
j<i

Xj

bj

∣∣∣∣∣ ≥ ε}

⊂ {max
1≤i≤k

∣∣∣∣∣
i∑

j=1

Xj

bj

∣∣∣∣∣ ≥ ε

2
}.

Using the Kolmogorov-type inequality of NA random variables (see Matula, 1992),

we have

P (max
k≤n

|Sk

bk

| ≥ ε) ≤ 32ε−2

n∑
j=1

σ2
j

b2
j

.

The theorem is proved.

2.3 The strong law of large numbers for NA random variables

Theorem 2.3.1 Let {bn, n ≥ 1} be a sequence of positive nondecreasing real num-

bers and let {Xn, n ≥ 1} be NA random variables with
∑∞

n=1
σ2

n

b2n
< ∞ where σ2

n =

varXn, n ≥ 1, for any 0 < r < 2,

1. E supn(|Sn|/bn)r < ∞.

2. Assume that 0 < bn ↑ ∞, then Sn/bn → 0 a.s.(n →∞), where

Sn =
n∑

i=1

(Xi − EXi), n ≥ 1

12



Proof. For the first part, note that

E sup
n

(
|Sn|
bn

)r < ∞⇔
∫ ∞

1

P (sup
n

(
|Sn|
bn

> t1/r)dt < ∞.

Using the Hájek-Rényi inequality (by Theorem 2.2.1), we have

∫ ∞

1

P (sup
n

(
|Sn|
bn

> t1/r)dt ≤ 32

∫ ∞

1

t−2/r

∞∑
n=1

σ2
n

b2
n

dt = 32
∞∑

n=1

σ2
n

b2
n

∫ ∞

1

t−2/rdt < ∞.

As for the second part, using the Hájek-Rényi inequality (by Theorem 2.2.1), we have

P ( max
m≤k≤n

| 1
bn

k∑
i=1

(Xi − EXi)| ≥ ε) ≤ 128ε−2(
n∑

j=m+1

σ2
j

b2
j

+
m∑

j=1

σ2
j

b2
m

).

But

P (sup
n
| 1
bn

n∑
i=1

(Xi − EXi)| ≥ ε) = lim
n→∞

P ( max
m≤j≤n

| 1
bn

j∑
i=1

(Xi − EXi)| ≥ ε)

≤ 128ε−2(
∞∑

j=m+1

σ2
j

b2
j

+
m∑

j=1

σ2
j

b2
m

).

Using the Kronecker lemma, we have

lim
n→∞

P (sup
n
| 1

bn

n∑
i=1

(Xi − EXi) |≥ ε) = 0,

and the theorem is proved.
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Chapter 3

The Hájek-Rényi Inequality for ρ∗-mixing

Sequences of Random Variables

The results of this chapter are based on the paper by Cai (2000).

3.1 Introduction

Let {Ω,F , P} be a probability space and {Xi, i ≥ 1} be a sequence of random

variables defined on it. We denote that a random variable X ∈ L2(F), if X is F

measurable and EX2 < ∞.

Let S, T ⊂ N be nonempty subsets. Define FS = σ(Xk, k ∈ S), σ-algebra gen-

erated by these random variables. The maximal correlation coefficient is defined as

ρ∗n = sup corr(f, g), where the supremum is taken over all (S, T ) with dist(S, T ) ≥ n

and all f ∈ L2(FS), g ∈ L2(FT ), where dist(S, T ) = infx∈S,y∈T |x− y|.

14



A sequence of random variables {Xn, n ≥ 1} is called ρ∗-mixing if limn→∞ ρ∗n < 1.

3.2 The Hájek-Rényi inequality for ρ∗-mixing sequence

Before we formulate the main result of this section, we need a few lemmas.

Lemma 3.2.1 Let {Xi, i ≥ 1} be a ρ∗-mixing sequence of random variables with

EXi = 0, E|Xi|p < ∞ for some p ≥ 2, and all i ≥ 1. Then there exist C = C(p),

such that

E max
1≤k≤n

∣∣∣∣∣
k∑

i=1

Xi

∣∣∣∣∣
p

≤ C


n∑

i=1

E|Xi|p +

(
n∑

i=1

EX2
i

)p/2
 . (3.1)

Proof. See Utev and Peligrad (2003).

Lemma 3.2.2 Let {βi, i ≥ 1} be a nondecreasing sequence of positive numbers and

α1, · · · , αn be nonnegative numbers. Let p be a fixed positive number. Assume that

for each m with 1 ≤ m ≤ n,

E max
1≤k≤m

∣∣∣∣∣
k∑

i=1

Xi

∣∣∣∣∣
p

≤
m∑

i=1

αi.

Then

E max
1≤k≤n

∣∣∣∣∣
∑k

i=1 Xi

βk

∣∣∣∣∣
p

≤ 4
n∑

i=1

αi

βp
i

.

Proof. See Fazekas and Klesov (2000).
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Now we can formulate and prove the main result of this section, that is the Hájek-

Rényi inequality for ρ∗-mixing sequence.

Theorem 3.2.1 Let {Xi, i ≥ 1}be a ρ∗-mixing sequence of random variables with

EXi = 0, EX2
i < ∞. Let {βi, i ≥ 1} be a nondecreasing sequence of positive numbers.

Then

E max
1≤k≤n

∣∣∣∣∣
∑k

i=1 Xi

βk

∣∣∣∣∣
2

≤ C
n∑

i=1

EX2
i

β2
i

.

Proof. The proof is obvious, if we use two lemmas presented above with p = 2.

3.3 Applications to convergence of random series and supre-

mum of partial sums

The first theorem shows how the Hájek-Rényi inequality, presented in the previ-

ous section, can be applied to the study of strong convergence of series of random

variables.

Theorem 3.3.1 Let {Xi, i ≥ 1}be a ρ∗-mixing sequence of random variables with

mean zero and
∑∞

i=1 EX2
i < ∞. Then, the series

∑∞
i=1 Xi converges almost surely.

Proof. By (3.1), for all m ≥ n ≥ 1, we have

E|Sm − Sn|2 ≤ C
m∑

i=n+1

EX2
i → 0,

16



when n → ∞. Hence, {Sn, n ≥ 1} is a Cauchy sequence in L2. Therefore, there

exists a random variable S with E|Sn − S|2 → 0, when n →∞. Using Chebyschev’s

inequality and Theorem 3.2.1 of previous section, we have for all ε > 0,

P (|S2k − S| > ε) ≤ ε−2E|S2k − S|2 ≤ ε−2 lim
n≥2k

sup E|S2k − Sn|2 ≤ C
∞∑

i=2k+1

EX2
i ≤

C

k2
.

Using the Hájek-Rényi inequality for ρ∗-mixing sequence, we have

P

(
max

2k−1<n≤2k
|Sn − S2k−1| > ε

)
≤ ε−2E

(
max

2k−1<n≤2k
|Sn − S2k−1|

)2

≤
2k∑

i=2k−1+1

EX2
i .

By the last two inequalities, when k → ∞, we have that S2k → S a.s. and

max2k−1<n≤2k |Sn − S2k−1| → 0 a.s.. Using the method of sub-sequences, we have

that Sn → S a.s., which completes the proof of the theorem.

The next theorem deals with the supremum of partial sums.

Theorem 3.3.2 Let {Xi, i ≥ 1} be a ρ∗-mixing sequence of random variables with

mean zero and
∑∞

i=1 b−2
i EX2

i < ∞, where {bi, i ≥ 1} be a positive non-decreasing

sequence of real numbers. Then for any 0 < r < 2, E supn≥1(b
−1
n |Sn|)r < ∞.

Proof. Note that E supn≥1(b
−1
n |Sn|)r < ∞ if and only if

∫ ∞

1

P (sup
n≥1

(b−1
n |Sn| > t1/r)dt < ∞.
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Using the Hájek-Rényi inequality for ρ∗-mixing sequence, it follows that

∫ ∞

1

P

(
sup
n≥1

(b−1
n |Sn| > t1/r

)
dt ≤

∫ ∞

1

t−2/rE(sup
n≥1

b−2
n S2

n)dt

=

∫ ∞

1

t−2/r lim
N→∞

N∑
i=1

E max
2i−1<k≤2i

b−2
k S2

kdt

≤ C

∫ ∞

1

t−2/r lim
N→∞

N∑
i=1

2i∑
k=2i−1−1

b−2
k EX2

kdt

≤ C

∫ ∞

1

t−2/r

∞∑
k=1

b−2
k EX2

kdt

≤ C

∫ ∞

1

t−2/rdt

< ∞.
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Chapter 4

The Hájek-Rényi Inequality for

Asymptotically Quadrant

Sub-Independent (AQSI) Random

Variables

The results of this chapter are based on the paper by Kim, Ko, and Han (2005).

In this chapter, we derive the Hájek-Rényi inequality for AQSI random variables. We

also use this inequality to obtain the strong law of large numbers and some results of

the integrability of supremum for a sequence of AQSI random variables.
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4.1 Introduction

Let {Ω,F , P} be a probability space and {Xn, n ≥ 1} be a sequence of random

variables defined on it. Lehmann (1966) introduced the notion of positive quadrant

dependance. We say that a sequence {Xn, n ≥ 1} of random variables is negatively

dependent if, for all s, t ∈ R,

P{Xi > s,Xj > t} − P{Xi > s}P{Xj > t} ≥ 0, (4.1)

and

P{Xi < s,Xj < t} − P{Xi < s}P{Xj < t} ≥ 0. (4.2)

Using the magnitude of the left hand side in (4.1) and (4.2) as a measure of depen-

dence, Birkel (1992) introduced the notion of asymptotic quadrant independence. Let

{q(m), m ≥ 1} be a sequence of positive constants such that q(m) → 0 and αij(s, t),

βij(s, t) be nonnegative functions. A sequence {Xn, n ≥ 1} of random variables is

called asymptotically quadrant independent (AQI) if for all i 6= j and s, t ∈ R,

|P{Xi > s,Xj > t} − P{Xi > s}P{Xj > t}| ≤ q(|i− j|)αij(s, t), (4.3)

|P{Xi < s,Xj < t} − P{Xi < s}P{Xj < t}| ≤ q(|i− j|)βij(s, t). (4.4)
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Chandra and Ghosal (1996b) considered a dependence condition which is a useful

weakening of this definition of AQI, proposed by Birkel (1992). Let {q(m), m ≥ 1}

be a sequence of positive constants such that q(m) → 0 and αij(s, t), βij(s, t) be

nonnegative functions. A sequence {Xn, n ≥ 1} of random variables is said to be

asymptotically quadrant sub-independent (AQSI) , if for all i 6= j,

P{Xi > s,Xj > t} − P{Xi > s}P{Xj > t} ≤ q(|i− j|)αij(s, t), s, t > 0, (4.5)

P{Xi < s,Xj < t} − P{Xi < s}P{Xj < t} ≤ q(|i− j|)βij(s, t), s, t > 0. (4.6)

This AQSI condition is satisfied by asymptotically quadrant independence sequence.

4.2 The Hájek-Rényi inequality for AQSI sequences

First we provide a few lemmas.

Lemma 4.2.1 Let X1, X2, · · · , Xn be square integrable random variables and let there

exist a2
1, · · · , a2

n satisfying

E(Xm+1 + · · ·+ Xm+p)
2 ≤ a2

m+1 + · · ·+ a2
m+p, (4.7)
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for all m, p ≥ 1, m + p ≤ n. We have

E

max
1≤k≤n

(
k∑

i=1

Xi

)2
 ≤ ((log n/ log 3) + 2)2

n∑
i=1

a2
i . (4.8)

Proof. See the proof of Theorem 10 in Chandra and Ghosal (1996b).

Lemma 4.2.2 If {Xn, n ≥ 1} is a sequence of AQSI and {fn, n ≥ 1} is a sequence

nondecreasing (nonincreasing) functions, then {fn(Xn), n ≥ 1} is also a sequence of

AQSI random variables.

Proof. See Chandra and Ghosal (1996b).

Now, we present main result of this section.

Theorem 4.2.1 Let {Xn, n ≥ 1} is a sequence of AQSI random variables such that

EX2
n < ∞, n ≥ 1,

∑∞
m=1 q(m) < ∞, and for all i 6= j

∫ ∞

0

∫ ∞

0

αij(s, t) ds dt ≤ D(1 + EX2
i + EX2

j ), (4.9)

∫ ∞

0

∫ ∞

0

βij(s, t) ds dt ≤ D(1 + EX2
i + EX2

j ), (4.10)

where αij(s, t) ≥ 0 and βij(s, t) ≥ 0 and D is a positive constant. Let {bn, n ≥ 1} be

a positive sequence of nondecreasing real numbers. Then for ε > 0, we have

P

{
max
1≤k≤n

∣∣∣∣∣
∑k

i=1(Xi − EXi)

bk

∣∣∣∣∣ ≥ ε log n

}
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≤ C(ε log n)−2 ((log n/ log 3) + 2)2
n∑

i=1

1 + EX2
i

b2
i

. (4.11)

Proof. Suppose that X+
n = max{Xn, 0} and X−

n = max{−Xn, 0}. It is easy to see

{X+
n } and {X−

n } form AQSI sequences by Lemma 4.2.2. Using Lemma 2 of Lehmann

(1966),

Cov(X+
i , X+

j ) ≤ Dq(|i− j|)(1 + EX2
i + EX2

j ).

Hence,

Var

(
n∑

i=1

b−1
i X+

i

)
≤ C

n∑
i=1

1 + EX2
i

b2
i

,

for all n ≥ 1. Similarly,

Var

(
n∑

i=1

b−1
i X−

i

)
≤ C

n∑
i=1

1 + EX2
i

b2
i

,

for all n ≥ 1. Thus,

Var

(
n∑

i=1

b−1
i Xi

)
≤ 2Var

(
n∑

i=1

b−1
i X+

i

)
+ 2Var

(
n∑

i=1

b−1
i X−

i

)

≤ C
n∑

i=1

1 + EX2
i

b2
i

, for all n ≥ 1. (4.12)
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Without loss of generality, we assume b0 = 0 and let Tk =
∑k

j=1 (Xj − EXj). We

have

Tk =
k∑

j=1

bj
(Xj − EXj)

bj

=
k∑

j=1

(
j∑

i=1

(bi − bi−1)
Xj − EXj

bj

)

=
k∑

i=1

(bi − bi−1)
∑

i≤j≤k

Xj − EXj

bj

.

Note that (1/bk)
∑k

j=1(bj − bj−1) = 1. Hence, the event

{
|Tk

bk

| ≥ ε log n

}
⊂

{
max
1≤i≤k

∣∣∣∣∣ ∑
i≤j≤k

Xj − EXj

bj

∣∣∣∣∣ ≥ ε log n

}
.

Therefore,

{
max
1≤k≤n

∣∣∣∣Tk

bk

∣∣∣∣ ≥ ε log n

}
⊂

{
max
1≤k≤n

max
1≤i≤k

∣∣∣∣∣ ∑
i≤j≤k

Xj − EXj

bj

∣∣∣∣∣ ≥ ε log n

}

=

{
max

1≤i≤k≤n

∣∣∣∣∣∑
j≤k

Xj − EXj

bj

−
∑
j<i

Xi − EXj

bj

∣∣∣∣∣ ≥ ε log n

}

⊂

{
max
1≤i≤n

∣∣∣∣∣
i∑

j=1

Xj − EXj

bj

∣∣∣∣∣ ≥ ε

2
log n

}
.

By Lemma 4.2.1 and (4.6), we obtain

P

{
max
1≤k≤n

∣∣∣∣Tk

bk

∣∣∣∣ ≥ ε log n

}
≤ C(ε log n)−2((log n/ log 3) + 2)2

n∑
i=1

1 + EX2
i

b2
i

.
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The theorem is proved.

From the theorem above, we can obtain the following Hájek-Rényi inequality for

AQSI random variables.

Theorem 4.2.2 Let {bn, n ≥ 1} be a positive sequence of nondecreasing real numbers.

Let {Xn, n ≥ 1} be a sequence of AQSI random variables with EX2
n < ∞, n ≥ 1,∑∞

m=1 q(m) < ∞ and satisfying (4.9) and (4.10). Then for any ε > 0 and for any

positive integer m < n,

P

{
max

m≤k≤n

∣∣∣∣∣
∑k

i=1(Xi − EXi)

bk

∣∣∣∣∣ ≥ ε log n

}

≤ C(ε log n)−2((log n/ log 3) + 2)2

(
n∑

j=m+1

1 + EX2
j

b2
j

+
m∑

j=1

1 + EX2
j

b2
m

)
.
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Proof. Using the previous theorem, we have

P

{
max

m≤k≤n

∣∣∣∣∣
∑k

i=1(Xi − EXi)

bk

∣∣∣∣∣ ≥ ε log n

}

≤ P

{∣∣∣∣∑m
i=1(Xi − EXi)

bm

∣∣∣∣ ≥ ε

2
log n

}
+ P

{
max

m+1≤k≤n

∣∣∣∣∣
∑k

i=m+1(Xi − EXi)

bk

∣∣∣∣∣ ≥ ε

2
log n

}

≤ P

{
max

1≤k≤m

∣∣∣∣∣
∑k

i=1(Xi − EXi)

bm

∣∣∣∣∣ ≥ ε

2
log n

}

+ P

{
max

m+1≤k≤m

∣∣∣∣∣
∑k

i=m+1(Xi − EXi)

bk

∣∣∣∣∣ ≥ ε

2
log n

}

≤ C(ε log n)−2((log n/ log 3) + 2)2

(
n∑

j=m+1

1 + EX2
j

b2
j

+
m∑

j=1

1 + EX2
j

b2
m

)
.

4.3 Applications of the Hájek-Rényi inequality to the strong

laws of large numbers for AQSI sequence

The first result in this section provides the strong law of large numbers for a

sequence of AQSI random variables.

Theorem 4.3.1 Let {Xn, n ≥ 1} be a sequence of AQSI random variables with σ2
n =

EX2
n < ∞, n ≥ 1,

∑∞
m=1 q(m) < ∞, and satisfying (4.9) and (4.10). Let {bn, n ≥ 1}

be a positive sequence of nondecreasing real numbers. If

∞∑
n=1

1 + σ2
n

b2
n

< ∞, (4.13)
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holds, then

(bn log n)−1

n∑
i=1

(Xi − EXi) → 0 a.s. as n →∞.

Proof. Using the Hájek-Rényi inequality presented in the previous section, we have

P

(
max

m≤k≤n

∣∣∣∣∣
∑k

i=1(Xi − EXi)

bn

∣∣∣∣∣ ≥ ε log n

)

≤ C(ε log n)−2((log n/ log 3) + 2)2

(
n∑

j=m+1

1 + σ2
j

b2
j

+
m∑

j=1

1 + σ2
j

b2
m

)
.

But

P

(
sup

n

∣∣∣∣∑n
i=1(Xi − EXi)

bn

∣∣∣∣ ≥ ε log n

)
≤ lim

n→∞
P

(
max

m≤k≤n

∣∣∣∣∣
∑k

i=1(Xi − EXi)

bk

∣∣∣∣∣ ≥ ε log n

)

≤ C lim
n→∞

(ε log n)−2((log n/ log 3) + 2)2

(
n∑

i=m+1

1 + σ2
i

b2
i

+
m∑

j=1

1 + σ2
j

b2
m

)

≤ C

(
∞∑

j=m+1

1 + σ2
j

b2
j

+
m∑

j=1

1 + σ2
j

b2
m

)
.

Hence, by the Kronecker lemma and (4.13), we obtain

lim
n→∞

P

(
sup

n

∑n
i=1(Xi − EXi)

bn

≥ ε log n

)
= 0,

which completes the proof.
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Chapter 5

The Hájek-Rényi Inequality for

Asymptotically Almost Negatively

Associated (AANA) Random Variables

The results of this chapter are based on the paper by Ko, Kim, and Lin (2005)

5.1 Introduction

Let (Ω,F , P ) be a probability space and {Xn, n ≥ 1} be a sequence of random

variables defined on (Ω,F , P ). The definition of the negatively associated sequence

of random variables was introduced in Chapter 2. A sequence {Xn, n ≥ 1} of random

variables is called asymptotically almost negatively associated (AANA), if there is a
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nonnegative sequence q(m) → 0 such that

Cov(f(Xm), g(Xm+1, · · · , Xm+k)) ≤ q(m)(Var(f(Xm))Var(g(Xm+1, · · · , Xm+k)))
1
2 ,

(5.1)

for all m, k ≥ 1 and for all increasing continuous scalar functions f and coordinatewise

increasing continuous functions g, whenever the right-hand side of (5.1) is finite. This

definition was introduced by Chandra and Ghosal (1996a,b). By using this inequal-

ity, Chandra and Ghosal (1996a) derived the Kolmogorov type maximal inequality

for AANA random variables and obtained the strong law of large numbers for AANA

random variables. Chandra and Ghosal (1996b) also derived the almost sure con-

vergence of weighted averages on the AANA random variables. In this chapter, we

derive the Hájek-Rényi type inequality of asymptotically almost negatively associated

(AANA) random variables and apply this inequality to obtain the strong law of large

numbers for weighted sums of AANA sequences.

5.2 The Hájek-Rényi inequality for AANA sequences

In order to prove the main result of this section, we need the following lemma.

Lemma 5.2.1 Let {Xn, n ≥ 1} be a sequence of AANA random variables with

EXk = 0 and σ2
k = EX2

k < ∞, k ≥ 1. Suppose that there exist M > 1 and D > 0
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such that for all n ≥ 1,

(
n∑

k=1

σ
M/(M−1)
k

)1−1/M

≤ D

(
n∑

k=1

σ2
k

)1/2

. (5.2)

Let A = D(
∑n−1

m=1 qM(m))1/M . Then

E

(
max
1≤k≤n

k∑
i=1

Xi

)2

≤ (A + (1 + A2)1/2)2

n∑
k=1

σ2
k, (5.3)

and

E

(
n∑

k=1

Xk

)2

≤ (A + (1 + A2)1/2)2

n∑
k=1

σ2
k. (5.4)

Proof. See Ko, Kim, and Lin (2005).

Now, we can present the main result of this section as follows.

Theorem 5.2.1 Let {an, n ≥ 1} be a positive sequence of real numbers and {bn, n ≥

1} a positive sequence of nondecreasing real numbers. Let {Xn, n ≥ 1} be a sequence of

AANA random variables with EXn = 0 and σ2
n = EX2

n < ∞. Suppose that condition

(5.2) is satisfied and A is defined as in Lemma 5.2.1. Then

P

{
max
1≤k≤n

∣∣∣∣∣
∑k

i=1 aiXi

bk

∣∣∣∣∣ ≥ ε

}
≤ 8ε−2(A + (1 + A2)

1
2 )2

n∑
k=1

a2
kσ

2
k

b2
k

. (5.5)
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Proof. Without loss of generality, we assume that b0 = 0. Let Tk =
∑k

j=1 ajXj, we

have

Tk =
k∑

j=1

bj
ajXj

bj

=
k∑

j=1

(
j∑

i=1

(bi − bi−1)
ajXj

bj

)
=

k∑
i=1

(bi − bi−1)
∑

i≤j≤k

ajXj

bj

.

Note that (1/bk)
∑k

j=1(bj − bj−1) = 1. Hence, the event

{∣∣∣∣Tk

bk

∣∣∣∣ ≥ ε

}
⊂

{
max
1≤i≤k

∣∣∣∣∣ ∑
i≤j≤k

ajXj

bj

∣∣∣∣∣ ≥ ε

}
.

Therefore,

{
max
1≤k≤n

∣∣∣∣Sk

bk

∣∣∣∣ ≥ ε

}
⊂

{
max
1≤k≤n

max
1≤i≤k

∑
i≤j≤k

∣∣∣∣ajXj

bj

∣∣∣∣ ≥ ε

}

=

{
max

1≤i≤k≤n

∣∣∣∣∣∑
j≤k

ajXj

bj

−
∑
j<i

ajXj

bj

∣∣∣∣∣ ≥ ε

}

⊂

{
max
1≤i≤n

∣∣∣∣∣
i∑

j=1

ajXj

bj

∣∣∣∣∣ ≥ ε

2

}
,

which completes the proof.

From this theorem, we can get the following generalized Hájek-Rényi inequality.

Theorem 5.2.2 Let {an, n ≥ 1} be a sequence of positive real numbers and {bn, n ≥

1} a sequence of nondecreasing positive real numbers. Let {Xn, n ≥ 1} be a sequence of

AANA random variables with EXk = 0 and σ2
k = EX2

k < ∞. Suppose that condition
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(5.2) is satisfied and A is defined as in Lemma 5.2.1. Then for any ε > 0 and any

positive integer m < n,

P{ max
m≤k≤n

|
∑k

i=1 aiXi

bk

| ≥ ε} ≤ 8ε−2(A + (1 + A2)
1
2 )2(

n∑
j=m+1

a2
jσ

2
j

b2
j

+
m∑

j=1

a2
jσ

2
j

b2
m

). (5.6)

Proof. See Ko, Kim, and Lin (2005).

Theorem 5.2.3 Let {an, n ≥ 1} be a sequence of positive real numbers and {bn, n ≥

1} a sequence of nondecreasing positive real numbers. Let {Xn, n ≥ 1} be a sequence

of AANA random variables with EXk = 0 and σ2
k = EX2

k < ∞. Denote Tn =∑n
i=1 aiXi, n ≥ 1. Suppose that condition (5.2) is satisfied and that

∞∑
n=1

(
an

bn

)2σ2
n < ∞, (5.7)

and (
∞∑

k=1

qM(k)

)1/M

< ∞ for M ≥ 2, (5.8)

hold. Then

(1) for any 0 < r < 2, E supn(|Tn|/bn)r < ∞, and

(2) 0 < bn ↑ ∞ implies Tn/bn → 0 a.s. as n →∞.

Proof. Let B = D(
∑∞

k=1 qM(k))1/M .

32



(1): Note that, for any 0 < r < 2,

E sup
n

(
|Tn|
bn

)r < ∞⇐⇒
∫ ∞

1

P

{
sup

n

|Tn|
bn

> t
1
r

}
dt < ∞.

By Theorem 5.2.1 above, it follows from (5.7) and (5.8) that

∫ ∞

1

P

{
sup

n

|Tn|
bn

> t
1
r

}
dt ≤ 2

∫ ∞

1

t−
2
r

(
B + (1 + B2)

1
2

)2
∞∑

n=1

(
an

bn

)2

σ2
ndt

= 2
(
B + (1 + B2)

1
2

)2
∞∑

n=1

(
an

bn

)2

σ2
n

∫ ∞

1

t−
2
r dt

< ∞.

Hence, the proof of (1) is complete.

(2): By Theorem 5.2.2 above, we have

P

{
max

m≤k≤n

∣∣∣∣∣
∑k

i=1 aiXi

bk

∣∣∣∣∣ ≥ ε

}
≤ 8ε−2

(
B + (1 + B2)

1
2

)2
(

n∑
j=m+1

a2
jσ

2
j

b2
j

+
m∑

j=1

a2
jσ

2
j

b2
m

)
.

(5.9)

But

P

{
sup
k≥m

∣∣∣∣∣
∑k

i=1 aiXi

bk

∣∣∣∣∣ ≥ ε

}
= lim

n→∞
P

{
max

m≤j≤n

∣∣∣∣∣
∑j

i=1 aiXi

bj

∣∣∣∣∣ ≥ ε

}

≤ 8ε−2
(
B + (1 + B2)

1
2

)2
(

∞∑
j=m+1

a2
jσ

2
j

b2
j

+
m∑

j=1

a2
jσ

2
j

b2
m

)

< ∞,
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by (5.7) and (5.8). By the Kronecker lemma, it follows by (5.7) that

m∑
j=1

a2
jσ

2
j

b2
m

→ 0 as m →∞ (5.10)

Hence, combining (5.7)–(5.10) yields

lim
n→∞

P

{
sup
k≥n

∣∣∣∣∣
∑k

i=1 aiXi

bk

∣∣∣∣∣ ≥ ε

}
= 0,

which completes the proof of (2).

5.3 The Marcinkiewicz-Zygmund strong law of large num-

bers for AANA random variables

The following theorem gives us the Marcinkiewicz-Zygmund strong law of large

numbers for AANA random variables.

Theorem 5.3.1 Let {Xn, n ≥ 1} be a sequence of identically distributed AANA ran-

dom variables. Assume that conditions (5.2) and (5.8) are satisfied.

(1) If E|X1|t < ∞ for some 0 < t < 1, then
∑n

i=1 Xi/n
1
t → 0. a.s.

(2) If E|X1|t < ∞ for some 1 ≤ t < 2, then
∑n

i=1(Xi − EXi)/n
1
t → 0. a.s.
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Proof. Suppose that E|X1|t < ∞ for some 0 < t < 2. Let X+
i = max(Xi, 0), X−

i =

max(−Xi, 0). To prove (1), it suffices to show that

∑n
i=1 X+

i

n1/t
→ 0 a.s. and (5.11)

∑n
i=1 X−

i

n1/t
→ 0 a.s. (5.12)

To prove 2, it suffices to show that

∑n
i=1(X

+
i − EX+

i )

n1/t
→ 0 a.s. and (5.13)

∑n
i=1(X

−
i − EX−

i )

n1/t
→ 0 a.s. (5.14)

Note that {X+
i , i ≥ 1}, {X−

i , i ≥ 1} are AANA random variables. Let Yi =

min{X+
i , n1/t}, i = 1, · · · , n so that {Yi, 1 ≤ i ≤ n} are identically distributed AANA

random variables. Notice that E|X1|t < ∞ implies
∑∞

n=1 P (|X1| > n1/t) < ∞ and,

on the other hand,

P (Yi 6= X+
i ) = P (X+

1 ∧ n1/t 6= X+
i ) ≤ P (X+

1 > n1/t) ≤ P (|X1| > n1/t).

Therefore,

P (Yi 6= X+
1 i.o.) = 0. (5.15)
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We will prove first ∑n
i=1 EYi

n1/t
→ 0 for 0 < t < 1, and (5.16)

∑n
i=1(EX+

i − EYi)

n1/t
→ 0 for 1 ≤ t < 2. (5.17)

We start with the proof of (5.16). Notice that

∞∑
n=1

EYn

n1/t
=

∞∑
n=1

n−1/t{EX+
1 I(X+

1 ≤ n1/t) + n1/tP (X+
1 > n1/t)}

=
∞∑

n=1

n−1/tEX+
1 I(X+

1 ≤ n1/t) +
∞∑

n=1

P (X+
1 > n1/t)

≤
∞∑

n=1

n−1/t

n∑
k=1

EX+
1 I((k − 1)1/t < X+

1 ≤ k1/t) +
∞∑

n=1

P (|X1| > n1/t)

≤
∞∑

k=1

EX+
1 I((k − 1)1/t < X+

1 ≤ k1/t)
∞∑

n=k

n−1/t + E|X1|t

≤ C

∞∑
k=1

k−1(1/t)+1EX+
1 I((k − 1)1/t < X+

1 ≤ k1/t) + E|X1|t

≤ C
∞∑

k=1

E(X+
1 )tI((k − 1)1/t < X+

1 ≤ k1/t) + E|X1|t

≤ CE|X1|t < ∞.

By Kronecker’s lemma , (5.16) is true. Now, we prove (5.17). Since |EX+
n − EYn| ≤

EX+
n I(X+

n > n1/t) + n1/tP (X+
n > n1/t), it follows in a similar way as above that∑∞

n=1 n−1/t|EX+
n − EYn| < ∞. Hence, (5.17) is proved. From (5.15), (5.16) and
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(5.17), it suffices to show now that

∑n
i=1(Yi − EYi)

n1/t
→ 0 a.s. (5.18)

By Theorem 5.2.3, taking bn = n1/t, we have

∞∑
n=1

n−2/tE(Yn − EYn)2

≤
∞∑

n=1

n−2/tEY 2
n

=
∞∑

n=1

n−2/tE(X+
1 ∧ n1/t)2

=
∞∑

n=1

n−2/tE(X+
1 )2I(X+

1 ≤ n1/t) +
∞∑

n=1

P (X+
1 > n1/t)

≤
∞∑

n=1

n−2/t

n∑
k=1

E(X+
1 )2I((k − 1)1/t < X+

1 ≤ k1/t) + E|X1|t

=
∞∑

n=1

n−2/t

n∑
k=1

E(X+
1 )2I((k − 1)1/t < X+

1 ≤ k1/t)
∞∑

n=k

n−2/t + E|X1|t

≤ C

∞∑
k=1

k−(2/t)+1E(X+
1 )2I((k − 1)1/t < X+

1 ≤ k1/t) + E|X1|t

≤ C
∞∑

k=1

k−(2/t)+1k(2/t)−1E(X+
1 )tI((k − 1)1/t < X+

1 ≤ k1/t) + E|X1|t

≤ CE|X1|t < ∞.

The proof is complete.
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Chapter 6

The Hájek-Rényi Inequality and the

Strong Law of Large Numbers

The results of this chapter are based on the paper by Yang, and Su (2000)

6.1 Introduction

Proving the strong law of large numbers can be done by determining the desired

result for a particular subsequence, before taking the whole sequence and reducing the

problem, so that the subsequence result is applicable. The determination of a maximal

inequality for the whole sequence of cumulative sums is necessary. Previous research,

in probability theory, has found numerous maximal inequalities for various classes

of random variables. Therefore, individual determination may not be necessary. An

alternative method of proving the strong law of large numbers is more difficult, but
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can be done by applying a maximal inequality for normalized sums. This inequality

is referred to as the Hájek-Rényi inequality, in honour of a paper written by Hájek

and Rényi (1955) which describes independent summands.

In this chapter, we prove that the Hájek-Rényi type inequality is, in fact, a con-

sequence of an appropriate maximal inequality for cumulative sums, and also show

that the latter automatically implies the strong law of large numbers.

Fazekas and Klesov (2000) showed an approach using the Hájek-Rényi type in-

equaltiy that allows the strong law of large numbers to be found for a sequence of

random variables. This approach can be applied to sequences, which are made up of

dependent random variables that have undergone normalization of their partial sums.

6.2 General Hájek-Rényi type maximal inequality

Let {Sn, n ≥ 1} denote a sequence of random variables defined on a fixed proba-

bility space (Ω, F, P ). The following theorem proved in Fazekas and Klesov (2000),

seems to be the most general form of the Hájek-Rényi type inequality. We would like

readers to be careful that no assumptions on the dependence structure of a sequence

of random variables {Sn, n ≥ 1} are made.

Theorem 6.2.1 Let β1, · · · , βn be a nondecreasing sequence of positive numbers,

α1, · · · , αn be nonnegative numbers and {Sn, n ≥ 1} be an arbitrary sequence of

random variables. Let r be a fixed positive number. Assume that for each m with
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1 ≤ m ≤ n,

E[ max
1≤l≤m

|Sl|]r ≤
m∑

l=1

αl.

Then

E[max
1≤l≤n

|Sl

βl

|]r ≤ 4
n∑

l=1

αl

βr
l

.

Proof. We can assume that β1 = 1. Let c = 21/r. Consider the sets Ai = {k : ci ≤

βk < ci+1}, i = 0, 1, 2, · · · . Denote by i(n) the index of the last nonempty Ai. Let

k(i) = max{k : k ∈ Ai}, i = 0, 1, 2, · · · , if Ai is nonempty, while k(i) = k(i− 1) if Ai

is empty, and let k(−1) = 0. Let

δl =

k(l)∑
j=k(l−1)+1

αj, l = 0, 1, 2 · · · ,

where δl is considered to be zero if Al is empty. We have

E[max
1≤l≤n

|Sl

βl

|]r ≤
i(n)∑
i=0

E[max
l∈Ai

|Sl

βl

|]r ≤
i(n)∑
i=0

c−irE[max
l∈Ai

|Sl|]r ≤
i(n)∑
i=0

c−irE[max
k≤k(i)

|Sk|]r

≤
i(n)∑
i=0

c−ir

k(i)∑
k=1

αk =

i(n)∑
i=0

c−ir

i∑
l=0

δl =

i(n)∑
l=0

δl

i(n)∑
i=l

c−ir ≤
i(n)∑
l=0

δl

∞∑
i=l

c−ir

≤ 1

1− c−r

i(n)∑
l=0

δlc
−lr =

1

1− c−r

i(n)∑
l=0

c−lr

k(l)∑
k=k(l−1)+1

αk

≤ cr

1− c−r

i(n)∑
l=0

k(l)∑
k=k(l−1)+1

αk

βr
k

= 4
n∑

k=1

αk

βr
k

.

The theorem is proved.
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6.3 General method of establishing the strong law of large

numbers

We first present a general theorem to the strong law of large numbers.

Theorem 6.3.1 Let b1, b2, · · · be a nondecreasing sequence of positive numbers with

1 ≤ b2n/bn ≤ c < ∞, (6.1)

for some c > 1. Assume that

∞∑
n=1

n−1P ( max
1≤k≤n

|Sk| > bnε) ≤ C < ∞. (6.2)

Then

lim
n→∞

max1≤j≤n |Sj|
bn

= 0 a.s. (6.3)

Proof. Since bn ≤ b2n ≤ cbn, we have

∞∑
k=1

P ( max
1≤j≤2k

|Sj| > εb2k) =
∞∑

k=1

∑
2k≤n≤2k+1

(2k)−1P ( max
1≤j≤2k

|Sj| > εb2k)

≤
∞∑

k=1

∑
n: even and 2k≤n<2k+1

(n/2)−1P ( max
1≤j≤n

|Sj| > εbn/2)

+
∞∑

k=1

∑
n: odd and 2k≤n<2k+1

(n/2)−1P ( max
1≤j≤n

|Sj| > εb(n+1)/2)
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≤ 2−1

∞∑
k=1

∑
n: even and 2k≤n<2k+1

(n)−1P ( max
1≤j≤n

|Sj| > εc−1bn)

+ 2−1

∞∑
k=1

∑
n: odd and 2k≤n<2k+1

(n)−1P ( max
1≤j≤n

|Sj| > εc−1bn+1)

≤ 2−1

∞∑
k=1

∑
2k≤n<2k+1

(n)−1P ( max
1≤j≤n

|Sj| > εc−1bn)

= 2−1

∞∑
n=2

(n)−1P ( max
1≤j≤n

|Sj| > εc−1bn) < ∞.

Using the Borel-Cantelli lemma, this implies that max1≤j≤2k |Sj/b2k | → 0, a.s. k →∞.

Furthermore,

max
2k−1<n≤2k

max
1≤j≤n

|Sj/bn| ≤ max
2k−1<n≤2k

max
1≤j≤2k

|Sj/b2k−1| ≤ max
2k−1<n≤2k

max
1≤j≤2k

|Sj/b2k/2|

≤ c−1 max
2k−1<n≤2k

max
1≤j≤2k

|Sj/b2k | = c−1 max
1≤j≤2k

|Sj/b2k | → 0 a.s.

as k →∞. Using the sub-sequence method, we obtain that max1≤j≤n |Sj/bn| → 0 a.s.

n →∞. If bn is geometrically increasing, such as bn = ρn for some ρ > 1, then b2n/bn

is increasing and unbounded. In this case, (6.3) holds under a very weak condition.

We have a general result as follows.

Theorem 6.3.2 Assume that supj≥1 E|Xj|r < ∞ for some 0 < r < 1. If b2n/bn is

increasing and unbounded, then (6.3) holds.
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Proof. In fact, from the fact that b2n/bn is increasing and unbounded, we have that

for any given M > 0, b2n/bn ≥ M for sufficiently large n. Without loss of generality,

assume that b2k/b2k−1 ≥ M for all k > 1. Hence, b2k ≥ Mb2k−1 ≥ · · · ≥ Mkb1. Take

M = 51/r,

∞∑
n=1

P ( max
1≤j≤n

|Sj| > εbn) ≤ C
∞∑

n=1

b−r
n E max

1≤j≤n
|Sj|r ≤ C

∞∑
n=1

b−r
n

∞∑
j=1

E|Xj|r ≤ C
∞∑

n=1

nb−r
n

= C

∞∑
k=1

∑
2k−1≤n<2k

nb−r
n ≤ C

∞∑
k=1

∑
2k−1≤n<2k

2kb−r
2k−1 = C

∞∑
k=1

22(k−1)b−r
2k−1

≤ C
∞∑

k=1

22(k−1)M−r(k−1) = C
∞∑

k=1

(4/M r)k−1 < ∞.

Hence, (6.3) holds.

6.4 The strong law of large numbers for positively associated

sequence

The concept of the associated random variables was introduced by Esary et al.

(1967) in the following way. Consider the finite family of random variables {Xi, 1 ≤

i ≤ n}, with finite second moments. We call {Xi, 1 ≤ i ≤ n} associated if Cov(f, g) >

0 for any real coordinate-wise nondecreasing scalar functions f = f(X1, . . . , Xn) and

g = g(X1, . . . , Xn) on Rn. An infinite family of random variables {Xi, i ≥ 1} is

associated if every finite subfamily is associated.
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Theorem 6.4.1 Let {Xj : j ≥ 1} be a sequence of positively associated random

variables with
∞∑
i=1

u1/2(2i) < ∞. (6.4)

Let ϕ: R → R+be an even and nondecreasing on[0,∞) function with limx→∞ ϕ(x) =

∞, and such that

(1) ϕ(x)/x is nonincreasing,

(2) ϕ(x)/x is nondecreasing and ϕ(x)/x2 is nonincreasing as x →∞ and EXj = 0.

Assume that b1, b2, · · · is a nondecreasing sequence of positive numbers satisfying

1 ≤ b2n/bn ≤ c < ∞,∀n ≥ 1, (6.5)

∞∑
j=1

P (|Xj| > bj) < ∞, (6.6)

∞∑
j=1

Eϕ(Xj)I(|Xj| ≤ bj)

ϕ(bj)
< ∞, (6.7)

∞∑
n=1

b−2
n max

1≤j≤n
b2
jP (|Xj| > bj) < ∞, (6.8)

∞∑
n=1

b−2
n max

1≤j≤n

b2
jϕ(Xj)I(|Xj| ≤ bj)

ϕ(bj)
< ∞. (6.9)

Then

Sn/bn → 0, a.s. (6.10)
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Proof. Let Zj := XjI(|Xj| ≤ bj)− bjI(Xj < −bj) + bjI(Xj > bj). we first show that

b−1
n |E

n∑
j=1

Zj| → 0. (6.11)

If ϕ(x) satisfies the condition ϕ(x)/x is nonincreasing, then
ϕ(bj)

bj
≤ ϕ(|Xj |)

|Xj | as |Xj| ≤ bj,

hence
|Xj |
bj
≤ ϕ(Xj)

ϕ(bj)
. Therefore,

|EZj| ≤ bjE(|Xj|/bj)I(|Xj| ≤ bj) + bjP (|Xj| > bj)

≤ bjE(ϕ(|Xj|)/ϕ(bj))I(|Xj| ≤ bj) + bjP (|Xj| > bj)

≤ bjEϕ(Xj)I(|Xj| ≤ bj)/ϕ(bj) + bjP (|Xj| > bj).

If ϕ(x) satisfies the condition ϕ(x)/x is nondecreasing, then
ϕ(bj)

bj
≤ ϕ(|Xj |)

|Xj | as |Xj| >

bj. Therefore,
|Xj |
bj
≤ ϕ(Xj)

ϕ(bj)
. Note that EXj = 0, we get

|EZj| = |EXjI(|Xj| ≤ bj)|+ bjP (|Xj| > bj) = |EXjI(|Xj| > bj)|+ bjP (|Xj| > bj)

≤ bjE(|Xj|/bj)I(|Xj| > bj) + bjP (|Xj| > bj)

≤ bjE(ϕ(|Xj|)/ϕ(bj))I(|Xj| ≥ bj) + bjP (|Xj| > bj).

We have that

|EZj| ≤ bjEϕ(Xj)I(|Xj| ≤ bj)/ϕ(bj) + bjP (|Xj| > bj). (6.12)
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From (6.6), (6.7), and(6.12), we get
∑∞

j=1 |EZj|/bj < ∞. Thus, b−1
n

∑n
j=1 |EZj|/bj →

0 by Kronecker’s lemma. This implies (6.11). On the other hand, from (6.6)

∞∑
j=1

P (Xj 6= Zj) =
∞∑

j=1

P (|Xj| > bj) < ∞. (6.13)

Then, (6.11) and (6.13) imply that it is sufficient to prove

b−1
n

n∑
j=1

(Zj − EZj) → 0, a.s. (6.14)

Now, we say it is true that

X2
j

b2
j

≤ ϕ(Xj)

ϕ(bj)
for |Xj| ≤ bj. (6.15)

In fact, if ϕ(x) satisfies the condition 2, then ϕ(x)/x2 is nonincreasing. So

ϕ(bj)

b2
j

≤ |ϕ(Xj)|
X2

j

=
ϕ(Xj)

X2
j

,

implies (6.15). If ϕ(x) satisfies the condition ϕ(x)/x is nonincreasing, then
ϕ(bj)

bj
≤

ϕ(|Xj |)
|Xj | for |Xj| ≤ bj, implies that

X2
j

b2j
≤ ϕ2(|Xj |)

ϕ2(bj)
. Note that 0 <

ϕ(|Xj |)
bj

≤ 1 from that

ϕ(x) is nondecreasing on (0,∞). We have

X2
j

b2
j

≤ ϕ2(|Xj|)
ϕ2(bj)

≤ ϕ(|Xj|)
ϕ(bj)

=
ϕ(Xj)

ϕ(bj)
,
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yields (6.15). By (6.16), we know that

EZ2
j = EX2

j I(|Xj| ≤ bj)|+ b2
jP (|Xj| > bj)

= b2
jE(X2

j /b2
j)I(|Xj| ≤ bj)|+ b2

jP (|Xj| > bj)

≤ b2
jE(ϕ(Xj)/ϕ(bj))I(|Xj| ≤ bj) + b2

jP (|Xj| > bj).

Thus, using (6.8) and (6.9), we obtain that

∞∑
n=1

n−1P ( max
1≤k≤n

|
k∑

j=1

(Zj − EZj)| > bnε) ≤ ε−2

∞∑
n=1

n−1b−2
n E max

1≤k≤n
|

k∑
j=1

(Zj − EZj)|2

≤ C
∞∑

n=1

b−2
n max

1≤j≤n
EZ2

j

≤ C
∞∑

n=1

b−2
n max

1≤j≤n
b2
j{E(ϕ(Xj)/ϕ(bj))I(|Xj| ≤ bj) + P (|Xj| > bj)} < ∞.

By Theorem 6.3.1, this yields the desired result.

Corollary 6.4.1 Assume that {Xj, j ≥ 1} is a sequence of positively associated ran-

dom variables with zero means and supj≥1 E|Xj|p < ∞ for some 1 ≤ p ≤ 2, and

satisfying (6.4). Then for any δ > 1,

Sn/(n log n(log log n)δ)1/p → 0, a.s. (6.16)
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Proof. Take ϕ(x) = |x|p and bn = (n log n(log log n)δ)1/p in Theorem 6.4.1. Obvi-

ously, 1 ≤ b2n/bn ≤ 3, (6.6) and (6.7) holds. Furthermore,

∞∑
n=1

b−2
n max

1≤j≤n

b2
jEϕ(Xj)

ϕ(bj)
≤ C

∞∑
n=1

(n log n(log log n)δ)−2/p max
1≤j≤n

(j log j(log log j)δ)2/p−1

≤ C

∞∑
n=1

(n log n(log log n)δ)−1 < ∞.

This implies (6.8) and (6.9).

Corollary 6.4.2 Assume that {Xj, j ≥ 1} is a sequence of positively associated ran-

dom variables with identical distribution, zero means and E|X1|p < ∞ for some

1 ≤ p < 2, and satisfying (6.4). Then Sn/n
1/p → 0 a.s.

Proof. Take ϕ(x) = |x|r where p < r < 2 and bn = n1/p. It is easy to get that

1 ≤ b2n/bn ≤ 2 and (6.6). First, by the fact that
∑∞

j=n j−1−δ ≤ Cn−δ for any given

δ > 0 and E|X1|p < ∞, we have

∞∑
j=1

Eϕ(Xj)I(|Xj| ≤ bj)

ϕ(bj)
=

∞∑
j=1

j−r/pE|X1|rI(|X1| ≤ j1/p)

=
∞∑

j=1

j−r/p

j∑
n=1

E|X1|rI((n− 1)1/p < |X1| ≤ n1/p)

≤
∞∑

n=1

nr/p−1E|X1|pI((n− 1)1/p < |X1| ≤ n1/p)
∞∑

j=n

j−r/p

≤ C

∞∑
n=1

E|X1|rI((n− 1)1/p < |X1| ≤ n1/p) ≤ CE|X1|p < ∞.

48



This gives us (6.7). Next, since
∑∞

j=1 P (|X1| > j1/p) < ∞, we can choose a sequence

of positive numbers {q(j) : j ≥ 1} with
∑∞

j=1 j−1q(j) < ∞ and j2/p−1q(j) ↑ ∞, such

that P (|X1| > bj) ≤ Cj−1q(j) for all j ≥ 1. Therefore,

∞∑
n=1

b−2
n max

1≤j≤n
b2
jP (|Xj| > bj) =

∞∑
n=1

n−2/p max
1≤j≤n

j2/pP (|X1| > j1/p)

≤ C

∞∑
n=1

n−2/p max
1≤j≤n

j2/p−1q(j) ≤ C

∞∑
n=1

n−2/p.n2/p−1q(n)

= C

∞∑
n=1

n−1q(n) < ∞.

This gives us (6.8). Finally,

∞∑
n=1

b−2
n max

1≤j≤n

b2
jEϕ(Xj)I(|Xj| ≤ bj)

ϕ(bj)
=

∞∑
n=1

n−2/p max
1≤j≤n

j2/p−r/pE|X1|rI(|X1| ≤ j1/p)

=
∞∑

n=1

n−r/pE|X1|rI(|Xj| ≤ n1/p)

≤ CE|X1|p < ∞,

which implies (6.9).

Remark 6.4.1 For the case p = 2, Corollary 6.4.1 implies that the convergence rate

of Sn/n is n−1/2(log n)−1/2(log log n)δ/2. The result is similar to the iterated logarithm

for independent random variables.
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Chapter 7

On the Growth Rate in the

Fazekas-Klesov General Law of Large

Numbers and Some Applications to the

Weak Law of Large Numbers for Tail

Series

The results of this chapter are my new contributions.

7.1 Introduction

Fazekas and Klesov (2000) gave a general method for obtaining the strong law of

large numbers for sequences of random variables by the Hájek-Rényi type inequality.
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This general approach, in proving the strong law of large numbers, suggests to directly

use a maximal inequality (the Hájek-Rényi inequality), for a sequence of normed

partial sums of dependent random variables. Under the same conditions, as found in

Fazekas and Klesov (2000), Hu and Hu (2006) discovered the method for obtaining

the strong growth rate for sums of random variables. Although the proof of Hu and

Hu (2006) owes much to that of Fazekas and Klesov (2000), their result is sharper.

In this chapter, we find a new method for obtaining the strong growth rate for

sums of random variables through using the approach of Fazekas and Klesov (2000).

It allows us to generalize and sharpen the method of Hu and Hu (2006). Our method

can be applied to almost all cases of the dependence structure considered in Hu and

Hu (2006), and we can obtain better results. Additionally, the approach of using the

Hájek-Rényi type maximal inequality to prove limit theorems, is also applied to the

weak law of large numbers for tail series.

The notation, to be used for this chapter, will now be provided. Let {Xn, n ≥ 1}

denote a sequence of random variables defined on a fixed probability space (Ω,F , P ).

The partial sums of the random variables are Sn =
∑n

i=1 Xi for n ≥ 1 and S0 = 0.

Let ϕ(x) be a positive function satisfying

∞∑
n=1

ϕ(n)

n2
< ∞ and 0 < ϕ(x) ↑ ∞ on [c,∞) for some c > 0. (7.1)
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7.2 Main results

The following lemma generalizes Dini’s theorem for scalar series.

Lemma 7.2.1 Let a1, a2, · · · be a sequence of nonnegative real numbers such that

an > 0 for infinitely many n. Let vn =
∑∞

i=n ai for n ≥ 1. Let ϕ(x) be a positive

function satisfying (7.1). If
∑∞

n=1 an < ∞, then
∑∞

n=1 anϕ(1/vn) < ∞.

Proof. Without loss of generality, we may assume that c = 1 and v1 ≤ 1. For each

k ≥ 0, define nk by nk = min{n : vn ≤ 2−k}. It follows that

∞∑
n=1

anϕ(1/vn) =
∞∑

k=0

nk+1−1∑
n=nk

anϕ(1/vn) ≤
∞∑

k=0

ϕ(1/vnk+1−1)

nk+1−1∑
n=nk

an

≤
∞∑

k=0

ϕ(1/vnk+1−1)vnk
≤

∞∑
k=0

ϕ(2k+1)

2k
.

Note that
∑∞

n=1 ϕ(n)/n2 < ∞ is equivalent to
∑∞

k=0 ϕ(2k)/2k < ∞, since

∞∑
k=0

ϕ(2k)

2k
≤ 4

∞∑
k=0

2k+1−1∑
n=2k

ϕ(n)

n2
= 4

∞∑
n=1

ϕ(n)

n2
≤ 4

∞∑
k=0

ϕ(2k+1)

2k
.

The result follows (7.1).

It is easy to find examples of functions ϕ(x) that satisfy (7.1). Such functions are

|x|δ or |x|δ(log |x|)α, where 0 < δ < 1 and α is any real number.

The following lemma is due to Fazekas and Klesov (2000).
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Lemma 7.2.2 Let {bn, n ≥ 1} be a nondecreasing unbounded sequence of positive

numbers and {αn, n ≥ 1} be a sequence of nonnegative real numbers such that αn > 0

for infinitely many n. Let r and C be fixed positive numbers. Assume that for each

n ≥ 1

E
(

max
1≤i≤n

|Si|
)r

≤ C

n∑
i=1

αi and
∞∑

n=1

αnb
−r
n < ∞.

Then the strong law of large numbers obtains, that is, limn→∞ Sn/bn = 0 a.s.

The following theorem gives a sharper result than Theorem 2.1 of Fazekas and

Klesov (2000) and Lemma 1.2 of Hu and Hu (2006).

Theorem 7.2.1 Assume that all conditions of Lemma 7.2.2 are satisfied. Let ϕ(x)

be a positive function satisfying (7.1). Let βn = max1≤i≤n biϕ(1/vi)
−1/r for n ≥ 1,

where vn =
∑∞

i=n αib
−r
i . Then the following statements hold:

1. If the sequence {βn, n ≥ 1} is bounded, then Sn/βn = O(1) a.s.

i.e. |Sn

βn
| < C for all n.

2. If the sequence {βn, n ≥ 1} is unbounded, then Sn/βn = o(1) a.s.

i.e. limn→∞ Sn/βn = 0 a.s.

Proof. It is easy to see that {βn} is a nondecreasing sequence of positive numbers.

Since βn ≥ bnϕ( 1
vn

)−1/r, we have by Lemma 7.2.1 that

∞∑
n=1

αnβ
−r
n ≤

∞∑
n=1

αnϕ(1/vn)b−r
n < ∞.
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If the sequence {βn, n ≥ 1} is unbounded, then limn→∞ Sn/βn = 0 a.s. by Lemma

7.2.2. Now, assume that {βn} is bounded by some constant D > 0. Then

∞∑
n=1

αn ≤ Dr

∞∑
n=1

αnβ
−r
n < ∞.

It follows by the monotone convergence theorem that

E
(

sup
n≥1

|Sn|
)r

= lim
n→∞

E
(

max
1≤i≤n

|Si|
)r

≤ C
∞∑

n=1

αn < ∞.

Hence, supn≥1 |Sn| < ∞ a.s.. Since 0 < β1 ≤ βn for all n ≥ 1, we have Sn/βn =

O(1) a.s.

Remark 7.2.1 For each case of Sn/βn = O(1) a.s. or Sn/βn = o(1) a.s., it can be

easily obtained that limn→∞ Sn/bn = 0 a.s., since limn→∞ βn/bn = 0.

Remark 7.2.2 For the special case of ϕ(x) = |x|δ (0 < δ < 1), in Lemma 1.2 of Hu

and Hu (2006) is proved that Sn/βn = O(1) a.s. under the same conditions as found

in Theorem 7.2.1. We can safely state that Theorem 7.2.1 extends and sharpens the

result of Hu and Hu (2006).

It is interesting to investigate the cases, when the sequence {βn, n ≥ 1} is un-

bounded. But, first, we derive a useful condition for ϕ(x).
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Lemma 7.2.3 If ϕ(x) is a positive function satisfying (7.1), then ϕ(n)/n → 0 as

n →∞.

Proof. Without loss of generality, we may assume that ϕ(x) is a nondecreasing on

[1,∞). According to the proof of Lemma 7.2.1, we have that
∑∞

k=0 ϕ(2k)/2k < ∞

and hence, limk→∞ ϕ(2k)/2k = 0. For 2k ≤ n < 2k+1,

ϕ(2k)

2k+1
≤ ϕ(n)

n
≤ ϕ(2k+1)

2k
.

Therefore, we have that limn→∞ ϕ(n)/n = 0.

The following lemma shows that {βn} defined in Theorem 7.2.1 is unbounded

when αn = O(1).

Lemma 7.2.4 Let b1, b2, · · · be a nondecreasing unbounded sequence of positive num-

bers and ϕ(x) be a positive function satisfying (7.1). Assume that
∑∞

n=1 b−r
n < ∞ for

some r > 0. Let βn = max1≤i≤n biϕ(1/vi)
−1/r for n ≥ 1, where vn =

∑∞
i=n b−r

i . Then,

{βn} is unbounded.

Proof. For each k ≥ 0, define nk by nk = min{n : bn ≥ 2k}. Let dk = nk − nk−1 for

k ≥ 1. Then, we have that

vnk
≥

nk+1−1∑
n=nk

b−r
n ≥ dk+1b

−r
nk+1−1 ≥ dk+12

−r(k+1) ≥ dk+12
−rb−r

nk
. (7.2)
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It follows that

bnk
ϕ(1/vnk

)−1/r ≥ bnk
ϕ

(
2rbr

nk

dk+1

)−1/r

=

[
2rbr

nk
/dk+1

ϕ(2rbr
nk

/dk+1)

]1/r
d

1/r
k+1

2
. (7.3)

Since limn→∞ vn = 0, (7.2) implies that limdk+1 6=0,k→∞ br
nk

/dk+1 = ∞. By (7.3) and

Lemma 7.2.3, we obtain that limdk+1 6=0,k→∞ bnk
ϕ(1/vnk

)−1/r = ∞. Hence, {βn} is

unbounded.

As a consequence of Theorem 7.2.1 and Lemma 7.2.4, we obtain the following

theorem.

Theorem 7.2.2 Let b1, b2, · · · be a nondecreasing unbounded sequence of positive

numbers and ϕ(x) be a positive function satisfying (7.1). Let r and C be fixed positive

numbers. Assume that for each n ≥ 1

E
(

max
1≤i≤n

|Si|
)r

≤ Cn and
∞∑

n=1

b−r
n < ∞.

Let βn = max1≤i≤n biϕ(1/vi)
−1/r for n ≥ 1, where vn =

∑∞
i=n b−r

i . Then Sn/βn → 0

a.s. as n →∞.

7.3 Applications to associated random variables

By using Theorem 7.2.1 and Theorem 7.2.2, we can extend and sharpen many

results from Hu and Hu (2006). For example, we will show how Theorem 3.2 of Hu

56



and Hu (2006) for (positively) associated random variables can be improved. This

improvement will consider negatively associated random variables and martingale

differences. The definition of positive association is given in chapter 6.

Theorem 7.3.1 Let {Xn, n ≥ 1} be a sequence of associated random variables with

mean zero and finite variance, and {bn, n ≥ 1} be a nondecreasing unbounded sequence

of positive numbers. Assume that

∞∑
n=1

ES2
n − ES2

n−1

b2
n

< ∞.

Let βn = max1≤i≤n biϕ(1/vi)
−1/2 for n ≥ 1, where vn =

∑∞
i=n(ES2

i −ES2
i−1)/b

2
i . Then

the following statements hold:

1. If the sequence {βn, n ≥ 1} is bounded, then Sn/βn = O(1) a.s.

i.e. |Sn

βn
| < C for all n.

2. If the sequence {βn, n ≥ 1} is unbounded, then Sn/βn = o(1) a.s.

i.e. limn→∞ Sn/βn = 0 a.s.

Proof. The proof is similar to that of Theorem 3.2 in Hu and Hu (2006). Since {Xn}

is a sequence of associated random variables, {−Xn} is also a sequence of associated

random variables. From Theorem 2 of Newman and Wright (1981), we have

E
(

max
1≤i≤n

S2
i

)
≤ E

(
max
1≤i≤n

Si

)2

+ E
(

max
1≤i≤n

(−Si)
)2

≤ 2ES2
n.
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By the definition of associated random variables, we obtain ES2
n = ES2

n−1 + EX2
n +

2Cov(Sn−1, Xn) ≥ ES2
n−1. Let αn = ES2

n − ES2
n−1 for n ≥ 1. Then

E
(

max
1≤i≤n

S2
i

)
≤ 2

n∑
i=1

αi and
∞∑

n=1

αn

b2
n

< ∞.

Thus, the result follows from Theorem 7.2.1.

Remark 7.3.1 Under the same conditions of Theorem 7.3.1 with ϕ(x) = |x|δ (0 <

δ < 1), Hu and Hu (2006) proved that Sn/βn = O(1) a.s., which improves Theorem

3.3 of Prakasa Rao (2002). Thus, Theorem 7.3.1 extends the result of Hu and Hu

(2006). Theorem 7.3.1 especially sharpens the result of Hu and Hu (2006), when

{βn, n ≥ 1} is unbounded. Such an example can be obtained easily. For example, if

ES2
n − ES2

n−1 = 1 for all n ≥ 1, then {βn, n ≥ 1} is unbounded by Lemma 7.2.4.

7.4 The weak law of large numbers for tail series

The rate of convergence for an almost surely convergent series Sn =
∑n

j=1 Xj

of variables {Xn, n ≥ 1} is studied in this section. More specifically, if Sn converges

almost surely to a random variable S, then the tail series Tn ≡ S−Sn−1 =
∑∞

j=n Xj is

a well-defined sequence of random variable (referred to as the tail series) with Tn → 0

almost surely.
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The main result of this section provides conditions for

sup
k≥n

|Tk|/bn→0 in probability (7.4)

which hold for a given numerical sequence 0 < bn = o(1). The result is the greatest

interest when bn = o(1). Nam and Rosalsky (1996) provided an example showing

inter alia that a.s. convergence to 0 does not necessarily hold for the expression in

(7.4). Theorem 7.4.1 is a very general result and we will see that some previously

obtained results are immediate corollaries of it. In Theorem 7.4.1, a condition is

imposed, in general, on the joint distributions of the random variables {Xn, n ≥ 1}.

However, in corollary, {Xn, n ≥ 1} is a martingale difference sequence of random

variables. Certainly, the result is true when {Xn, n ≥ 1} is a sequence of independent

random variables. In corollary, the moment condition on the |Xn|, and the limiting

behavior of bn, are imposed.

Theorem 7.4.1 Let {Xn, n ≥ 1} be a sequence of random variables, {bn, n ≥ 1} be

a sequence of nonnegative numbers, {αn, n ≥ 1} be a sequence of positive numbers,

and r > 0. Let
∑∞

j=1 αj < ∞. If for all natural numbers n < m,

E( max
n≤k≤m

|
k∑

j=n

Xj|)r ≤
m∑

j=n

αj,
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then the series
∞∑

n=1

Xn converges a.s. and the tail series {Tn =
∞∑

j=n

Xj, n ≥ 1} is a

well-defined sequence of random variables. Next, if
∑∞

j=n αj = o(br
n) as n →∞, then

the tail series obeys the limit law

supk≥n |Tk|
bn

→0 in probability.

Proof. For arbitrary ε > 0 and n ≥ 1, the Markov inequality implies

P{sup
m>n

|
m∑

j=1

Xj −
n∑

j=1

Xj| > ε} ≤ ε−rE sup
m>n

|
m∑

j=1

Xj −
n∑

j=1

Xj|r

= ε−r lim
m→∞

E max
n+1≤k≤m

|
k∑

j=n+1

Xj|r (by the monotone convergence theorem)

≤ ε−r lim
m→∞

m∑
j=n

αj = o(1).

Then by Corollary 3.3.4 of Chow and Teicher (1997),
∑∞

n=1 Xn converges a.s. Thus,

the tail series {Tn =
∑∞

j=n Xj, n ≥ 1} is a well-defined sequence of random variables.

Next, for arbitrary ε > 0,

P

{
supk≥n |Tk|

bn

> ε

}
≤ (εbn)−rE sup

k≥n
|Tk|r (by the Markov inequality)

= (εbn)−r lim
N→∞

E max
n≤k≤N

| lim
m→∞

m∑
j=k

Xj|r (by the monotone convergence theorem)

= (εbn)−r lim
N→∞

E max
n≤k≤N

lim
m→∞

|
m∑

j=k

Xj|r
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= (εbn)−r lim
N→∞

E lim
m→∞

max
n≤k≤N

|
m∑

j=k

Xj|r

≤ (εbn)−r lim
N→∞

lim inf
m→∞

E max
n≤k≤N

|
m∑

j=k

Xj|r (by Fatou’s lemma)

≤ (εbn)−r lim inf
m→∞

E max
n≤k≤m

|
m∑

j=k

Xj|r

≤ (εbn)−r lim inf
m→∞

m∑
j=n

αj = o(1).

The conclusion of the theorem now follows easily.

The next corollary was obtained by Rosalsky and Rosenblatt (1998). We present

a simplified proof for this corollary.

Corollary 7.4.1 Let {Sn =
∑n

j=1 Xj, n ≥ 1} be a martingale and 1 ≤ r ≤ 2. If

∞∑
j=n

E|Xj|r = O(br
n),

then the series
∑∞

n=1 Xn converges a.s.

If

∞∑
j=n

E|Xj|r = o(br
n),
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then the tail series obeys the limit law

supk≥n |Tk|
bn

→0 in probability

Proof. By the Burkholder-Davis-Gundy inequality, we have that for all m ≥ n ≥ 1,

E max
n≤k≤m

|
k∑

j=n

Xj|r ≤ C

m∑
j=n

E|Xj|r.

The corollary follows immediately from Theorem 7.4.1.

Certainly, Theorem 7.4.1 could be generalized on the Banach space setting. We

refer the reader to the papers by Deng (1988), (1991), and (1994), Rosalsky and

Volodin (2001) and (2003) for such generalizations.
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Chapter 8

Conclusion and Future Work

Establishing strong law of large numbers for tail series (we proved only weak one

in our thesis) is more difficult, but we hope that it still can be done by applying a

maximal inequality for normalized sums. This inequality is referred to as the Hájek-

Rényi inequality, in honour of a paper written by Hájek and Rényi (1955) describing

independent summands. This thesis illustrates that the Hájek-Rényi inequality is a

result of choosing the correct maximal inequality for a sequence of cumulative sums.

In my future work, I will find further results on the weak and strong law of large

numbers for tail series towards the application of the Hájek-Rényi inequality. An-

other interesting problem is to find analogs of the Hájek-Rényi inequality for different

dependent structures.
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Appendix

In this section we collect some important definitions from probability theory that

we frequently use throughout this thesis. Let Ω denote the sample space of outcomes.

• F -algebra on Ω

A collection F of subsets of Ω is called a σ-algebra on Ω if F is an algebra on

Ω such that whenever Fn ∈ F (n ∈ N), then
⋃

n Fn ∈ F .

• Measurable space

A pair (Ω,F), where Ω is a set and F is a σ-algebra on Ω is called a measurable

space.

• Almost surely (a.s.)

A statement S about outcomes in Ω is said to be true almost surely (a.s.), or

with probability 1 (w.p.1), if F = {ω : S(ω) is true} ∈ F and P (F ) = 1.

• Random variable

Let (Ω,F) be our (sample space, family of events). A random variable X : Ω →

R is a measurable function. That is, X−1(B) ∈ F for every B ∈ B.

• Martingale

A process X = {Xn, n ≥ 0} is called a martingale if (i) X is adapted, (ii)

E(|Xn|) < ∞,∀n, (iii) E[Xn|Fn−1] = Xn−1, a.s.(n ≥ 1).

64



Bibliography

[1] Andrews, D.W.K. Laws of large numbers for dependent nonidentically dis-

tributed rabdom variables. Econom. Theory. 4, (1988), 458-467.

[2] Bickel, P.J. Une generalisation de type Hájek-Rényi d’une inegalite de M. P.
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tions. Annales Mathematicae et Informaticae. 33, (2006), 141-149.

[51] Utev, S. and Peligrad, M. Maximal inequalities and an invariance principle for a

class of weakly dependent random variables. J. Theoret. Probab. 16, (2003), No.

1, 101-115.

[52] Yang, S. and Su, C. A general method to the strong law of large numbers and

its applications. Preprint (2000).

71


