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Abstract

The loop-erased random walk (LERW) was first studied in 1980 by Lawler as an

attempt to analyze self-avoiding walk (SAW) which provides a model for the growth

of a linear polymer in a good solvent. The self-avoiding walk is simply a path on a

lattice that does not visit the same site more than once. Proving things about the

collection of all such paths is a formidable challenge to rigorous mathematical meth-

ods. Eventually, it was discovered that SAW and LERW are in different universality

classes. LERW is a model for a random simple path with important applications in

combinatorics, computer science and quantum field theory. This model has contin-

ued to receive attention in recent years, in part because of connections with uniform

spanning trees.

This report contains some of the most important results about loop-erased random

walk and its scaling limit in several dimensions. Although there is an extensive body

of work concerning LERW, we will rather give a summary of the key properties and

results. The first two chapter of this report provide the preliminaries for the loop-

erased random walk. In Chapter 1, the necessary background and history about

loop-erased random walk and its scaling limit is presented. Chapter 2 introduces
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some aspects and definition of LERW for d ≥ 3. In Chapter 3, it is shown that

LERW converges to Brownian motion for d ≥ 5. In Chapter 4, the same result as in

Chapter 3 holds. It is shown that LERW for d = 4 converges to Brownian motion,

but a logarithmic correction to the scale is needed. A promising paper by Kozma is

introduced in Chapter 5 which shows that the scaling limit of LERW in d = 3 exists

and is invariant under rotations and dilatations. Chapter 6 presents some important

concepts and facts from complex analysis including the Loewner equation, and gives

an introduction to the stochastic Loewner evolution (SLE). At the end of this chapter,

it is shown that the scaling limit of LERW for d = 2 is equal to the radial SLE2 path.

The final chapter reviews Wilson’s algorithm which generates uniform spanning trees

(UST) using LERW.
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Chapter 1

Introduction

As written by Schramm [22], it is commonly the case when discrete probabilis-

tic models are considered as a substitute, or simplification, of a continuous process.

There are definite advantages for working in the discrete setting, where unpleasant

technicalities and difficulties can frequently be avoided, the setup is easier to under-

stand, and simulations are possible. On the other hand, there are numerous cases

where the continuous case is easier to analyze than the discrete model. In these

situations the continuous model may be a useful simplification of the discrete case.

The relation between both discrete and continuous processes is of fundamental

importance in probability theory and its applications. One way to define a continuous

process is by taking a scaling limit of a discrete process. This means making sense of

the limit of a sequence of grid processes on finer and finer grids.

The simplest and most important example of the connection between grid-based

models and continuous process is the scaling limit of the simple random walk (SRW)
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to define Brownian motion, which is well studied and quite well understood. Simple

random walk on any integer lattice in Rd converges to d-dimensional Brownian motion

in the scaling limit.

There are a number of interesting models associated to simple random walk in

which each step depends on the past in a complicated manner. All are more difficult

to analyze than the usual simple random walk. Two of these models are the self-

avoiding walk (SAW) [20] and the loop-erased random walk (LERW) [15].

The study of self-avoiding walks (SAW) originated in chemical physics as an at-

tempt to model polymer chains. A polymer consists of many monomers which form

a random chain with the constraint that different monomers cannot occupy the same

space. The self-avoiding walk is defined as the uniform measure on random walk

paths of a given length conditioned on no self-intersection. On a rigorous level, this

mathematical model itself has proven to be an extremely difficult one to analyze.

Lawler in 1980 [12] introduced the loop-erased random walk with the hope of getting

some perspective on the problem of the self-avoiding walk. It turned out that the two

processes are in different universality classes.

Nonetheless, loop-erased random walk (LERW) is an interesting model in its own

right with important applications in combinatorics, physics and quantum field theory.

Before proceeding to analyze the LERW and its scaling limit in several dimensions,

we will give some essential definitions and facts that will help to comprehend the

content of this paper.
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Let (Ω,F , P) be a probability space, which means that Ω is a space, F is a σ-

algebra of subsets of Ω, P is a countably additive, non-negative measure on (Ω,F) with

total mass P (Ω) = 1. A discrete time stochastic process S = {Sn, n = 0, 1, 2, . . .} is

defined as a countable collection of random variables indexed by non-negative integers.

Let Zd = {(z1, . . . , zd) : z1 ∈ Z, . . . , zd ∈ Z} ⊆ Rd be the d-dimensional integer lat-

tice. Let X1, X2 . . . be independent, identically distributed random variables defined

on a probability space (Ω,F , P) taking values in the integer lattice Zd with

P{Xj = e} =
1

2d
, |e| = 1.

A simple random walk starting at x ∈ Zd is a discrete time stochastic process

S = {Sn, n = 0, 1, 2, . . .}, with S0 = x and

Sn = x + X1 + · · ·+ Xn.

The probability distribution of Sn is denoted by

pn(x, y) = P x{Sn = y}.

A continuous time stochastic process B = {Bt, 0 ≤ t < ∞} is an uncountable

collection of random variables indexed by non-negative real numbers.

Consider a continuous time stochastic process B = {Bt, 0 ≤ t < ∞} having the

following properties:

• B0 = 0,

• for 0 ≤ s ≤ t < ∞, Bt −Bs ∼ N(0, t− s),
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• for 0 ≤ s ≤ t < ∞, Bt −Bs is independent of Bs,

• the trajectories t 7→ Bt are continuous.

The process B = {Bt, 0 ≤ t < ∞} is called (one-dimensional, standard) Brownian

motion. This mathematical object is used to describe many phenomena such as the

random movements of minute particles, stock market fluctuations, and the evolution

of physical characteristics in the fossil record. If we let B = (B1, . . . , Bd) where the

components Bj are independent, one-dimensional Brownian motions, then we say

that B is a d-dimensional Brownian motion.

Lawler [15] defines loop-erased random walk on the integer lattice as a process

obtained by erasing the loops of a simple random walk chronologically. The result of

this process has self-avoiding paths.

The appropriate way to discuss limiting behaviour is through convergence. The

concept of convergence is essential in probability theory, and its applications to statis-

tics and stochastic processes.

Among all types of convergence, this paper will deal primarily with the conver-

gence of probability measures.

Jacod and Protter [6] define weak convergence and convergence in distribution

(which are closely related) as follows.

Let µn and µ be probability measures on Rd (d ≥ 1). The sequence µn converges

weakly to to µ if
∫

fdµn converges to
∫

fdµ for each f which is real-valued, continuous
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and bounded on Rd, i.e.,

lim
n→∞

∫
fdµn =

∫
fdµ.

Furthermore, let X1, . . . , Xn be Rd-valued random variables. We say Xn converges

in distribution to X if the distribution measures PXn converge weakly to PX where

PXn is defined by PXn(A) = P (Xn ∈ A) for A Borel and PX is defined similarly. We

write Xn
D−→X.

Note that in this type of convergence, it is the probability distribution that con-

verge, and not the values of the random variables themselves.

Theorem 1.1 (Portmanteau theorem). If µn, µ are probability measures on

(R,B), then the following are equivalent:

• µn → µ in distribution as n →∞,

•
∫

R fdµn →
∫

R fdµ ∀ f ∈ Cb (bounded,continuous),

• lim supn→∞ µn(F ) ≤ µ(F ) ∀ closed F ⊆ R,

• lim infn→∞ µn(E) ≥ µ(E) ∀ open E ⊆ R,

• limn→∞ µn(A) = µ(A) ∀ Borel A with µ(∂A) = 0.

Example 1.2. Let Ω = [0, 1], let F be the Borel sets of Ω, let A ∈ F , let xn = 1
n

and define the following probability measures:

µn(A) =


1, if xn ∈ A,

0, if xn /∈ A,

µ(A) =


1, if 0 ∈ A,

0, if 0 /∈ A.
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Now let f be continuous and bounded, so that

∫ ∞

−∞
f(x)dµn(x) = f(xn) = f(1/n) and

∫ ∞

−∞
f(x)dµ(x) = f(0).

Clearly xn → 0 as n →∞, and so since f is continuous, we find

f(xn) → f(0) as n →∞,

which shows that µn → µ weakly. We now show that strict inequalities hold in the

second and third parts of the Portmanteau theorem. Let A = (0, 1) which is an open

set. We see that µ(A) = 0 since 0 /∈ A and that µn(A) = 1 ∀ n since xn ∈ A.

Therefore,

lim inf
n→∞

µn(A) = 1 > µ(A) = 0.

Let A = {0} which is a closed set. We see that µ(A) = 1 since 0 ∈ A and µn(A) = 0

∀ n since xn /∈ A. Therefore,

lim sup
n→∞

µn(A) = 0 < µ(A) = 1.

The scaling limit for the LERW in dimension 1 is trivial. If you take a random

walk with very small steps you get an approximation to Brownian motion. To be more

precise, if the step size is ξ, one needs to take a walk of length L/ξ2 to approximate

a Brownian motion of length L. As the step size tends to 0 (and the number of steps

increase comparatively), the LERW converges to Brownian motion in distribution.

In dimension 2, the LERW was conjectured to be conformally invariant in the limit

as the lattice becomes finer and finer, which allowed physicist to make conjectures
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about fractal dimensions and critical exponents. There are three different approaches

to prove the scaling limit of LERW in dimension 2: the connection to random domino

tilings [7, 8], the connection to the stochastic Loewner evolution (SLE) [17], and a

näıve approach proposed by Kozma [10].

Attempts to understand LERW in dimension 3 are focused mainly on the number

of steps it takes to reach the distance r. Physicists argue that this value is ≈rξ and

did numerical experiments to show that ξ = 1.62 ± 0.01 [5]. Strictly, the existence

of ξ has not been proved, therefore we must talk about upper and lower exponents

(ξ ≤ ξ̄). The best estimates known are 1 ≤ ξ ≤ ξ̄ ≤ 5/3 [15]. It is unclear whether

LERW has a natural continuum equivalent in dimensions smaller than 4. Note that

Brownian motion has a dense set of loops and therefore it is not clear how to delete

them in chronological order.

The dimension 4 is critical for LERW. A weak law for the remaining points af-

ter erasing loops has been proved. From this, it has been shown that the process

approaches Brownian motion with a logarithmic correction to the scaling [13]. This

has been proved with no use of the difficult technique of lace expansion [23] (which

is used to obtain high dimensional results about the self-avoiding walk).

Above dimension 4, the number of points remaining after erasing loops is a positive

fraction of the total number of the points. It turns out that if one takes a random

walk of length n, its loop-erasure has length of the same order of magnitude. Scaling

accordingly, it results that as n goes to infinity, the LERW converges in distribution to

Brownian motion. Lawler [13] proved it using the non-intersection of simple random
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walks.

In the remaining chapters, we will discuss the scaling limit of LERW in each of

the cases d = 2, d = 3, d = 4, and d ≥ 5 separately.
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Chapter 2

LERW in d ≥ 3

We will start this chapter by defining the loop-erasing procedure which assigns

to each finite simple random walk path λ a self-avoiding path Lλ [13]. Let λ =

[λ(0), . . . , λ(m)] be a simple random walk path of length m. If λ is already self-

avoiding set Lλ = λ. If not, let

s0 = sup{j : λ(j) = λ(0)},

and for i > 0, let

si = sup{j : λ(j) = λ(si−1 + 1)}.

If

n = inf{i : si = m},

then

Lλ = [λ(s0), λ(s1), . . . , λ(sn)].

Note that the loop-erasing procedure “erases” loops in chronological order. If we
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want to erase the loops in the reverse direction, let

λR(j) = λ(m− j), 0 ≤ j ≤ m,

and define the reverse loop-erasing operator LR by

LR(λ) = (LλR)R.

It is not difficult to construct λ such that Lλ 6= LRλ. However, it can be proved

that Lλ and LRλ have the same distribution if λ is chosen using the distribution of

simple random walk. See Lemma 7.2.1 of [13].

Now that the loop-erasure process has been explained, we are ready to define the

loop-erased random walk of an infinite simple random walk for d ≥ 3.

Suppose that Sj is a simple random walk in Zd, d ≥ 3, and let

σ0 = sup{j : Sj = 0},

and for i > 0,

σi = sup{j > σi−1 : Sj = S(σi−1 + 1)}.

Then, let

Ŝ(i) = S(σi).

We call Ŝ the loop-erased self avoiding random walk or, more compactly, the

loop-erased random walk. Notice that Ŝ is well defined since simple random walk

is transient for d ≥ 3. Recall this means that simple random walk is not expected to

visit 0 infinitely often, i.e.,

P{Sn = 0 infintely often} = 0.
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In order to analyze the behaviour of Ŝ(n) for large n. It is important to investigate

how many steps of the simple random walk remain after erasing the loops. We will

consider the case d ≥ 3 where the loop-erased random walk is constructed by erasing

loops from an infinite simple random walk. An equivalent way of describing σi is as

follows

σ(i) = σi = sup{j : S(j) = Ŝ(i)}.

Now, let ρ(j) be the “inverse” of σ(i). That is, define

ρ(j) = i if σi ≤ j < σi+1.

Then,

ρ(σ(i)) = i, (2.1)

σ(ρ(j)) ≤ j,

and

Ŝ(i) = S(σ(i)).

If Yn is the indicator function of the event “the nth point of S is not erased”, then

Yn =


1, if σi = n for some i ≥ 0,

0, otherwise,

and so

ρ(n) =
n∑

j=0

Yj

where ρ(n) is the number of points remaining of the first n points after loops are

erased. Now, let an = E(Yn) be the probability that the nth point is not erased. Let
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wn be the path resulting after erasing loops on the first n steps of S, i.e.,

wn = L[S0, . . . , Sn].

Then Yn = 1 if and only if the loop-erased random walk up to time n and the simple

random walk after time n do not intersect. More precisely, Yn = 1 iff

wn ∩ S[n + 1,∞) = ∅,

Therefore,

P{Yn = 1|S0, . . . , Sn} = ESwn
(Sn)

where ESwn
is the expectation assuming the simple random walk starts after the

loop-erased random walk up to time n, and so

an = E[ESwn
(Sn)].

This can be restarted by translating the origin. If S1, S2 are independent simple

random walks starting at the origin, then

an = P{LR[S1
0 , . . . , S

1
n] ∩ S2[1,∞) = ∅},

and since LRλ and Lλ have the same distribution for a simple random walk, we get

an = P{L[S1
0 , . . . , S

1
n] ∩ S2[1,∞) = ∅}.

The goal is to derive an upper bound which essentially states that ρ(n) grows no

faster than n(ln n)−1/3 for d = 4. Define

bn = E(ρ(n)) =
n∑

j=0

E(Yj).
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Theorem 2.1 (Lawler). If d = 4,

lim sup
n→∞

ln bn − ln n

ln ln n
≤ −1

3
.

Remark. In the proof of the theorem a lower bound on the probability of returning

to the origin while avoiding a given set is needed. However we will not give the proof

of this theorem in this paper and instead refer the reader to Chapter 7 of [13].

It is natural to ask how good the bound in this theorem is. We will consider the

case d = 3, 4, 5. Then

Zn = ESwn
(Sn),

an = E(Zn) and ρn =
∑n

j=0 aj. Lawler in [15] gives a way to estimate E(Zn) by

E(Z3
n)1/3. While this only gives a bound for this quantity in one direction, in the case

of d = 4, using the ideas of slowly recurrent sets for simple random walk [14], it has

been shown that this bound is sharp and that

E(Z3
n) ≈



1, d ≥ 5,

(ln n)−1, d = 4,

n−1/2, d = 3.

It is quite likely that this bound is not sharp in dimensions below four.

An important question is how much do we lose when we estimate E(Zn) by

E(Z3
n)1/3 ? If d = 4, we lose very little:

an ≈ (ln n)−1/3, d = 4.
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For d = 3, we expect that the estimate for E(Zn) is not sharp and that an ≈ n−α

for some α > 1
6
.
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Chapter 3

Convergence of LERW to Brownian

motion in d ≥ 5

In this chapter we will show that a loop-erased random walk with an appropriate

scale converges to Brownian motion. For d ≥ 5, the scaling will be a constant times

the usual scaling for simple random walk. Further details about the results in this

chapter may be found in Chapter 7 of [13].

To prove that LERW converges to Brownian motion, it is necessary to show that

the loop-erasing process is uniform on paths, i.e.,

ρ(n)

rn

→ 1, for some rn →∞.

It is convenient to consider S as a two-sided walk. Let S1 be a simple random

walk independent of S and extend Sj, −∞ < j < ∞, by defining

Sj =


Sj, 0 ≤ j < ∞,

S1
j , −∞ < j ≤ 0.
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We call a time j loop-free for S if S(−∞, j] ∩ S(j,∞) = ∅. Since the number of

intersection probabilities for simple random walks for d ≥ 5 is finite, then for each j

P{j loop-free} = P{S(−∞, 0] ∩ S(0,∞) = ∅} = b > 0.

We will mention a lemma and a theorem due to Lawler [13] that are fundamental

to prove the main result. We believe that the proofs are instructive and so we include

them in this report.

Lemma 3.1 (Lawler). If d ≥ 5, with probability one, S(−∞,∞) has infinitely many

positive loop-free points and infinitely many negative loop-free points.

Proof. Let X be the number of positive loop-free points. A time j is n-loop-free if

S[j − n, j] ∩ S(j, j + n] = ∅. Then

P{j n-loop-free} = P{S[−n, 0] ∩ S(0, n] = ∅} = bn,

and bn → b. Now we let Vi,j be the event {(2i − 1)n is loop-free} and Wi,n the

event {(2i − 1)n is n-loop-free}. We can notice that for a given n, the events Wi,n,

i = 1, 2, . . . , are independent. For any k < ∞, ε > 0, find m such that if Y is a

binomial random variable with parameters m and ε, P{Y < k} ≤ ε, then

P{X ≥ k} ≥ P{
m∑

i=1

I(Vi,n) ≥ k}

≥ P{
m∑

i=1

I(Wi,n) ≥ k} − P{
m∑

i=1

I(Wi,n\Vi,n) ≥ 1}

≥ 1− ε−m(b− bn).
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Now if we choose n so that m(b− bn) ≤ ε. Then P{X ≥ k} ≥ 1−2ε. Since this holds

for all k < ∞, ε > 0, we have that P{X = ∞} = 1. A similar proof shows that the

number of negative loop-free points is infinite with probability one.

Theorem 3.2 (Lawler). If d ≥ 5, there exists an a > 0 such that with probability

one

lim
n→∞

ρ(n)

n
= a.

Proof. First we have to order the loop-free points of S(−∞,∞),

· · · ≤ j−2 ≤ j−1 ≤ j0 ≤ j1 ≤ j2 ≤ · · · ,

with

j0 = inf{j ≥ 0 : j loop-free}.

We can erase loops on the two-sided path S(−∞,∞) by erasing separately on each

piece S[ji, ji+1]. Let Ỹn be the indicator function of the event “the nth point is not

erased in this procedure”, i.e., Ỹn = 1 if and only if ji ≤ n < ji+1 for some i and

L(S[ji, n]) ∩ S(n, ji+1] = ∅.

We can see that the Ỹn form a stationary, ergodic sequence. Therefore, by a standard

ergodic theorem (see [3], Theorem 6.28), with probability one,

lim
n→∞

1

n

n∑
j=0

Ỹj = E(Ỹ0).

If instead we erase the loops only on the path S[0,∞), ignoring S(−∞, 0), the

self-avoiding path we get may be sightly different. However, it is easy to see that if
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n ≥ j0, then Yn = Ỹn, where Yn is as defined in the first part of Chapter 2. Therefore,

since j0 < ∞, with probability one,

lim
n→∞

ρ(n)

n
=

1

n

∞∑
j=0

Yn = E(Ỹ0) = a.

To see that a > 0 we can note that

a ≥ P{0 loop-free} > 0.

We are now ready to proceed with the main theorem also due to Lawler [13].

Theorem 3.3 (Main Result). If d ≥ 5 and

Ŵ n(t) =
d
√

aŜ([nt])√
n

,

then Ŵn(t) converges in distribution to B(t), where B is a standard Brownian motion.

Proof. Recall that Ŝ(n) = S(σ(n)), then by Theorem 3.2 with probability one,

lim
n→∞

ρ(σ(n))

σ(n)
= a,

and hence by (2.1),

lim
n→∞

σ(n)

n
=

1

a
. (3.1)

The standard invariance principle (Donsker’s theorem) states that if

Wn(t) = dn−1/2S([nt]),

then

Wn(t) → B(t),
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in the metric space C[0, 1], where B is a standard Brownian motion in Rd. Now

suppose that bn →∞ and

rn(t) =
σ([nt])

bn

→ t.

Then by the tightness in C[0, 1] of the sequence Wn,

S(σ([nt]))√
bn

− S([bnt])√
bn

→ 0,

and hence

dS(σ([nt]))√
bn

→ B(t).

It follows from (3.1) that

σ(n)a

n
→ 1,

and so

σ([nt])a

n
→ t.

Since rn → t, we therefore have

σ([nt])a

rn(t)
→ 1,

which shows that the loop-erasing procedure is uniform on paths.
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Chapter 4

Convergence of LERW to Brownian

motion in d = 4

LERW has a critical dimension of four. In the critical dimension d = 4, we can

prove a weak law for the number of points remaining. From this, it can be shown

that the process converges to Brownian motion, although a logarithmic correction to

the scaling is needed ([13], Chapter 7). Just like d ≥ 5 the key step to proving such

convergence is to show that the loop-erasing process is uniform on paths, i.e.,

r−1
n ρ(n) → 1, for some rn →∞.

To prove this we cannot use the same procedure as for d ≥ 5 since S(−∞,∞)

contains no (two-sided) loop-free points. However, it will be possible to make use of

one-sided loop-free points. Let In = I(n) be the indicator function of the event “n is

a (one-sided) loop-free point,” i.e.,

S[0, n] ∩ S(n,∞) = ∅.
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The next lemma due to Lawler [13] shows that the property of being loop-free is in

some sense a local property.

Lemma 4.1 (Lawler). Let d = 4 and

Un = {S[0, n] ∩ S(n,∞) = ∅},

Vn,k = {S[k − n(ln n)−9, k] ∩ S(k, k + n(ln n)−9] = ∅}.

Then for all k with n(ln n)−9 ≤ k ≤ n,

P (Vn,k) = P (Un)(1 + O(
ln ln n

ln n
)).

Proof. It suffices to prove this lemma for k = n. We write U for Un and V for Vn,n.

Let

V̄ = V̄n = {S[n− n(ln n)−9, n] ∩ S(n,∞) = ∅}.

Then

P (V̄ ) = P (U)(1 + O(
ln ln n

ln n
)). (4.1)

Let

W = Wn = {S[n− n(ln n)−18, n] ∩ S(n, n + n(ln n)−9] = ∅},

W̄ = W̄n = {S[n− n(ln n)−18, n] ∩ S(n,∞) = ∅}.

Then

P (W̄ ) = P (V̄ )(1 + O(
ln ln n

ln n
)). (4.2)
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But

P (W\W̄ ) ≤ P{S[n− n(ln n)−18, n] ∩ S[n + n(ln n)−9,∞) = ∅}

= o((ln n)−2).

Since P (W̄ ) ≈ (ln n)−1/2, this implies that

P (W ) = P (W̄ )(1 + O(
ln ln n

ln n
)). (4.3)

But V̄ ⊂ V ⊂ W, so (4.1)–(4.3) imply that

P (V ) = P (U)(1 + O(
ln ln n

ln n
)).

The next lemma will show that there are a lot of loop-free points on a path.

Suppose 0 ≤ j < k < ∞, and let Z(j, k) be the indicator function of the event “there

is no loop-free point between j and k”, i.e.,

{Im = 0, j ≤ m ≤ k}.

Then if d = 4,

E(Z(n− n(ln n)−6, n)) ≥ P{S[0, n− n(ln n)−6] ∩ S(n + 1,∞) 6= ∅}

≥ c
ln ln n

ln n
.

The next lemma due to Lawler [13] gives a similar bound in the opposite direction.

Lemma 4.2 (Lawler). If d = 4, for any n and k with n(ln n)−6 ≤ k ≤ n,

E(Z(k − n(ln n)−6, k)) ≤ c
ln ln n

ln n
.
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Proof. It suffices to prove the result for k = n. Fix n; let m = mm = [(ln n)2]; and

choose j1 < j2 < · · · < jm (depending on n) satisfying

n− n(ln n)−6 ≤ ji ≤ n, i = 1, . . . ,m,

ji − ji−1 ≥ 2n(ln n)−9, i = 2, . . . ,m.

Let J(k, n) be the indicator function of

{S{k − n(ln n)−9, k] ∩ S(k, k + n(ln n)−9] = ∅},

and

X = Xn =
m∑

i=1

I(ji),

X̄ = X̄n =
m∑

i=1

J(ji, n).

By Lemma 4.1,

E(J(ji, n)) = E(I(ji))(1 + O(
ln ln n

ln n
)),

and hence

E(X̄) = E(X)(1 + O(
ln ln n

ln n
)),

in other words,

E(X̄ −X) ≤ c
ln ln n

ln n
E(X). (4.4)

We can note that

E(Z(n− n(ln n)−6, n)) ≤ P{X = 0}

≤ P{X̄ −X ≥ 1

2
E(X)}+ P{X̄ ≤ 1

2
E(X)}.
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We can estimate the first term using (4.4),

P{X̄ −X ≥ 1

2
E(X)} ≤ 2[E(X)]−1E(X̄ −X)

≤ c
ln ln n

ln n
.

To estimate the second term, note that J(j1, n), . . . , J(jm, n) are independent and

hence

Var(X̄) =
m∑

i=1

Var(J(ji, n)) ≤
m∑

i=1

E(J(ji, n)) ≤ E(X̄).

Hence by Chebyshev’s inequality, for n sufficiently large,

P{X̄ ≤ 1

2
E(X)} ≤ P{X̄ ≤ 2

3
E(X̄)} ≤ c[E(X̄)]−1.

But

E(X̄) ≥ c(ln n)2E(I(n)) ≥ c(ln n)11/8.

Hence, P{X̄ ≤ 1
2
E(X)} ≤ c(ln n)−11/8 and then the lemma is proved.

Recall from the beginning of this chapter that Yn is the indicator function of the

event “the nth point is not erased” and an = E(Yn). Suppose that for some 0 ≤ k ≤ n,

loops are erased only on S[k,∞), so that Sk is considered to be origin. Let Yn,k be the

probability that Sn is erased in this procedure. Clearly E(Yn,k) = an−k. Now suppose

0 ≤ k ≤ n − n(ln n)−6 and Z(n − n(ln n)−6, n) = 0. To be precise, there exists a

loop-free point between n− n(ln n)−6 and n. Then we can check that Yn,k = Yn, and

hence by the previous lemma,

P{Yn 6= Yn,k} ≤ E(Z(n− n(ln n)−6, n)) ≤ c
ln ln n

ln n
.
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Therefore, for n(ln n)−6 ≤ k ≤ n,

|ak − an| ≤ can(ln n)−3/8,

i.e.,

ak = an(1 + o((ln n)−1/4)). (4.5)

The second inequality follows from the estimate an ≥ f(n) ≈ (ln n)−1/2. Combining

this with Theorem 2.2 we conclude

−1

2
≤ lim inf

n→∞

ln an

ln ln n
≤ lim sup

n→∞

ln an

ln ln n
≤ −1

3
.

We can also conclude

E(ρ(n)) ∼ nan.

The following theorem [13] shows that the number of points remaining after erasing

loops satisfies a weak law of large numbers.

Theorem 4.3 (Lawler). If d = 4, then

ρ(n)

nan

→ 1, in probability.

Proof. For each n, choose

0 ≤ j0 < j1 < · · · < jm = n

such that (ji − ji−1) ∼ n(ln n)−2, uniformly in i. Then m ∼ (ln n)2. Erase loops

on each interval [ji, ji+1] separately (do finite loop-erasing on S[ji, ji+1]). Let Ỹk be
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the indicator function of the event “Sk is not erased in this finite loop-erasing”. Let

K0 = [0, 0], and for i = 1, . . . ,m, let Ki be the interval

Ki = [ji − n(ln n)−6, ji].

Let Ri, i = 1, . . . ,m, be the indicator function of the component of the event, “there

exists loop-free points in both Ki−1 and Ki”, i.e., the complement of the event

{Z(ji−1 − n(ln n)−6, ji−1) = Z(ji − n(ln n)−6, ji) = 0}.

By Lemma 4.2,

E(Ri) ≤ c
ln ln n

ln n
. (4.6)

We can note that if ji ≤ k < ji+1 − n(ln n)−6 and Ri = 0, then

Yk = Ỹk.

Therefore, for n sufficiently large,

|
n∑

k=0

Yk −
n∑

k=0

Ỹk| ≤ c[m(n(ln n)−6) + 2n(ln n)−2

m∑
i=1

Ri]

≤ cn(ln n)−4 + cn(ln n)−2

m∑
i=1

Ri.

But by (4.6),

P{
m∑

i=1

Ri ≥ (ln n)5/4} ≤ (ln n)−5/4E(
m∑

i=1

Ri)

≤ c ln ln n(ln n)−1/4.

Therefore,

P{|
n∑

k=0

Yk −
n∑

k=0

Ỹk| ≥ cn(ln n)−3/4} → 0.
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Since nan ≥ cn(ln n)−5/8, this implies

(nan)−1(
n∑

k=0

Yk −
n∑

k=0

Ỹk) → 0 in probability. (4.7)

We can write
n∑

k=0

Ỹk = 1 +
m∑

i=1

Xi,

where X1, . . . , Xm are independent random variables,

Xi =

j1−1∑
k=ji−1

Ỹk.

Notice that

Var(Xi) ≤ E(X2
i ) ≤ ||Xi||∞E(Xi) ≤ cn(ln n)−2E(Xi),

and hence

Var(
n∑

k=0

Ỹk) ≤ cn(ln n)−2E(
n∑

k=0

Ỹk).

Then by Chebyshev’s inequality,

P

{
|

n∑
k=0

Ỹk − E(
n∑

k=0

Ỹn)| ≥ (ln n)−1/2E(
n∑

k=0

Ỹk)

}
≤ cn(ln n)−1[E(

n∑
k=0

Ỹk)]
−1

≤ c(ln n)−3/8.

Which implies

[E(
n∑

k=0

Ỹk)]
−1

n∑
k=0

Ỹk → 1 in probability.

It is easy to check using (4.5) that E(
∑n

k=0 Ỹk) ∼ nan and hence by (4.7),

(nan)−1ρ(n) = (nan)−1

n∑
k=0

Yk → 1 in probability.
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The next theorem [13] is the main result of this chapter and shows that the LERW

converges to Brownian motion in d = 4.

Theorem 4.4 (Main Result). If d = 4, and

Ŵn(t) =
d
√

anŜ([nt])√
n

,

then Ŵn(t) converges in distribution to B(t), where B is a standard Brownian motion.

Proof. Since an ≥ c(ln n)−5/8, it follows from (4.5) that a[n/an] ∼ an. Therefore, by

Theorem 4.3,

ρ([n/an])

n
→ 1 in probability.

It is not difficult using the monotonicity of ρ to show that

σ(n)an

n
→ 1 in probability. (4.8)

Donsker’s theorem states that if

Wn(t) = dn−1/2S([nt]),

then

Wn(t) → B(t),

in the metric space C[0, 1], where B is a standard Brownian motion in Rd. Now

suppose that bn →∞ and

rn(t) =
σ([nt])

bn

→ t.

Then by tightness in C[0, 1] of the sequence Wn,

S(σ([nt]))√
bn

− S([bnt])√
bn

→ 0,
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and hence

dS(σ([nt]))√
bn

→ B(t).

Now fix ε > 0 and choose k ≥ 3ε−1. Let δ > 0. Then by (4.8), for all n sufficiently

large,

P{|
σ([nj/k])a[nj/k]

[nj/k]
− 1| ≥ ε

4
} ≤ δ

k
, j = 1, . . . , k.

Since a[n/k] ∼ an this implies for n sufficiently large

P{|σ([nj/k])an

n
− j

k
| ≥ ε

2
} ≤ δ

k
, j = 1, . . . , k.

But since σ is increasing and k ≥ 3ε−1, this implies for n sufficiently large,

P{ sup
0≤t≤1

|σ([nt])an

n
− t| ≥ ε} ≤ δ.

Since this holds for any ε, δ > 0,

σ([nt])an

n
→ t,

and therefore we have proved the theorem.
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Chapter 5

Scaling limit of LERW in d = 3

For d < 4, the number of points erased is not uniform from path to path and

a Gaussian limit is not expected. LERW has no natural continuum equivalent; in

addition, Brownian motion has a dense set of loops and therefore it is not clear how

to remove them in chronological order. A paper by Kozma [11] gives some promising

results to show that the scaling limit exists and is invariant under rotations and

dilations.

If we denote by L(r) the expected number of vertices in the LERW until it gets

to a distance of r, then it was proved that

cr1+ε ≤ L(r) ≤ Cr5/3,

where ε, c and C are some positive numbers. This suggests that the scaling limit

should have Hausdorff dimension between 1 + ε and 5/3 almost surely. Numerical

experiments show that it should be 1.62± 0.01.

The next theorem by Kozma [11] is the main result of this chapter and shows that
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LERW has a scaling limit in d = 3.

Theorem 5.1 (Main Result). Let D ⊂ R3 be a polyhedron and let a ∈ D. Let

Pn be the distribution of loop-erased random walk on D ∩ 2−nZ3 starting from a and

stopped when hitting ∂D. Then Pn converge in the space M(H(D)) where H(D) is

the space of compact subsets of D with the Hausdorff metric, and M(H(D)) is the

space of measures on H(D) with the topology of weak convergence.

In this paper, we will not give more details about the scaling limit of LERW in

d = 3. For further information see [11].
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Chapter 6

LERW in d = 2

Since simple random walk is recurrent in two dimensions, we cannot construct a

two-dimensional loop-erased random walk by erasing loops from an infinite simple

random walk. However, we can define the process as a limit of walks obtained from

erasing loops of finite walks [13]. Let Sj be a simple random walk in Z2 and let

ξm = inf{j > 0 : |Sj| ≥ m}.

For any k ≤ m, we can define a measure on Γk by taking simple random walks stopped

at the random time ξm, erasing loops, and considering the first k steps. To be precise,

we define P̂m = P̂m
k on Γk by

P̂m(γ) = P{L[S0, . . . , S(ξm)](j) = γ(j), j = 0, . . . k},

where L is the loop-erasing operation defined in Chapter 2.

Although there are three different approaches to prove the scaling limit of LERW

in dimension 2 as mentioned in Chapter 1, we will focus on the connection to the

stochastic Loewner evolution (SLE) [17].
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In 1999, Schramm [22] introduced the stochastic Loewner evolution (and now

called the Schramm-Loewner evolution) while considering loop-erased random walk.

In 2002, Lawler, Schramm and Werner [17] building on early work, proved that the

scaling limit of LERW in a simply connected domain D $ C is equal to the radial

SLE2 path.

In order to fully understand the concept of stochastic Loewner evolution and the

scaling limit of LERW in dimension 2, it is critical to review some important concepts

from complex analysis as may be found in [4] and [1].

Let i be the imaginary unit with the property i2 = −1. If the imaginary unit is

combined with two real numbers α, β by the processes of addition and multiplication,

we obtain a complex number α+ iβ. We say that α and β are the real and imaginary

parts, respectively, of the complex number.

D ⊂ C is a domain if it is an open, connected set larger than a single point in

the complex plane C. Furthermore, a domain D is said to be simply connected if its

complement is connected.

A complex-valued function f : D → C of a complex variable is differentiable at a

point z0 ∈ D if it has a derivative

f ′(z0) = lim
z→z0

f(z)− f(z0)

z − z0

at z0.

Let f : D → C be a complex-valued function of a complex variable.

• If f ′(z0) exists ∀ z0 ∈ D, then f is called analytic on D,
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• If f(z0) 6= f(z1) ∀ z0 6= z1, z0, z1 ∈ D, then f is called univalent on D.

A function f is conformal if it is analytic and univalent on D.

We will refer to the following normalization condition for analytic functions f :

D → C as the hydrodynamic normalization:

lim
z→∞, z∈D

(f(z)− z) = a,

where a ≥ 0 is a non-negative real number.

Let D, D′ be domains. A function f : D → D′ is a conformal transformation if it

is conformal on D and onto D′. In particular, f ′(z0) 6= 0 ∀ z0 ∈ D, and f−1 : D′ → D

is also a conformal transformation.

The Riemann mapping theorem states that every simple connected domain can

be mapped conformally onto the unit disk D = {z ∈ C : |z| < 1}.

Theorem 6.1 (Riemann mapping theorem). Let D be a simply connected domain

which is a proper subset of a complex plane. Let z0 ∈ D be a given point. Then there

exists a unique conformal transformation f : D → D satisfying

f(z0) = 0, f ′(z0) > 0.

In addition, if D is Jordan domain, the Riemann mapping can be extended con-

tinuously to the boundary, and the extended function maps the boundary curve in

one-to-one fashion onto the unit circle. This is the statement of the Carathéodory

extension theorem.
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Theorem 6.2 (Carathéodory extension theorem). If D is a bounded domain and

∂D is a Jordan curve (i.e., a closed curve without self-intersections), and f : D → D

is a conformal transformation, then f can be extended to a homeomorphism of D∪∂D

onto D ∪ ∂D.

Note that if ∂D is “smooth” then f ′(z) is well defined for z ∈ ∂D.

Lévy in 1950 proved the conformal invariance of Brownian motion. This result

is of fundamental importance to find the scaling limit of LERW in d = 2. Further

details may be found in [2].

Theorem 6.3 (Conformal invariance of Brownian motion). Let D be an open

domain in the complex plane, x ∈ D, and let f : D → D′ be analytic. Let {Bt, t ≥ 0}

be a planar Brownian motion started at x and τD = inf{t ≥ 0 : Bt /∈ D} be its first

exit time from the domain D. Then the process {f(Bt) : 0 ≤ t ≤ τD} is a time-

changed Brownian motion. More precisely, there exists a planar Brownian motion

{B̃t, t ≥ 0} such that, for any t ∈ [0, τD),

f(Bt) = B̃σt where σt =

∫ t

0

|f ′(Bs)|2ds.

If additionally, f is conformal, then στD
is the first exit time from D′ by {B̃t, t ≥ 0}.

6.1 Loewner’s equation

In 1923, Loewner introduced the equation now bearing his name in order to prove

a special case of the Bieberbach conjecture (|a3| ≤ 3). The Bieberbach conjecture
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was later established in full by deBranges—the Loewner equation turned out to be

central to his argument.

There are three closely related Loewner equations: chordal which is for clusters

growing from a boundary point towards a different point, radial1 for clusters growing

from a boundary point to an interior point, and whole plane which is for clusters

growing from one point to infinity in C.

We will start with the chordal Loewner equation which consists of clusters growing

from a boundary point towards to a boundary point.

The chordal Loewner equation describes the time development of an analytic map

into the upper half of the complex plane in the presence of a “forcing”, a defined

singularity moving around the real axis. The applications of this equation use the

trace, the locus of singularities in the upper half plane.

Let H = {z ∈ C : =z > 0} be the upper half complex plane, and let γ : [0,∞) →

H̄ = H ∪ R be a simple curve (no self intersections) with

• γ(0) = 0,

• γ(0,∞) ⊆ H,

• γ(t) →∞ as t →∞.

For each t ≥ 0 suppose that Kt := γ[0, t].

Now let Ht := H \Kt be the slit half plane which is a simply connected domain

since Kt is a bounded, compact set. Then, by the Riemann mapping theorem there

1The radial equation is what is commonly referred to as Loewner’s differential equation in the
complex variable literature.
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exists a conformal transformation gt from Ht to H, i.e.,

gt : Ht → H

with gt(∞) = ∞.

Using the Schwartz reflection principle, as z → ∞ we can expand gt around ∞.

Therefore,

gt(z) = bz + a(0) +
a(t)

z
+ O(

1

z2
),

with b > 0 and a(t) ∈ R.

Consider the expansion of f(z) = [gt(1/z)]−1 about the origin. f maps R to R so

the coefficients in the expansion are real and b > 0. For convenience, we choose the

unique gt which satisfies the “hydrodynamic normalization”

lim
z→∞

(gt(z)− z) = 0,

i.e., we choose b = 1, a(0) = 0. The constant a(t) := a(Kt) only depends on the set

Kt. Then gt : H \Kt → H with gt(∞) = ∞ is

gt(z) = z +
a(t)

z
+ O(

1

z2
)

where a(t) := a(Kt) = a(γ[0, t]) is called the half-plane capacity from ∞.

We now list several facts about a(t):

• a(t) = limz→∞ z(gt(z)− z),

• if s < t, then a(s) < a(t),

• s 7−→ a(s) is continuous,
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• a(0) = 0, a(t) →∞ as t →∞.

Now assume that the parametrization of γ(t) is chosen so that a(t) = 2t.

Suppose Kt := γ[0, t] with Ht := H \Kt and let gt : Ht → H be the corresponding

Riemann map as before. If Ut := gt(γ(t)) (the image of γ(t)), then Ut ∈ ∂H and gt

satisfies

∂tgt(z) =
2

gt(z)− Ut

, g0(z) = z,

which is the Loewner’s equation with the identity map as initial data i.e., g0 : H → H.

Theorem 6.4 (Loewner, 1923). For fixed z, gt(z) is the solution of the chordal

Loewner equation is

∂tgt(z) =
2

gt(z)− Ut

, g0(z) = z. (6.1)

We can think of this equation in two ways. Given a suitable growing curve

t 7−→ γ(t), t ∈ [0,∞), we can define a sequence of conformal mappings gt : Ht → H

where Ht = {z : gt(z) is well defined} = H \Kt, and hence a real continuous func-

tion Ut ≡ gt(tip), which will automatically satisfy the Loewner equation. Conversely,

given a (suitable) continuous real function Ut (a sufficient condition is that it has

Hlder exponent α > 1
2

), we can integrate the Loewner equation to get a sequence of

functions gt and hence a sequence of tips γ(t) = g−1
t (Ut) which will trace out a curve.

Theorem 6.5 (Rohde-Marshall, 2001). If U is “nice” (Hölder 1/2 continuous

with sufficiently small Hölder 1/2 norm), then γ(t) = g−1
t (Ut) is a well-defined simple

curve and Kt = γ[0, t].
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A real-valued function U on Rd satisfies a Hölder condition, or is Hölder continu-

ous, when there are non-negative real constants C, α, such that ∀ x, y ∈ Rd,

|U(x)− U(y)| ≤ C|x− y|α.

This condition generalizes to functions between any two metric spaces. The num-

ber α is called the exponent of the Hölder condition. If α = 1, then the function

satisfies a Lipschitz condition. If α = 0, then the function simply is bounded.

The radial Loewner equation describes the evolution of a hull from the boundary

of a domain to an interior point. For ease we will consider the unit disk D and the

interior point the origin. We will call a compact set if K ⊂ D\{0} a hull if K = K ∩ D

and D \K is simply connected.

Let D = {z ∈ C : |z| < 1} be the unit disk and let γ[0,∞) → D̄ = D ∪ R be a

simple path in the closed unit disk, such that

• γ(0) ∈ ∂D,

• γ(0,∞) ⊂ D,

• γ(∞) = 0.

For each t ≥ 0 suppose that Kt := γ[0, t] and let Dt := D \ Kt. By the Riemann

mapping theorem there is a unique conformal homeomorphism

gt : Dt → D

satisfying the normalization gt(0) = 0 and g′t(0) > 0.
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It turns out g′t(0) is monotone increasing (by the Schwartz lemma) in t, g′0(0) = 1

and supt g
′
t(0) = ∞.

It is natural to reparametrize γ according to the “capacity” from zero, i.e.,

g′t(0) = exp(t) ∀ t ≥ 0.

Since the boundary of Dt is “nice” as defined before, gt extends continuously to

Dt ∪ {γ(t)}. Now set if we Ut := gt(γ(t)), then Ut ∈ ∂D and satisfies the radial

Loewner equation

∂tgt(z) = −gt(z)
gt(z) + Ut

gt(z)− Ut

g0(z) = z, (6.2)

which shows that everything is encoded by Ut. We call (Ut, t ≥ 0) the driving function

of the curve γ.

The driving function U is sufficient to recover the two-dimensional path γ(t),

because the process may be reversed. Suppose that we start with a continuous driving

function

U : [0,∞) → ∂D.

Then for every z ∈ D̄ there is a solution gt(z) of (6.2) with initial value g0(z) = z up

to some time τ(z) ∈ (0,∞], beyond which a solution does not exist. That is the only

possible reason why (6.2) cannot be solved beyond time τ(z). Then we define

Kt := {z ∈ D̄ : τ(z) ≤ t} (6.3)

and

Dt := D \Kt (6.4)
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is the domain of definition of gt. The set Kt is called the hull at time t. If U arises

from a simple path γ as described before, then we can recover γ from U by letting

γ(t) = g−1
t (Ut). However, if U : [0,∞) → D is an arbitrary continuous driving

function, then Kt need not to be a path, and even if it is a path, it is not necessarily

a simple path.

The whole plane Loewner equation describes the evolution of hulls starting a with

a singles point, which we choose to be the origin, going to infinity. We will not give a

detailed explanation, but roughly we can consider the whole plane Loewner equation

as the radial equation starting at t = −∞. The hulls starts with only the origin,

immediately grows a small amount so that it has positive capacity and then evolves

as a radial Loewner process going to infinity.

For the purpose of this paper we will be focused on the radial Loewner equation.

Further details about the Loewner equation from a complex analysis point-of-view

may be found in [4]. For details about the Loewner equation from a probabilistic

point-of-view (and its connections to SLE as presented in the next section) consult

[16].

6.2 Radial stochastic Loewner evolution (SLE)

The radial stochastic Loewner evolution (denoted radial SLEκ) is a random growth

process based on the radial Loewner equation with a one-dimensional Brownian mo-

tion running with speed κ as the driving process.
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Formally, the radial stochastic Loewner evolution with parameter κ is the process

{γ(t), t ≥ 0} where the driving function Ut is set to be Ut = exp(iBκt) and B :

[0,∞) → R is Brownian motion.

To be precise, let Bt be Brownian motion on the unit circle ∂D started from

a uniform-random point B0 and set Ut := Bκt. (We can take the point B0 to be

uniformly distributed in [0, 2π].) The conformal maps gt are defined as the solution

of the radial Loewner equation

∂tgt(z) = −gt(z)
gt(z) + Ut

gt(z)− Ut

g0(z) = z,

for z ∈ D. The sets Kt and Dt are defined as in (6.3) and (6.4).

It is important to remark that although varying the parameter κ does not quali-

tatively change the behaviour of Brownian motion, it drastically alters the behaviour

of SLE.

The result of Rohde and Schramm (2001) [21] allows us to define γ from the

boundary to the origin (if κ 6= 8). Furthermore, for different values of κ we have the

following result. With probability one:

• if 0 < κ ≤ 4, then γ(t) is a random simple curve avoiding R,

• if 4 < κ < 8, then γ(t) is not a simple curve. It has double points, but does not

cross itself. In addition, these paths hit R.

• If κ ≥ 8, then γ(t) is a space filling curve. It has double points, but does not

cross itself.

42



6.3 Convergence of LERW to SLE2 in d = 2

As already noted, it was Schramm who introduced this one-parameter family

of random growth processes based on Loewner’s differential equation in which the

driving term Ut is a time-scaled one-dimensional Brownian motion. This process is

called the stochastic (or Schramm–)Loewner evolution SLEκ where the parameter κ

is the time scaling constant for the driving Brownian motion.

It was originally conjectured that the scaling limit of LERW was SLE2, and this

conjecture was proved to be equivalent to the conformality of the LERW scaling limit

[22].

In 2002 Lawler, Schramm and Werner [17] established this conjecture and showed

that the scaling limit of LERW in a simply connected domain D ( C is equal to

radial SLE2 path.

The convergence of LERW to SLE2 is derived as a consequence of three facts [24]:

• The “Markovian property” holds in the discrete case.

• Some macroscopic functionals of the model converge to conformally invariant

quantities in the scaling limit (for a wide class of domains).

• One has “a priori” bounds on the regularity of the discrete paths.

As stated in [17], let D ( C be a simply connected domain with 0 ∈ D and let

Dδ = D ∩ δZ2 be the grid in D. Consider γδ the time reversal loop-erasure of simple

random walk in Dδ started at 0 and stopped when it hits ∂Dδ. Let γ denote the
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radial SLE2 in the unit disk D started uniformly on the unit circle and aiming at 0.

Let Φ be the conformal map from D onto D that preserves 0. When the boundary

of D is very rough, the conformal map Φ might not be extended continuously to the

boundary, but it has been proved that even in this case the image of SLE2 path has

a unique endpoint on ∂D.

We endow the set of paths with the metric of uniform convergence modulo time-

reparametrization

d(Γ, Γ′) = inf
ϕ

sup
t≥0

|Γ(t)− Γ′(ϕ(t))|,

where infimum is over all increasing bijections ϕ from [0,∞) into itself.

Theorem 6.6 (Main Result). The law of γδ converges in distribution to the law of

Φ(γ) as δ → 0 with respect to the metric on the space of curves.

More recently, a number of other works have been published which explore the

relationship between LERW and SLE2. In particular, the work of Lawler and Werner

[19] on the Brownian loop soup, and of Lawler and Trujillo Ferreras [18] on the

random walk loop soup indicate that SLE2 may (in a sense) be viewed as “loop-

erased” Brownian motion. Kozdron and Lawler have established that the scaling

limit of Fomin’s identity for loop-erased random walk may be given in terms of SLE2.

See [9] and the references therein for more details.
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Chapter 7

Wilson’s algorithm

LERW was introduced by Lawler in 1980 [12] in an attempt to analyze self-avoiding

walk (SAW). Eventually, it was discovered that SAW and LERW are in different

universality classes.

Basically, LERW existed as an interesting mathematical idea without any appli-

cability until 1996, when Wilson discovered its use in finding spanning trees of graphs

in an efficient way [25].

Let G = (V, E) be a graph. A spanning tree of G is a subgraph of G containing

all vertices and some of the edges which is a tree, i.e., connected and with no cycles.

A uniform spanning tree (UST) is a (random) spanning tree chosen among all the

possible spanning trees of G with equal probability (uniformly).

Now let v and w be two vertices in G. Any spanning tree contains precisely

one simple (non-intersecting) path between v and w. Taking this path in a uniform

spanning tree gives a random simple path. It turns out that the distribution of this
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path is identical to the distribution of the loop-erased random walk starting at v and

stopped at w.

As mentioned in Chapter 2, the distribution of the LERW starting at v and

stopped at w is identical to the distribution of the reversal of LERW starting at w

and stopped at v. This is not a trivial fact at all since loop-erasing a path and the

reverse path do not give the same result. It is only the distributions that are identical.

Sampling a UST is complicated. Even a relatively modest graph (100×100 grid)

has way too many spanning trees to allow one to enumerate a complete list.

Wilson [25] established an algorithm to generate USTs using LERW.

Take any two vertices and perform loop-erased random walk from one to the

other. Now take a third vertex (not on the constructed path) and perform loop-

erased random walk until hitting the already constructed path. This gives a tree with

three leaves. Choose a fourth vertex and do loop-erased random walk until hitting

this tree. Continue until the tree spans all the vertices.

More precisely, Wilson’s algorithm runs as follows:

• pick an arbitrary ordering v0, v1, . . . , vm for the vertices in G;

• let T0 = {v0};

• inductively, for n = 1, 2, . . . ,m, define Tn to be the union of Tn−1 and a condi-

tionally independent LERW path from wn to Tn−1;

• if wn ∈ Tn−1, then Tn = Tn−1.
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Regardless of the chosen order of the vertices, Tm is a uniform spanning tree on G.

Wilson’s algorithm gives a natural extension of the definition of UST to infinite

recurrent graphs.

In 2004, Schramm, Lawler and Werner [17] showed that the scaling limit of UST

is equal to the chordal SLE8. In particular, they proved that the limit of UST exists

and is conformally invariant.
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