Probing Light Nonthermal Dark Matter @ LHC

Yu Gao

Mitchell Institute for Fundamental physics and Astronomy Texas A&M University

Outline

- Minimal extension to SM for baryogenesis & dark matter
- Current constraints from *Monojet*, dijet, 2 jets +MET, paired dijets
- Heavy favor outlook:
 single top +MET, t t + MET

A non-thermal DM & Baryogenesis

- A 'minimal' extension to SM with ~TeV scalar color triplet(s) and a fermionic DM candidate
- Baryon-number violating interaction mediated by heavy scalars (X):

$$\mathcal{L}_{int} = \lambda_1^{\alpha,\rho\delta} \epsilon^{ijk} X_{\alpha,i} \bar{d}_{\rho,j}^c \mathbf{P}_R d_{\delta,k} + \lambda_2^{\alpha,\rho} X_{\alpha}^* \bar{n}_{DM} \mathbf{P}_R u_{\rho} + C.C.$$

R. Allahverdi, B. Dutta, PRD 88 (2013) 023525

B. Dutta, Y. Gao, T. Kamon, arXiv: 1401.1825

X index α =1,2. At least two Xs are required for successfully baryogenesis Quark generation indices ρ δ =1,2,3 SU(3) color indinces i,j,k =1,2,3

Baryon asymmetry and DM density

- Xs are the decay products from some heavy particles during the reheating process.
- (Baryogenesis) when X_1 and X_2 decay, baryon asymmetry arises the interference b/w tree-level and one-loop self-energy diagrams[†],

$$\frac{n_B}{s} = \frac{Y_{\mathcal{S}}}{8\pi} \frac{1}{M_{X2}^2 - M_{X1}^2} \sum_{i,j,k} \text{Im}(\lambda_1^{1,ij*} \lambda_1^{2,ij} \lambda_2^{1,k*} \lambda_2^{2,k}) \quad \text{violating decay}$$

$$\times \left[\frac{M_{X1}^2 \text{BR}_1}{\sum_{ij} |\lambda_1^{1,ij}|^2 + \sum_k |\lambda_2^{1,k}|^2} + \frac{M_{X2}^2 \text{BR}_2}{\sum_{ij} |\lambda_1^{2,ij}|^2 + \sum_k |\lambda_2^{2,k}|^2} \right]$$

All decays

 Y_S : dilution factor from a heavy S (~100TeV) that decays into Xs.

BR: decay branching of S into X_1 or X_2 .

† R. Allahverdi, B. Dutta, K. Sinha PRD 82 (2010) 0350Q4 R. Allahverdi, B. Dutta, PRD 88, 023525 (2013)

Baryon asymmetry and DM density

• (Non-thermal) dark matter are also the decay product of Xs.

$$\frac{n_{n_{DM}}}{s} = Y_{\mathcal{S}} \left[\frac{\text{BR}_1 \sum_k |\lambda_2^{1,k}|^2}{\sum_{ij} |\lambda_1^{1,ij}|^2 + \sum_k |\lambda_2^{1,k}|^2} + \frac{\text{BR}_2 \sum_k |\lambda_2^{2,k}|^2}{\sum_{ij} |\lambda_1^{2,ij}|^2 + \sum_k |\lambda_2^{2,k}|^2} \right] \text{Decays into}$$

Thus the relic density becomes related to that of baryonic asymmetry,

All decays

$$n_B/n_{n_D} = \frac{m_{n_{DM}}}{m_p} \frac{\Omega_B}{\Omega_{n_{DM}}}$$

$$= \frac{1}{8\pi} \frac{M_{X1}^2}{M_{X2}^2 - M_{X1}^2} \frac{\sum_{i,j,k} \operatorname{Im}(\lambda_1^{1,ij*} \lambda_1^{2,ij} \lambda_2^{1,k*} \lambda_2^{2,k})}{\sum_k |\lambda_2^{1,k}|^2} \sim 0.2.$$

For $\lambda_2 \sim O(1)$ and MX ~ TeV, DM decoupling temperature is ~ MeV.

** M_X isn't tightly constrained by the relic density.

We consider sub-TeV cases.

A minimal parametrization

• Implemented in MadGraph5: New interaction terms and gluon-X couplings.

$$\mathcal{L}_{int} = \lambda_1^{\alpha,\rho\delta} \epsilon^{ijk} X_{\alpha,i} \bar{d}_{\rho,j}^c \mathbf{P}_R d_{\delta,k} + \lambda_2^{\alpha,\rho} X_{\alpha}^* \bar{n}_{DM} \mathbf{P}_R u_{\rho} + C.C.$$

$$\lambda_1^{\alpha,\rho\delta} = \lambda_1 \cdot \lambda_{1X}^{\alpha} \cdot \lambda_{1R}^{\rho\delta}$$

$$\lambda_2^{\alpha,\rho} = \lambda_2 \cdot \lambda_{2X}^{\alpha} \cdot \lambda_{2R}^{\rho}$$

$$\lambda_{1X}^{\alpha} = (1,1) \begin{pmatrix} \frac{ds}{db} & \frac{db}{db} \\ 0 & 1 & 1 \\ \lambda_{1R}^{\rho\delta} = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$
 For

Xdd term forbids symmetric quark generation structure (b/c antisymmetry in color indices)

$$\lambda_{2X}^{\alpha}=(1,1)$$

$$\lambda_{2R}^{\alpha}=(1,1,1)$$
 top

For simplicity: Light jets

- 1. we made X_1 lighter than X_2 so that X_1 is more relevant for LHC
- 2. we made a minimal, flavor blind structure in λ .

A light dark matter

• (GeV DM mass) n_{DM} is not protected by a parity, yet coupled to light quarks. For proton stability, DM – proton mass difference less than electron mass.

$$|M_{\rm DM} - M_{\rm p}| < M_e$$

kinematically stabilizes the DM and the proton. DM mass stability: For $\lambda_2 \sim 0.1$ and $M_X \sim \text{TeV}$, radiative correction to M_{DM} is less than M_e .

• 1 GeV DM mass evades direct detection.

Collider phenomenology: Monojet

- X couples to two d-quarks or one u-quark and DM: A s-channel resonant process $(d\ d' \rightarrow X^* \rightarrow u\ n)$
- A monojet + MET event without ISR.

MET

$$\mathcal{L}_{int} = \lambda_1^{\alpha,\rho\delta} \epsilon^{ijk} X_{\alpha,i} \bar{d}_{\rho,j}^c \mathbf{P}_R d_{\delta,k} + \lambda_2^{\alpha,\rho} X_{\alpha}^* \bar{n}_{DM} \mathbf{P}_R u_{\rho} + C.C.$$

How different from ISR + Effective Operator?

- Jet energy $\sim \frac{1}{2}$ new scalar mass: a Jacobian peak in P_T distribution.
- No preference for lower jet P_T: High P_T cut can be very effective against SM background.
- Effective operator ($\sim \overline{d} \ d^c \ \overline{u} \ n/\Lambda^2$) approach is also non-ISR, but less favorable, since it loses the peak feature in P_T distribution.

A sample (mono) jet p_T distribution with X_1 mass at 1 TeV. A high p_T cut near the Jacobian peak picks out (most of) the signal

Monojet constraint (a) LHC

^{*} $|\eta_i| < 2.4$

Data: CMS 20 fb⁻¹ at 8 TeV, 95 C.L. CMS-PAS-EXO-12-048, March 8, 2013

PDF integrated cross-section is determined by the lesser between λ_1 abd λ_2

$$\sigma \propto |\lambda_1|^2 |\lambda_2|^2 / (2|\lambda_1|^2 + |\lambda_2|^2)$$

^{*} Minimal $\sigma/\sigma_{95\%}$ from all listed p_T cuts

A further simplified case: $\lambda_1 = \lambda_2$ Constrained to O(0.1) for X₁ below ~1.3 TeV

Collider phenomenology: Dijet

• Similar to the monojet process but with two (different generation) down-type quarks in the final state:

Dijet cross section only depends on λ_1 .

Dijet constraints

Data: **CDF** 1.13 fb⁻¹ at 1.96 TeV, 95 C.L. T. Aaltonen et al. [CDF Collaboration], Phys. Rev. D 79, 112002 (2009)

Note: CDF uses the pT distribution near resonance for spin-1 and spin-1/2 states, with O(1) variation in the constrained new physics crosssection. We used the weakest list bounds. Optimization for a spin-0 state can help.

CMS dijet low mass analysis with 0.13 fb⁻¹ data @ 7 TeV CMS-PAS-EXO-11-094, 2012

Use the bound from a qq final state

Parton level cuts:

- * $p_{Tj} > 30 \text{ GeV}$
- * H_T >100 GeV, $|\Delta \eta_{ij}|$ < 2

Collider phenomenology: 2 jets + MET

• Initial state gluon splitting (ISGS)

 M_{eff} drops quickly above M_{X1} .

Collider phenomenology: 2 jets + MET

• X pair-production

Two heavy scalars: M_{eff} can be large compared to ISGS.

ISGS vs Pair-production

FIG. 6. Two sample jet p_T (blue and red) and $M_{\rm eff}$ (black) distributions for $\lambda_1 = \lambda_2 \sim 1$ (left) and $\lambda_2 \gg \lambda_1$ (right). The ISGS process singly produces X1 and $M_{\rm eff}$ drops quickly above M_{X1} . In the pair-production case $M_{\rm eff}$ is easier to be above M_{X1} . A properly placed $M_{\rm eff}$ cut above M_{X1} can be effective to separate the ISGS from pair production.

2 jets+MET constraint @ LHC

Signal Region (SR):

`A Loose (Medium)' cuts

for X1 mass at 500 GeV (1TeV)

2 jets + MET (95% C.L.) *exclusive* bounds selected from ATLAS multi-jet analysis with 20.3 fb⁻¹ at 8 TeV: ATLAS-CONF-2013-047, 16 May, 2013

Turn over at small λ_1 : Due to pair-production diagrams becoming dominant when $\lambda_1 \ll \lambda_2$.

Collider phenomenology: Paired dijets

- X pair production with both Xs decay into dd'.
- Constrain λ_1 . (In contrast, dijet+MET via pair-production constrains λ_2)
- ISR diagrams negligible due to two heavy masses being reconstructed.

Paired dijet constraint @ LHC

Parton level cuts:

Data: CMS 5 fb⁻¹ at 7 TeV, 95 C.L. S. Chatrchyan, et. al. [CMS collaboration] Phys.Rev.Lett. 110 (2013) 141802

^{*} p_{Tj} > 110 GeV

^{*} $|\eta_{\rm j}|$ < 2.5

^{*} ΔR_{ii} >0.7

Combined collider bounds

Notes

- All the presented results are at the parton level, and b quarks considered as jets.
- X1 and X2 can be close in mass. When $M_{X1}\sim M_{X2}$, signal cross-section doubles and λ constraints improves by up to 40% (non-interference case)

From current bounds ...

- Strong motivation in dark matter & baryon asymmetry
- Non-ISR monojet events, with Jacobian peaks in p_T
- Significant constraints on model parameters (lesser $\lambda \sim 0.1$ for a TeV heavy scalar mediator mass)

Outlook: the 3rd generation quarks

 Baryogenesis & DM production are indiscriminate in quark flavor

$$\mathcal{L}_{int} = \lambda_{1}^{\alpha,\rho\delta} \epsilon^{ijk} X_{\alpha,i} \bar{d}_{\rho,j}^{c} \mathbf{P}_{R} d_{\delta,k} + \lambda_{2}^{\alpha,\rho} X_{\alpha}^{*} \bar{n}_{DM} \mathbf{P}_{R} u_{\rho} + C.C.$$

$$\lambda_{1}^{\alpha,\rho\delta} = \lambda_{1} \cdot \lambda_{1X}^{\alpha} \cdot \lambda_{1R}^{\rho\delta}$$

$$\lambda_{2}^{\alpha,\rho} = \lambda_{2} \cdot \lambda_{2X}^{\alpha} \cdot \lambda_{2R}^{\rho}$$

$$\lambda_{1X}^{\alpha} = (1, 1) \begin{pmatrix} \frac{ds}{db} & \frac{db}{db} \\ 0 & 1 & 1 \\ \lambda_{1R}^{\rho\delta} = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 1 \\ \frac{sb}{db} & 0 & 0 \end{pmatrix}$$

Couplings to d-quarks: constrained w/o distinguishing the bottom quark

$$\lambda_{2X}^{\alpha} = (1,1)$$

$$\lambda_{2R}^{\alpha} = (1,1,1)$$
 Light jets: constrained

top: NOT constrained

Mono-top + MET

Like monojet, single top can be produced via s-channel resonance

Other possibilities: Top + jet(s) + MET

• ISGS (also ISR diagrams)

Other possibilities: t t + MET

- From X pair production both $X \rightarrow t$, n_{DM}
- Analogous to SUSY stop pair production in the low neutralino mass limit

Eur.Phys.J. C73 (2013) 2677 CMS-SUS-13-011,

SUSY stop pair: QCD dominated production

X pair: QCD + NP (via λ_2),

*large λ^3_2 for significant X decay BR into t

Comparable final state & cut efficiency