

- Filtering out chambers with biggest differences
 - What I did:
 - Find the differences between 3DOF MC xml and 6DOF MC xml and make a file with the wheel/ station/sector and dx/dy/dz/dphix/dphiy/dphiz
 - Select only the chambers with the biggest changes between the two geometries with this measure: dx^2+dy^2+dphiz^2
 - 57 out of 250 chambers remain.

 Plot on right shows the distribution of the cut variable after applying the cut

Rough vis of chambers

Ryan Mueller

Ryan Mueller

Ryan Mueller

Ryan Mueller

Update July 20th

- Sample: DYJetsToLL_M-50_TuneCUETP8M1_13TeV-amcatnloFXFX-pythia8
 - 6DOF: 90,050 events
 - 3DOF: 90,046 events
- Config:
 - 6DOF DT: mc_DT-1100-111111_CMSSW_8_0_8_patch1_missaligned_45M_8TeV_FIDT0fixRef_v4Ryan_03.db
 - 3DOF DT: mc_DT-1100-110001_CMSSW_8_0_8_patch1_mis_45M_8TeV_FIDT0fixRef_v4_03.db
 - All else from 80X_mcRun2_design_v14

nChi^2

sta phi

pTRes

mass fit

pΤ

$dx^2 > .2$

Ryan Mueller

$dx*dx {dx*dx < 1}$

seller