Sociology 405/805 January 20, 2004

Gamma (γ), Tau-a (τ_a), Tau-b (τ_b), Tau-c (τ_c), and Somer's d

These notes give formulae and an example calculation of measures of association for a cross-classification of two variables, where each variable has an ordinal or higher level scale of measurement.

These measures of association are discussed on pages 342-364 of Statistics: A Tool for the Social Sciences, third edition, by Lyman Ott, Richard F. Larson, and William Mendenhall. The notation in these notes is that of Ott, Larson, and Mendenhall. The formula for τ_c is taken from the section "Ordinal Association" in G. David Garson, Statnotes: An Online Textbook. Another good source of information on these measures is Albert M. Liebetrau, Measures of Association, Sage Quantitative Applications in the Social Sciences, number 32.

Notation

 N_s is the number of concordant pairs.

 N_r is the number of discordant pairs.

n is the sample size.

T, the total number of possible pairs, is T = n(n-1)/2.

 T_I is the number of pairs with tied ranks on the independent variable.

 T_D is the number of pairs with tied ranks on the dependent variable.

m is the minimum of the number of rows or columns (from Garson).

Measures of association

Using the above notation, the formulae for the measures of association are as follows:

$$\gamma = \frac{N_s - N_r}{N_s + N_r}$$

$$\tau_a = \frac{N_s - N_r}{T}$$

Somer's
$$d = \frac{N_s - N_r}{N_s + N_r + T_D}$$

$$\tau_b = \frac{N_s - N_r}{\sqrt{(N_s + N_r + T_D)(N_s + N_r + T_I)}}$$

$$\tau_c = \frac{(N_s - N_r)2m}{n^2(m-1)}$$

Table 1: Cross Classification of
$$V5$$
 with $V6$

Response	Response on $V6$			
to $V5$	Disagree	Neutral	Agree	Total
Disagree	34	24	15	73
Neutral	42	74	67	183
Agree	28	111	292	431
Total	104	209	374	687

Example – **Relation of** V5 and V6

The example used is the cross-classification of Table 1, from data in question 15 of the ssae98.sav data set. The variables in this question are ordinal scale variables, measuring attitudes on a five-point scale from strongly disagree to strongly agree with the statement. This example provides statistics describing the relationship between attitudes on V5 (taxes on big corporations should be increased) and V6 (governments are more interested in helping big business than in helping Canadian citizens). In order to reduce the number of calculations, the five-point scale has been collapsed to a threepoint scale by merging responses 1 and 2 into "disagree" and 4 and 5 into "agree." Response 3 is left unchanged and is termed "neutral."

N_s – Number of concordant pairs

Beginning at the top left of the table and proceeding to the right and down, the number of concordant pairs is

$$34(74 + 67 + 111 + 92) = 18,496$$

$$24(67 + 92) = 8,616$$

$$42(111 + 292) = 16,926$$

$$74(292) = 21,608$$

$$N_s = 65,646$$

N_r – Number of discordant pairs

Beginning at the top right of the table and proceeding to the left and down, the number of discordant pairs is

$$15(74 + 42 + 111 + 28) = 3,825$$

$$24(42 + 28) = 1,680$$

$$67(111 + 28) = 9,313$$

$$74(28) = 2,072$$

$$N_r = 16,890$$

T – Total number of pairs

$$T = \frac{n(n-1)}{2} = \frac{687 \times 686}{2} = 235,641$$

T_D – Number of ties on dependent variable V6

Beginning at the top left of the table and proceeding to the right and down, the number of ties on V6 is

$$34(42 + 28) = 2,380$$

$$24(74 + 111) = 4,440$$

$$15(67 + 292) = 5,385$$

$$42(28) = 1,176$$

$$74(111) = 8,214$$

$$67(292) = 19,564$$

$$T_D = 41,159$$

T_I – Number of ties on independent variable V5

Beginning at the top left of the table and proceeding to the right and down, the number of ties on V5 is

Calculation of measures of association

 γ (Gamma)

$$\gamma = \frac{N_s - N_r}{N_s + N_r}$$

= $\frac{65,646 - 16,890}{65,646 + 16,890}$
= $\frac{48,756}{82,536}$
= 0.591

 τ_a (Tau-a)

$$\tau_a = \frac{N_s - N_r}{T} \\ = \frac{65,646 - 16,890}{235,641} \\ = \frac{48,756}{235,641} \\ = 0.207$$

Somer's d with V6 dependent

$$d = \frac{N_s - N_r}{N_s + N_r + T_D}$$

= $\frac{65,646 - 16,890}{82,536 + 41,159}$
= $\frac{48,756}{123,695}$
= 0.394

Somer's d with V5 dependent

$$d = \frac{N_s - N_r}{N_s + N_r + T_I}$$

= $\frac{65,646 - 16,890}{82,536 + 56,262}$
= $\frac{48,756}{138,798}$
= 0.351

 τ_b (Tau-b)

$$\tau_b = \frac{N_s - N_r}{\sqrt{(N_s + N_r + T_D)(N_s + N_r + T_I)}}$$

$$= \frac{65,646 - 16,890}{\sqrt{(65,646 + 16,890 + 41,159)(65,646 + 16,890 + 56,262)}}$$

$$= \frac{48,756}{\sqrt{123,695 \times 138,798}}$$

$$= \frac{48,756}{131,029.05}$$

$$= 0.372$$

 τ_c (Tau-c)

$$\tau_c = \frac{(N_s - N_r)2m}{n^2(m-1)}$$

$$= \frac{(65, 646 - 16, 890) \times 6}{687^2 \times 2}$$

$$= \frac{48, 756 \times 6}{471, 969 \times 2}$$

$$= \frac{292, 536}{943, 938}$$

$$= 0.310$$

Last edited January 23, 2004.