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Abstract

In this thesis we will study Ext-algebras over a polynomial and exterior algebra.

We prove the classical fact that the Ext-algebra over a polynomial algebra is exterior

and the Ext-algebra over an exterior algebra is polynomial, using the tautological

Koszul complex. We also give a proof using Koszul duality for algebras.
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Chapter 1

Introduction

1.1 Motivation and background

Ext functors are a fundamental concept of homological algebra and are defined

as the derived functors of the hom functors. The Koszul complex is an applicable

general construction in homological algebra which was first introduced by Jean-Louis

Koszul in 1950 for defining cohomology theory of Lie algebras [Kos50]. Moreover,

this can be used to determine basic facts about a module or ideal. The behavior of

Ext groups over a polynomial algebra and an exterior algebra is a classic topic. One

exciting thing is that the Koszul complex can be used as a tool to find Ext groups

over the above algebras.

Let k be a field, P (n) = k[x1, . . . , xn] the polynomial algebra over k on n genera-

tors, and E(n) = Λk(x1, . . . , xn) the exterior algebra over k on n generators. Accord-

ing to [Pri70, Example 2.2(2)], the following fact is “classical”. The Ext-algebra over
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a polynomial algebra is exterior: ExtP (n)(k, k) ∼= E(n) and the Ext-algebra over an

exterior algebra is polynomial: ExtE(n)(k, k) ∼= P (n).

In this thesis, we will give two proofs of the above theorem: one using the tau-

tological Koszul complex P (n)⊗k E(n), outlined in [Eis95, Exercise 17.21] (Proposi-

tion 4.3.7), and one using Koszul duality for algebras, outlined in [Tam18] and [PP05]

(Proposition 5.4.3). There is a proof using Hopf algebras, outlined in [May13], but

we are not covering it in this thesis.

1.2 Contribution

In the literature, the proofs that the Ext-algebra over a polynomial algebra is exte-

rior and vice versa skip some details. We fill in some details and compute some explicit

examples (Example 3.2.2, Example 4.1.4, Example 4.1.5, Example 4.2.8, Lemma 5.3.2

and Proposition 5.3.6). In particular, we work out the proof outlined in [Eis95, Ex-

ercise 17.21], which is structured as a list of exercises (Lemma 4.3.1, Lemma 4.3.2,

Proposition 4.3.5 and Proposition 4.3.7).

Several references assume that the ground commutative ring k is a field, including

[PP05] and [Pri70] when stating the fact that if A is a Koszul algebra, then the Ext-

algebra ExtA(k, k) is isomorphic to the Koszul dual algebra A!. In this thesis, we

check the special case of that result for polynomial and exterior algebras over any

commutative ring k, using work of Positselski [Pos21].
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1.3 Organization

Chapter 2 reviews some preliminaries from homological algebra and multilinear

algebra, in particular symmetric algebras and exterior algebras.

Chapter 3 deals with additive structure of Ext-algebras. We calculate Ext groups

over a polynomial algebra and exterior algebra using the Koszul complex.

Chapter 4 covers multiplicative structure of Ext-algebras. We discuss how endo-

morphism chain complexes directly provide the multiplicative structure. Then, we

define the tautological Koszul complex and study its multiplicative structure. Finally,

we provide a proof of the classical fact that the Ext-algebra over a polynomial algebra

is exterior using the tautological Koszul complex (Proposition 4.3.7).

Chapter 5 introduces definitions and properties of quadratic algebras and Koszul

algebras. Then, we observe that the symmetric algebra and exterior algebra are

Koszul dual to each other. In Proposition 5.4.3, we give a second proof using Koszul

duality for algebras.
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Chapter 2

Preliminaries

In this thesis, all rings will be assumed unital but an R-algebra will not be assumed

unital.

2.1 Hom modules

Facts about hom modules can be found in [DF04, §10.2].

Notation 2.1.1. Let R be a commutative ring. For R-modules M and N , let

HomR(M,N) denote the set of R-module maps f : M → N.

Proposition 2.1.2. For a commutative ring R, HomR(M,N) is an R-module, func-

torial in both variables: contravariant in M and covariant in N.

Proof. HomR(M,N) is endowed with pointwise addition and scalar multiplication.
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Let f ,g ∈ HomR(M,N) and c, r ∈ R. We have

(f + g)(cx) = f(cx) + g(cx) = c(f + g)(x) and

(rf)(cx) = r(f(cx)) = c(rf)(x), since r commutes with c.

Then f + g and rf are R-linear maps.

Note that for any ring R, HomR(M,N) is an abelian group.

Remark 2.1.3. If S is any set, then the set of functions HomSet(S,N) into an R-

module N becomes an R-module under pointwise addition and scalar multiplication.

The subset HomR(M,N) ⊆ HomSet(M,N) is an R-submodule.

Definition 2.1.4. An R-module P is called projective if for every epimorphism of

modules α : M ↠ N and every map β : P → N, there exists a map γ : P → M such

that β = αγ, as in the following diagram:

P
∃γ

~~
β
��

M α // // N

[Eis95, §A3.2 Definition].

Lemma 2.1.5. Free modules are projective. A module is projective if and only if it

is a direct summand of a free module [DF04, §10.5 Proposition 30].

Definition 2.1.6. An R-module Q is called injective if for every monomorphism

of R-modules α : N ↣ M and every homomorphism of R-modules β : N → Q,
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there exists a homomorphism of R-modules γ : M → Q such that β = γα, as in the

following diagram:

N

β

��

// α //M

∃γ~~
Q

[Eis95, §A3.4 Definition].

Characterizations of injective modules can be found in [DF04, §10.5 Proposi-

tion 34].

2.2 The hom complex between chain complexes

Throughout this subsection, let R be a commutative ring.

Definition 2.2.1. 1. A chain complex C of R-modules is a sequence

. . . → Cn+1
dn+1−−−→ Cn

dn−→ Cn−1 → . . .

where dn : Cn → Cn−1 satisfies dn ◦ dn+1 = 0 for all n ∈ Z. A chain complex is

also defined as unbounded or Z-graded. A chain complex is said to be non-

negatively graded if Cn = 0 for n < 0. The nth homology group of the

chain complex C is defined as Hn(C) = ker dn/ im dn+1.

2. A cochain complex C of R-modules is a sequence

. . . → Cn−1 dn−1

−−−→ Cn dn−→ Cn+1 dn+1

−−−→ . . .
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where dn : Cn → Cn+1 satisfies dn+1 ◦ dn = 0 for all n ∈ Z. A cochain complex

is also defined as unbounded or Z-graded. A cochain complex is said to be

non-negatively graded if Cn = 0 for n < 0. The nth cohomology group of

the cochain complex C is defined as Hn(C) = ker dn/ im dn−1 [DF04, §17.1].

Definition 2.2.2. Let C and D be chain complexes of R-modules. The tensor

product of C and D is the chain complex C ⊗R D having in degree n the R-module

(C ⊗D)n =
⊕
i+j=n

Ci ⊗R Dj

and with boundary operator given by

∂(c⊗ d) = (∂c)⊗ d+ (−1)|c|c⊗ (∂d)

where |c| denotes the degree of c ∈ C. To be more precise, for c ∈ Ci and d ∈ Dj, the

formula can be written as

∂C⊗D
i+j (c⊗ d) = (∂C

i c)⊗ d+ (−1)ic⊗ (∂D
j d)

where the subscript denotes the degree and the superscript denotes the chain complex

to which the boundary operator belongs [HS97, §V.1 Example(a)].

Lemma 2.2.3. The tensor product C⊗RD is indeed a chain complex, i.e., ∂2 = 0

holds.

Definition 2.2.4. A differential graded algebra or DG-algebra is a graded

R-algebra A∗ equipped with a map d : Ai → Ai−1 satisfying d2 = 0 and the Leibniz
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rule:

d(a · b) = (da) · b+ (−1)|a|a · (db)

where |a| = i for a ∈ Ai [Wei94, 4.5.2].

The Leibniz rule is saying that the multiplication map A ⊗R A → A is a chain

map.

Lemma 2.2.5. Let A be a DG-algebra. The multiplication on A induces a multipli-

cation on the homology H(A) :

Hp(A)⊗Hq(A) → Hp+q(A)

defined for [a] ∈ Hp(A) and [b] ∈ Hq(A) by

[a][b] := [ab].

If A is unital with unit 1A ∈ A0, then the homology algebra H(A) is unital with unit

1H(A) = [1A] ∈ H0(A).

Definition 2.2.6. Let C and D be chain complexes of R-modules. The hom com-

plex Hom(C,D) has in degree n the maps of graded R-modules f : C∗ → D∗+n that

raise degree by n, that is:

Hom(C,D)n =
∏
i∈Z

HomR(Ci, Di+n) =
∏

j−i=n

HomR(Ci, Dj)

and with boundary operator given by

(∂f)(c) = ∂(f(c)) + (−1)|f |+1f(∂c).
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In alternate notation:

∂Hom(C,D)f = ∂D ◦ f + (−1)|f |+1f ◦ ∂C .

The sign convention is chosen so that the formula

∂(f(c)) = (∂f)(c) + (−1)|f |f(∂c)

holds, consistent with the usual “Koszul sign rule” [Bre97, §VI.2].

Lemma 2.2.7. Hom(C,D) is indeed a chain complex, i.e., ∂2 = 0 holds.

Definition 2.2.8. Let C and D be chain complexes of R-modules. A chain map

of degree n f : C∗ → D∗+n is an n-cycle in the hom complex Hom(C,D). More

explicitly, for even degree n the chain map f commutes with the boundary maps:

f(∂c) = ∂f(c),

while for odd degree n the chain map f anticommutes with the boundary maps:

f(∂c) = −∂f(c).

Lemma 2.2.9. Let C be a chain complex of R-modules. The endomorphism complex

of C Hom(C,C) is made into a (unital) differential graded algebra under function

composition.

Example 2.2.10. Let C be the chain complex of abelian groups Z n−→ Z concentrated

in degrees 0 and 1. The endomorphism complex Hom(C,C) is

Z
[nn ]−−→ Z× Z [n −n ]−−−−→ Z

9



concentrated in degrees -1, 0, and 1. Its homology algebra is

H∗Hom(C,C) =


Z/n, ∗ = 0,−1

0, otherwise.

Definition 2.2.11. A morphism C → D of chain complexes is called a quasi-

isomorphism if the induced maps of homology groups Hn(C) → Hn(D) are isomor-

phisms for all n ∈ Z [Wei94, 1.1.2].

Theorem 2.2.12. Let P be a bounded below chain complex of projective R-modules.

Let f : C
∼−→ D be a quasi-isomorphism of chain complexes of R-modules. The induced

map of hom complexes

f∗ : Hom(P,C) → Hom(P,D)

is a quasi-isomorphism [Bro82, Theorem I.8.5].

2.3 Ext functors

The Ext functors are the derived functors of the hom functors. Ext can be defined

by using an injective or a projective resolution.

Lemma 2.3.1. Every R-module N has an injective resolution [Wei94, Exercise 2.3.5].

Take any injective resolution

0 → N → I0 → I1 → . . .

10



Remove the term N , then we obtain a cochain complex by applying HomR(M,−)

0 → HomR(M, I0) → HomR(M, I1) → . . .

For each n, ExtnR(M,N) is the cohomology of the complex at position n

Hn(Hom(M, I•)) = Extn(M,N).

Take any projective resolution of M

. . . → P1 → P0 → M → 0.

Remove the term M , then we obtain a cochain complex by applying HomR(−, N)

0 → HomR(P0, N) → HomR(P1, N) → . . .

For each n, ExtnR(M,N) is the cohomology of the complex at position n

Hn(Hom(P•, N)) = Extn(M,N).

Remark 2.3.2. Both constructions using injective and projective resolutions yield

the same Ext groups [Wei94, Theorem 2.7.6].

We can construct Ext groups in terms of long extensions, also called Yoneda

Ext groups. An element of the Yoneda Extn(M,N) is an equivalence class of exact

sequence of the form

0 → N → Xn → . . . → X1 → M → 0.
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The equivalence relation is generated by the relation that identifies two extensions:

ξ : 0 → N → Xn → . . . → X1 → M → 0

ξ′ : 0 → N → X ′
n → . . . → X ′

1 → M → 0

if there are maps Xk → X ′
k for all k ∈ {1, 2, . . . , n} so that every resulting square

commutes, i.e., there is a chain map ξ → ξ′ which is the identity on M and N

[Wei94, Vista 3.4.6]. The Yoneda Ext groups agree with the Ext groups defined as

right derived functors [HS97, §IV.9].

For a commutative ring R and R-modules M and N , ExtnR(M,N) is an R-module and

for a non-commutative ring R, ExtnR(M,N) is only an abelian group. In general, if R

is an algebra over a commutative ring S, then ExtnR(M,N) is at least an S-module.

2.4 Properties of Ext groups

Here are some of the basic properties and computations of Ext groups [Wei94,

§3.3].

Proposition 2.4.1. For any R-modules M and N :

1. Ext0R(M,N) ∼= HomR(M,N).

2. ExtnR(M,N) = 0 for n > 0 if either M is projective or N is injective.
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3. The converses also hold:

if Ext1R(M,N) = 0 for all N , then M is projective;

if Ext1R(M,N) = 0 for all M , then N is injective.

4. ExtnR(
⊕
i∈I

Mi, N) ∼=
∏
i∈I

ExtnR(Mi, N).

5. ExtnR(M,
∏
i∈I

Ni) ∼=
∏
i∈I

ExtnR(M,Ni).

Lemma 2.4.2. ExtnZ(M,N) = 0 for all n ≥ 2 and all abelian groups M and N.

Proof. Let P• be a length 1 projective (free) resolution of M. Therefore, Ext∗(M,N)

is the cohomology of

0 → Hom(P0, N) → Hom(P1, N) → 0.

Example 2.4.3. Since
⊕
i∈I

Z is a free abelian group, Ext1Z(
⊕
i∈I

Z, N) = 0.

Example 2.4.4. Ext1Z(Z/n,A) ∼= A/nA.

2.5 Yoneda product

Definition 2.5.1. For R-modules M , N , and P , the Yoneda product is the pairing

of Ext groups

ExtnR(N,P )⊗ ExtmR (M,N) → Extm+n
R (M,P )

induced by the composition pairing

HomR(N,P )⊗ HomR(M,N)
◦−→ HomR(M,P ).
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The Yoneda product can be expressed in terms of injective resolutions and pro-

jective resolutions. Let X be a projective resolution of M and Y be an injective

resolution of P. The composition pairing

HomR(N,P )⊗ HomR(M,N) → HomR(M,P )

gives a map of cochain complexes

HomR(N, Y )⊗ HomR(X,N) → Tot(HomR(X, Y )).

Passing to cohomology, we obtain a pairing

ExtnR(N,P )⊗ ExtmR (M,N) → Extm+n
R (M,P )

[May08, §4.8].

Remark 2.5.2. The Yoneda product can also be constructed by using projective res-

olutions of M and N or injective resolutions of N and P . Let X and Y be projective

resolutions of M and N. Let α ∈ ExtmR (M,N) which is represented by a cocycle

f : Xm → N and β ∈ ExtnR(N,P ) which is represented by a cocycle g : Yn → P.

14



Consider the following diagram:

Xm+n

dX ��

αm+n

��

...

��

...

��
Xm+1

��

Yn+1

��
Xm

��

αm

��

f

��

Yn

dY ��

g

��

...

��

...

��
X1

��

Y1

��
X0

��

Y0

��
M N P.

Since Xm is projective, there is a lift αm : Xm → Y0 of f through the map Y0 → N. We

will construct R-module maps αm+i : Xm+i → Yi inductively which satisfy dY ◦αm+i =

αm+i−1 ◦ dX . When i = 1, since Xm+1 is projective and the image of αm ◦ dX is

contained in the image of dY , there exists such a map αm+1. We assume that there

exists the map αm+i−1, i > 1. Since Xm+i is projective and the image of αm+i−1 ◦

dX is contained in the image of dY , there exists such a map αm+i. The nth step

of the n lifting steps is αm+n : Xm+n → Yn. The given R-module maps αi make

the parallelograms commute. Since for even degree a chain map commutes with the

15



boundary maps while for odd degree a chain map anticommutes with the boundary

maps (see Definition 2.2.8), we change the sign convention to make it match the signs

in the homology algebra H∗Hom(P, P ). If m is odd, then we choose α′
i = (−1)i−mαi

which make the parallelograms anticommute. The composition g ◦ α′
m+n : Xm+n → P

represents an element β ·α ∈ Extm+n
R (M,P ). This Yoneda product construction agrees

with the Yoneda product construction in Definition 2.5.1 up to a sign.

The Yoneda product can also be constructed in terms of splicing long extensions

as follows; see [May08, §4.6] and [ML95, §III.5]. Suppose given extensions

0 → N → Em → . . . → E1 → M → 0

and

0 → P → Fn → . . . → F1 → N → 0

representing classes in ExtmR (M,N) and ExtnR(N,P ). Rename Fi as Em+i and splice

the sequences using the composite map F1 → N → Em. This gives an extension

0 → P → Em+n → . . . → E1 → M → 0,

which is the Yoneda product of the given extensions. This Yoneda product con-

struction agrees with the Yoneda product constructions in Definition 2.5.1 and Re-

mark 2.5.2 up to a sign.

Definition 2.5.3. For an R-module M , the Ext-algebra of M is defined to be

ExtR(M,M) =
∞⊕
i=0

ExtiR(M,M)

16



equipped with the Yoneda product.

2.6 Dual modules

Definition 2.6.1. Let M be an R-module. The (R-linear) dual of M is the R-module

M∗ := HomR(M,R).

Assuming that M is a free R-module and given a basis {ei}i∈I of the R-module M,

the dual elements e∗i ∈ M∗ are the linear functionals defined by the formula

e∗i (ej) = δij =


1 if i = j

0 if i ̸= j.

Proposition 2.6.2. Let {ei}i∈I be a basis of a free R-module M. The dual elements

e∗i ∈ M∗ are linearly independent [DF04, §11.3].

Lemma 2.6.3. Let F,G : C → D be functors, α : F ⇒ G a natural transformation

and X an object in C such that the component

αX : F (X) → G(X)

is an isomorphism. Assuming that A is a retract of X, the component

αA : F (A) → G(A)

is also an isomorphism.

17



Definition 2.6.4. An R-module M is called finitely generated if there is some

finite subset A of M that generates M as an R-module [DF04, §10.3].

Proposition 2.6.5. Let R be a commutative ring. There is a natural map of R-

modules

η : M∗ ⊗R N → HomR(M,N)

defined by

η(f ⊗ x) = f(−)x.

The natural map is an isomorphism if either M or N is finitely generated projective.

Proof. First, consider the case where N is finite free, so that there is an isomorphism

of R-modules ϕ : N
∼=−→ Rn. We obtain a commutative diagram:

M∗ ⊗R N

∼=M∗⊗ϕ

��

η // HomR(M,N)

∼= Hom(M,ϕ)

��

M∗ ⊗R (
n⊕

i=1

R)
η // HomR(M,

n⊕
i=1

R)

n⊕
i=1

M∗ ⊗R R

∼=

OO

⊕
η

∼=
//
n⊕

i=1

HomR(M,R).

∼=

OO

Using the fact that a finitely generated projective module is a retract of a finite free

module (see Lemma 2.1.5), the natural map η is an isomorphism if N is finitely gen-

erated projective, by Lemma 2.6.3. The case where M is finitely generated projective

can be proved similarly.
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Remark 2.6.6. Consider the case N = M where M is a finite free R-module with

basis {e1, . . . , er}. The tensor

r∑
i=1

e∗i ⊗ ei ∈ M∗ ⊗R M

corresponds to the identity map idM : M → M. In particular, this tensor does not

depend on the choice of basis.

Example 2.6.7. We consider the case where the natural map η : M∗ ⊗ N →

HomR(M,N) in Proposition 2.6.5 fails to be an isomorphism. Take R = Z and

M = N = Z/n. Since M∗ = HomZ(Z/n,Z) = 0, the left side of the map is equal to

0. The right side of the map is HomZ(Z/n,Z/n) = Z/n. Thus, in this case, the map

η is not an isomorphism.

Lemma 2.6.8. Let M be an R-module. The natural map

σ : M → M∗∗

defined for x ∈ M by

σ(x)(f) = f(x)

for f ∈ HomR(M,R), is an isomorphism if M is finitely generated projective.

Example 2.6.9. Consider the case R = Z and M = Q. Since M∗ = HomZ(Q,Z) = 0,

the map σ in Lemma 2.6.8 fails to be an isomorphism.
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Lemma 2.6.10. Let R be a commutative ring. There is a natural map of R-modules

α : M∗ ⊗N∗ → (M ⊗N)∗

defined for f ∈ M∗ and g ∈ N∗ by

α(f ⊗ g)(m⊗ n) = f(m)g(n)

for m ∈ M and n ∈ N. The natural map is an isomorphism if either M or N is

finitely generated projective.

Lemma 2.6.11. Let C and D be chain complexes of R-modules. There is a natural

map of cochain complexes

α : C∗ ⊗D∗ → (C ⊗D)∗

defined for f ∈ C∗ and g ∈ D∗ by

α(f ⊗ g)(x⊗ y) = f(x)g(y)

for x ∈ C and y ∈ D. The natural map is an isomorphism if either chain complex C

or D is degreewise finitely generated projective.

Proof. We denote the boundary maps in chain complexes by ∂ and coboundary maps

in cochain complexes by d. Consider the following diagram:

(C∗ ⊗D∗)n

αn

��

d // (C∗ ⊗D∗)n+1

αn+1

��
(C ⊗D)n d // (C ⊗D)n+1.
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We show that the above diagram commutes, i.e., the map α is a cochain map. The

tensor product C∗ ⊗D∗ is the cochain complex with terms

(C∗ ⊗D∗)n :=
⊕

p+q=n

Cp ⊗Dq.

Let f ∈ Cp and g ∈ Dq. We consider the composition αn+1 ◦ d and obtain

αn+1 ◦ d(f ⊗ g) = αn+1(d(f)⊗ g + (−1)pf ⊗ d(g))

= αn+1(∂
∗(f)⊗ g + (−1)pf ⊗ ∂∗(g)),

which is a map (C ⊗D)n+1 → R defined by

(∂∗(f)⊗ g + (−1)pf ⊗ ∂∗(g))(x⊗ y) = (∂∗f)(x)g(y) + (−1)pf(x)(∂∗g)(y)

= f(∂x)g(y) + (−1)pf(x)g(∂y) ∈ R

for x⊗ y ∈ (C ⊗D)n+1. Now we consider the composition d ◦αn and obtain the map

(d ◦ αn)(f ⊗ g) : (C ⊗D)n+1 → R defined by

((d ◦ αn)(f ⊗ g)) (x⊗ y) = αn(f ⊗ g)(∂(x⊗ y))

= αn(f ⊗ g)(∂(x)⊗ y + (−1)|x|x⊗ ∂(y))

= f(∂x)g(y) + (−1)|x|f(x)g(∂y) ∈ R.

Given the cochain f ∈ Cp and the chain x ∈ Ci, if i = p, then we obtain (−1)|x|f(x)g(∂y) =

(−1)pf(x)g(∂y). In the case i ̸= p, we obtain f(x) = 0 and thus

(−1)pf(x)g(∂y) = (−1)|x|f(x)g(∂y) = 0.

In both cases we have αn+1 ◦ d = d ◦ αn.
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2.7 Multilinear algebra

Facts about multilinear algebra are from [DF04, §11.5] and [Con18]. In this sec-

tion, we discuss tensor algebras, symmetric algebras and exterior algebras.

Definition 2.7.1. Let M be an R-module and n ≥ 0 an integer.

1. The nth symmetric power of M is the quotient of the nth tensor power

Sn(M) = Symn(M) := M⊗n/S

where S is the submodule generated by elements

m1 ⊗ . . .⊗mn −mσ(1) ⊗ . . .⊗mσ(n)

for any permutation σ ∈ Σn.

The equivalence class of m1 ⊗ m2 ⊗ . . . ⊗ mn in Symn(M) is denoted as a

monomial m1m2 . . .mn.

2. The nth exterior power of M is the quotient of the nth tensor power

Λn(M) := M⊗n/A

where A is the submodule generated by elements

m1 ⊗ . . .⊗mn

with mi = mj for some indices 1 ≤ i < j ≤ n.

The equivalence class of m1 ⊗m2 ⊗ . . . ⊗mn in Λn(M) is denoted as a wedge

product m1 ∧m2 ∧ . . . ∧mn.
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Remark 2.7.2. If 2 ∈ R is invertible, then the submodule A ⊆ M⊗n being quotiented

out in the definition of Λn(M) is the submodule generated by elements

m1 ⊗ . . .⊗mn − sgn(σ)mσ(1) ⊗ . . .⊗mσ(n)

for any permutation σ ∈ Σn.

Lemma 2.7.3. Let R be a commutative ring and {e1, . . . , er} the standard basis of

Rr.

1. If S is the submodule being quotiented out from T 2(Rr) to form the symmetric

square S2(Rr), then S is a free R-module with basis

{ei ⊗ ej − ej ⊗ ei | 1 ≤ i < j ≤ r}.

2. If A is the submodule being quotiented out from T 2(Rr) to form the exterior

square Λ2(Rr), then A is a free R-module with basis

{ei ⊗ ej + ej ⊗ ei | 1 ≤ i < j ≤ r} ∪ {ei ⊗ ei | 1 ≤ i ≤ r}.

Proposition 2.7.4. Let R be a commutative ring and {e1, . . . , er} the standard basis

of Rr.

1. The tensor power T n(Rr) has canonical basis (as R-module)

{ei1 ⊗ . . .⊗ ein | 1 ≤ ij ≤ r for 1 ≤ j ≤ n}.
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2. The monomials of length n

{en1
1 en2

2 . . . enr
r | n1 + . . .+ nr = n} = {ei1 . . . ein | 1 ≤ i1 ≤ . . . ≤ in ≤ r}

form a canonical basis (as R-module) of the symmetric power Sn(Rr).

3. The exterior power Λn(Rr) has canonical basis (as R-module)

{ei1 ∧ . . . ∧ ein | 1 ≤ i1 < i2 < . . . < in ≤ r}.

The indices that appear form a subset {i1, i2, . . . , in} ⊆ {1, 2, . . . , r}; there exist(
r
n

)
such subsets.

Definition 2.7.5. Let M be an R-module.

1. The tensor algebra on M is

T (M) :=
⊕
n≥0

T n(M)

where T n(M) := M⊗n denotes the nth tensor power of M. The multiplication

map

T (M)⊗ T (M) → T (M)

is given by the pairing

M⊗p ⊗M⊗q → M⊗p+q

(x1 ⊗ . . .⊗ xp)⊗ (y1 ⊗ . . .⊗ yq) 7→ x1 ⊗ . . .⊗ xp ⊗ y1 ⊗ . . .⊗ yq.
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2. The symmetric algebra on M is

S(M) :=
⊕
n≥0

Sn(M)

with multiplication

S(M)⊗ S(M) → S(M)

given by the pairing

Sp(M)⊗ Sq(M) → Sp+q(M)

given on monomials by the formula

(x1 . . . xp)⊗ (y1 . . . yq) 7→ x1 . . . xpy1 . . . yq.

3. The exterior algebra on M is

Λ(M) :=
⊕
n≥0

Λn(M)

with multiplication

Λ(M)⊗ Λ(M) → Λ(M)

given by the pairing

Λp(M)⊗ Λq(M) → Λp+q(M)

given on elementary products by the formula

(x1 ∧ . . . ∧ xp)⊗ (y1 ∧ . . . ∧ yq) 7→ x1 ∧ . . . ∧ xp ∧ y1 ∧ . . . ∧ yq.
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Lemma 2.7.6. Let M be an R-module and let n ≥ 0. The following formulas define

natural pairings:

1.

T n(M∗)⊗ T n(M) → R

(f1 ⊗ . . .⊗ fn)⊗ (m1 ⊗ . . .⊗mn) 7→
n∏

i=1

fi(mi)

2.

Sn(M∗)⊗ Sn(M) → R

(f1f2 . . . fn)⊗ (m1m2 . . .mn) 7→
∑
σ∈Σn

n∏
i=1

fi(mσ(i))

3.

Λn(M∗)⊗ Λn(M) → R

(f1 ∧ . . . ∧ fn)⊗ (m1 ∧ . . . ∧mn) 7→
∑
σ∈Σn

sgn(σ)
n∏

i=1

fi(mσ(i)) = det[fi(mj)].

Proposition 2.7.7. Let M be a finite free R-module. Let {e1, . . . , er} be a basis of

M and {e∗1, . . . , e∗r} the dual basis of M∗.

1. The pairing

T n(M∗)⊗ T n(M) → R

is perfect, i.e., the corresponding map

T n(M∗) → (T n(M))∗
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is an isomorphism. Moreover, via the pairing, the collection in T n(M∗)

{e∗i1 ⊗ . . .⊗ e∗in | 1 ≤ ij ≤ r for 1 ≤ j ≤ n}

is dual to the basis of T n(M)

{ei1 ⊗ . . .⊗ ein | 1 ≤ ij ≤ r for 1 ≤ j ≤ n}.

2. The pairing

Λn(M∗)⊗ Λn(M) → R

is perfect, i.e., the associated map

Λn(M∗) → (Λn(M))∗

is an isomorphism. Moreover, via the pairing, the collection in Λn(M∗)

{e∗i1 ∧ . . . ∧ e∗in | 1 ≤ i1 < i2 < . . . < in ≤ r}

is dual to the basis of Λn(M)

{ei1 ∧ . . . ∧ ein | 1 ≤ i1 < i2 < . . . < in ≤ r}.

2.8 Extension of scalars

For a (not necessarily commutative) ring R, let R-Mod denote the category of left

R-modules.
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Definition 2.8.1. Let f : R → S be a ring homomorphism.

1. Restriction of scalars along f is the functor

f ∗ : S -Mod → R -Mod

that sends an S-module M to the R-module f ∗M which has the same underlying

abelian group M , with R acting via f :

r ·m := f(r) ·m.

We sometimes write M instead of f ∗M if the base ring is clear from the context.

2. Extension of scalars along f is the functor

f! : R -Mod → S -Mod

that sends an R-module M to the S-module f!M = S ⊗R M , with S acting via

multiplication on the left:

s′ · (s⊗m) := (s′s)⊗m.

The extension of scalars is also called change of rings [HS97, §IV.12].

Example 2.8.2. Let R be a ring and u : Z → R the unique ring homomorphism,

given by u(1) = 1R, the unit of R. Restriction of scalars along u

u∗ : R -Mod → Z -Mod = Ab

is the “underlying abelian group” functor, forgetting the scalar multiplication by R.
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Proposition 2.8.3. Let f : R → S be a ring homomorphism. There is a natural

isomorphism of abelian groups

HomS(S ⊗R M,N) ∼= HomR(M,N),

for all R-module M and S-module N. In other words, extension of scalars is left

adjoint to restriction of scalars: f! ⊣ f ∗ [DF04, §10.4].

Proposition 2.8.4. Let f : R → S be a ring homomorphism between commutative

rings, and let M be an R-module.

1. If A is an R-algebra, then S ⊗R A is canonically an S-algebra.

2. For any n ≥ 0, there is a natural isomorphism of S-modules

S ⊗R T n
R(M) ∼= T n

S (S ⊗R M).

Here T n
R(M) denotes the nth tensor power of M as an R-module:

T n
R(M) =

n times︷ ︸︸ ︷
M ⊗R . . .⊗R M .

As n ≥ 0 varies, the maps form an isomorphism of graded S-algebras

S ⊗R TR(M)
∼=−→ TS(S ⊗R M)

[Bou70, §III.5.3].

3. For any n ≥ 0, there is a natural isomorphism of S-modules

S ⊗R Λn
R(M) ∼= Λn

S(S ⊗R M).
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Here Λn
R(M) denotes the nth exterior power of M as an R-module:

Λn
R(M) =

n times︷ ︸︸ ︷
M ∧R . . . ∧R M .

As n ≥ 0 varies, the maps form an isomorphism of graded S-algebras

S ⊗R ΛR(M)
∼=−→ ΛS(S ⊗R M)

[Bou70, §III.7.5].
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Chapter 3

Additive structure of Ext-algebras

In this chapter, we discuss the computation of Ext groups over symmetric algebras

and exterior algebras.

3.1 Ext over a polynomial algebra

Definition 3.1.1. The polynomial ring k[x] over a commutative ring k on one

generator consists of the polynomials p = p0 + p1x + p2x + . . . + pm−1x
m−1 + pmx

m

where p0, p1, . . . , pm ∈ k are the coefficients of p, pm ̸= 0 if m > 0 [DF04, §7.2].

The usual addition, multiplication, and scalar multiplication of polynomials make

k[x] into a commutative k-algebra.

We compute examples of Ext groups over polynomial algebras.

Example 3.1.2. Let A = k[x] be a polynomial algebra on one generator and consider
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the A-module k ∼= A/(x). A free resolution P• of k is given by

0 → k[x]
A

x−→ k[x]
A

→ k → 0.

Thus the cochain complex HomA(P•, k) is

0 −→ HomA(A, k)
d−→ HomA(A, k) → 0.

Composition of A-module maps A
x−→ A → k is zero. Hence the differential of the

cochain complex is d = 0. The hom module is HomA(A, k) ∼= k. The cochain complex

has zero differential, that is:

0 → k
0−→ k → 0.

By definition of Ext, the cohomology groups of the complex are the Ext groups:

Ext∗A(k, k) =


k, ∗ = 0, 1

0, otherwise.

Since every class in Ext1A(k, k) squares to zero, Ext∗A(k, k) is an exterior algebra over

k on a generator in cohomological degree 1.

We express Ext∗A(k, k) as a graded k-algebra:

Ext∗A(k, k) = k[y]/(y2), |y| = 1

= Λk(y), |y| = 1.

In Example 4.2.8, we will explain that this generator in Ext1A(k, k) can be viewed as

x∗, the dual of x.
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Remark 3.1.3. With more generators, an exterior algebra is not the same as a

truncated polynomial algebra.

Example 3.1.4. Let A = k[x, y] be the polynomial algebra on two generators. Con-

sider the A-module k ∼= A/(x, y). A free resolution P• of k is given by

. . . → 0 → A
[−y
x ]

−−−→ A2 [x y ]−−−→ A → k → 0.

The cochain complex HomA(P•, k) is

. . . → 0 → HomA(A, k)
d−→ HomA(A

2, k)
d−→ HomA(A, k) → 0.

Note that d = 0, HomA(A, k) ∼= k and HomA(A
2, k) ∼= k2. Thus the cochain complex

has the form

0 → k
0−→ k2 0−→ k → 0.

By definition of Ext, the cohomology groups of the complex are the Ext groups:

Ext∗A(k, k) =



k, ∗ = 0, 2

k2, ∗ = 1

0, otherwise.

In Example 4.1.5 we will show that Ext∗A(k, k) is an exterior algebra over k on

two generators in cohomological degree 1, i.e., ExtA(k, k) = Λk(x
∗, y∗).

3.2 Ext over an exterior algebra

In this section, we compute examples of Ext groups over an exterior algebra.
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Example 3.2.1. Let A = Λk(x) be the exterior algebra over k on one generator.

Consider the A-module k ∼= A/(x). A free resolution P• of k is given by

. . . → A
x−→ A

x−→ A → k → 0.

The cochain complex HomA(P•, k) is

0 → HomA(A, k)
d−→ HomA(A, k)

d−→ HomA(A, k)
d−→ HomA(A, k) → . . .

Note that d = 0 and HomA(A, k) ∼= k. The cochain complex becomes

0 → k
0−→ k

0−→ k → . . .

By definition of Ext, the cohomology groups of the complex are the Ext groups:

Ext∗A(k, k) =


k, ∗ ≥ 0

0, otherwise.

In Example 4.1.4, we will show that Ext∗A(k, k) is a polynomial algebra over k on

a generator in cohomological degree 1, i.e., ExtA(k, k) = k[x∗].

Example 3.2.2. Let k be a commutative ring and A = Λk(x, y) the exterior algebra

over k on two generators. The exterior algebra A has a standard basis as a k-module:

A =< 1, x, y, x ∧ y > .

Since A is a non-commutative k-algebra, the multiplication on the right by x ∈ A

ρx : A
·x−→ A
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is a map of left A-modules. Consider the (left) A-module k ∼= A/(x, y) and we

construct a free resolution of k starting with the quotient map q : A → k. The kernel of

the quotient map q : A → k is the A-submodule generated by x and y, i.e., ker(A →

k) =< x, y >. Now we find a free A-module which surjects onto the kernel of the

morphism A → k. We pick the map A2 [x y ]−−−→ A as next step of the resolution. Now

we compute ker(A2 [x y ]−−−→ A). For any [ ab ] ∈ ker(A2 [x y ]−−−→ A), we obtain

[ x y ][ ab ] = ρx(a) + ρy(b) = a ∧ x+ b ∧ y = 0. (3.1)

In Equation (3.1), we get solutions for [ ab ] as [ x0 ],
[
0
y

]
and [ yx ]. We express elements

a and b in Equation (3.1) in terms of the basis of A as a k-module:

(a001 + a10x+ a01y + a11x ∧ y) ∧ x+ (b001 + b10x+ b01y + b11x ∧ y) ∧ y = 0

⇐⇒ a00x− a01x ∧ y + b00y + b10x ∧ y = 0

⇐⇒ (0)1 + (a00)x+ (b00)y + (b10 − a01)x ∧ y = 0.

We have a00 = b00 = 0, b10 = a01 and then

[ ab ] =
[ a10x+a01y+a11x∧y
a01x+b01y+b11x∧y

]
=
[
a10x+a11(x∧y)

0

]
+
[

0
b01y+b11(x∧y)

]
+ [ a01ya01x ]

= (a10 − a11y)[
x
0 ] + (b01 + b11x)

[
0
y

]
+ (a01)[

y
x ].

This implies that [ ab ] lies in the A-submodule < [ x0 ],
[
0
y

]
, [ yx ] > . Then, ker(A2 [x y ]−−−→

A) ⊆< [ x0 ],
[
0
y

]
, [ yx ] > . Thus, ker(A2 [x y ]−−−→ A) =< [ x0 ],

[
0
y

]
, [ yx ] > . We pick the map

A3

[
x 0 y
0 y x

]
−−−−→ A2 as next step of the resolution. We compute ker(A3

[
x 0 y
0 y x

]
−−−−→ A2). For
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any
[
a
b
c

]
∈ ker(A3

[
x 0 y
0 y x

]
−−−−→ A2), we obtain

[
x 0 y
0 y x

][ a
b
c

]
=
[
ρx(a)+ρy(c)
ρy(b)+ρx(c)

]
=
[ a∧x+c∧y
b∧y+c∧x

]
= 0. (3.2)

We express elements a, b and c in Equation (3.2) in terms of the basis of A as a

k-module:

(a001 + a10x+ a01y + a11x ∧ y) ∧ x+ (c001 + c10x+ c01y + c11x ∧ y) ∧ y = 0

⇐⇒ a00x+ c00y + (c10 − a01)x ∧ y = 0

and

(b001 + b10x+ b01y + b11x ∧ y) ∧ y + (c001 + c10x+ c01y + c11x ∧ y) ∧ x = 0

⇐⇒ c00x+ b00y + (b10 − c01)x ∧ y = 0.

We have a00 = b00 = c00 = 0, c10 = a01 and b10 = c01 and then[
a
b
c

]
=
[ a10x+a01y+a11x∧y

b10x+b01y+b11x∧y
a01x+b10y+c11x∧y

]
=
[
a10x+a11(x∧y)

0
0

]
+
[

0
b01y+b11(x∧y)

0

]
+
[ a01y

0
a01x

]
+
[

0
b10x

b10y+c11x∧y

]
= (a10 − a11y)

[
x
0
0

]
+ (b01 + b11x)

[
0
y
0

]
+ (a01)

[
y
0
x

]
+ (b10 + c11x)

[
0
x
y

]
.

Thus, ker(A3

[
x 0 y
0 y x

]
−−−−→ A2) =<

[
x
0
0

]
,
[
0
y
0

]
,
[
y
0
x

]
,
[
0
x
y

]
> . We have the beginning of a free

resolution P• of k:

. . . → A4

[
x 0 y 0
0 y 0 x
0 0 x y

]
−−−−−−→ A3

[
x 0 y
0 y x

]
−−−−→ A2 [x y ]−−−→ A → k.

The cochain complex HomA(P•, k) is

0 −→ HomA(A, k)
d−→ HomA(A

2, k)
d−→ HomA(A

3, k)
d−→ HomA(A

4, k) → . . .
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Then the above cochain complex becomes:

0 → k
0−→ k2 0−→ k3 → . . .

We obtain the Ext groups:

ExtiA(k, k) = ki+1, i ≤ 2.

In fact, this holds for all i ≥ 0. We will see in Proposition 5.4.3 that Ext∗A(k, k)

is a polynomial algebra over k on two generators in cohomological degree 1, i.e.,

ExtA(k, k) = k[x∗, y∗].

3.3 The Koszul complex

The facts about the Koszul complex are from [Wei94, §4.5]. In this section we

discuss the Koszul complex and how it is used to find Ext groups over algebras.

Definition 3.3.1. Let R be a commutative ring. The Koszul complex associated

to elements x1, . . . , xn ∈ R is the exterior algebra on a free R-module of rank n

K∗(x) = K∗(x1, . . . , xn) := Λ∗(Rn)

equipped with the differential d : Kp(x) → Kp−1(x) given on the standard basis ele-

ments by

d(ei1 ∧ ... ∧ eip) =

p∑
j=1

(−1)j−1xijei1 ∧ ... ∧ êij ∧ ... ∧ eip ,

where the ‘hat’ symbol ̂ indicates that the term is deleted.
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Example 3.3.2. When p = 2, d(ei1 ∧ ei2) = xi1ei2 − xi2ei1 .

Lemma 3.3.3. The Koszul complex K(x) is indeed a chain complex, i.e., the differ-

ential d satisfies d2 = 0, which moreover satisfies the Leibniz rule:

d(a ∧ b) = d(a) ∧ b+ (−1)|a|a ∧ d(b)

where a, b ∈ K(x). In other words, the Koszul complex K(x) is a DG-algebra.

Example 3.3.4. Let R be a commutative ring. We describe the Koszul complex

K(x1, . . . , xn) explicitly for n = 1, 2, 3.

• For n = 1, let x ∈ R. The Koszul complex of the sequence (x) is

K(x) = . . . → 0 → R
e1

x−→ R
1
→ 0

where 1 and e1 are the basis elements of K0(x) and K1(x).

• For n = 2, let x, y ∈ R. The Koszul complex of the sequence (x, y) is

K(x, y) = . . . → 0 → R
e1∧e2

[−y
x ]

−−−→ R2

e1,e2

[x y ]−−−→ R
1
→ 0.

• For n = 3, let x, y, z ∈ R. The Koszul complex of the sequence (x, y, z) is

. . . → 0 → R
e1∧e2∧e3

[
z
−y
x

]
−−−→ R3

e1∧e2
e1∧e3
e2∧e3

[−y −z 0
x 0 −z
0 x y

]
−−−−−−−−→ R3

e1
e2
e3

[x y z ]−−−−→ R
1
→ 0.

Lemma 3.3.5. Let R be a commutative ring and x, y ∈ R. The Koszul complex

K(x, y) is isomorphic to the tensor product of complexes K(x) ⊗R K(y). More gen-

erally, the Koszul complex K(x1, . . . , xd) is isomorphic to the tensor product of com-

plexes K(x1)⊗R K(x2)⊗R . . .⊗R K(xd) [Wei94, §4.5].
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Proof. We will prove the case d = 2. The Koszul complex K(x) is

K(x) = . . . → 0 → R
<e1>

x−→ R
<1x>

→ 0.

The Koszul complex K(y) is

K(y) = . . . → 0 → R
<e2>

y−→ R
<1y>

→ 0.

We use (C⊗D)n =
⊕

i+j=n

Ci⊗Dj and the formula for the boundary in Definition 2.2.2

to find the chain complex K(x)⊗K(y):

. . . → 0 → R
<e1⊗e2>

[−y
x ]

−−−→ R2

<e1⊗1y ,1x⊗e2>

[x y ]−−−→ R
<1x⊗1y>

→ 0.

Therefore K(x, y) ∼= K(x)⊗R K(y).

Definition 3.3.6. For a commutative ring R and an R-module M , x ∈ R is called a

non-zero-divisor on M if xm = 0 implies m = 0 for all m ∈ M.

A sequence of elements x1, . . . , xd ∈ R in a commutative ring R is called regular if

x1 is a non-zero-divisor in R and xi is a non-zero-divisor in R/(x1, . . . , xi−1) for all

2 ≤ i ≤ d.

Example 3.3.7. Let A = k[x1, . . . , xn] be a polynomial algebra over k on n genera-

tors. The element x1 is a non-zero-divisor in A by inspection. The quotient rings are

also polynomial:

A/(x1, . . . , xi−1) = k[x1, . . . , xn]/(x1, . . . , xi−1) ∼= k[xi, . . . , xn].
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By applying the previous argument, xi is a non-zero-divisor on A/(x1, . . . , xi−1).

Therefore x1, . . . , xn is a regular sequence.

Proposition 3.3.8. Let I = (x1, . . . , xd) be an ideal of R generated by a regular

sequence. Then the augmented complex K(x1, . . . , xd) → R/I is acyclic, that is, it

has trivial homology.

Equivalently, the homology of the unaugmented complex is

HiK(x1, . . . , xd) =


R/I, i = 0

0, i ̸= 0.

Consequently, the Koszul complex K(x1, . . . , xd) is a free resolution of R/I as an

R-module [Wei94, Corollary 4.5.4].

Example 3.3.9. First, consider the case d = 1,

K(x1) = . . . → 0 → R
x1−→ R → 0.

We have H0K(x1) = R/I.

Since x1 is a non-zero-divisor in R, H1K(x1) = 0 holds.

Thus, HiK(x1) = 0 for all i > 0.

Example 3.3.10. Consider the case d = 2,

K(x1, x2) = . . . → 0 → R
[−x2
x1

]
−−−→ R2 [x1 x2 ]−−−−→ R → 0.

We have H0K(x1, x2) = R/I.

Since the sequence (x1, x2) is regular, ker[ x1 x2 ] =< [ −x2
x1

] > and ker[ −x2
x1

] = 0.
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We justify ker[ x1 x2 ] =< [ −x2
x1

] > as follows: Since [ x1 x2 ][ −x2
x1

] = 0, then < [ −x2
x1

] >⊆

ker[ x1 x2 ]. Let (P,Q) ∈ ker[ x1 x2 ], that is:

[ x1 x2 ]
[
P
Q

]
= x1P + x2Q = 0. (3.3)

Since x2 is not a zero divisor in R/(x1), the equation x1 ·P +x2 ·Q = 0 implies Q = 0

in R/(x1). Since Q = 0 in R/(x1), Q = rx1 for some r ∈ R. Using Equation (4.3.2)

and the fact that x1 is a non-zero-divisor, we get:

x1P + x2Q = 0

⇐⇒ x1P + x2rx1 = 0

⇐⇒ x1(P + rx2) = 0

⇐⇒ P = −rx2.

Thus (P,Q) = (−rx2, rx1), where r ∈ R. Hence (P,Q) ∈ ⟨[ −x2
x1

]⟩, proving the inclu-

sion ker[ x1 x2 ] ⊆< [ −x2
x1

] > .

We get ker[ −x2
x1

] = 0 as follows. For P ∈ R, assume that [ −x2
x1

]P = 0 in R2, equiv-

alently, −x2P = 0 and x1P = 0 in R. Since x1 is not a zero divisor in R, we have

P = 0. Thus ker[ −x2
x1

] = 0. Since ker[ −x2
x1

] = 0, H2K(x1, x2) = 0.

Hence

HiK(x1, x2) = 0 for all i > 0.

We use the Koszul complex to compute Ext groups over a polynomial algebra on

n generators.
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Lemma 3.3.11. Let A = k[x1, . . . , xn] be a polynomial algebra over k on n generators.

The Ext groups are ExtiA(k, k)
∼= k(

n
i) for all i ≥ 0.

Proof. Since (x1, . . . , xn) is a regular sequence in A = k[x1, . . . , xn], the Koszul com-

plex

K(x1, . . . , xn) → A/(x1, . . . , xn) = k

is a free resolution P• of k as an A-module by Proposition 3.3.8. By Proposition 2.7.4,

The Koszul complex is isomorphic to a chain complex of the form

. . .
d−→ A(

n
i) d−→ . . .

d−→ A(
n
1) d−→ A(

n
0) → 0.

The cochain complex HomA(P•, k) is isomorphic to

0 → k(
n
0) d∗−→ k(

n
1) d∗−→ . . .

d∗−→ k(
n
i) d∗−→ . . .

with differential d∗ the restriction along d, that is, d∗(f) = f ◦ d. Consider the

composition of A-module maps:

A(
n

i+1) d−→ A(
n
i) f−→ k.

We have

f(d(ek1 ∧ . . . ∧ eki+1
)) = f(

i+1∑
j=1

(−1)j−1xkjek1 ∧ . . . ∧ êkj ∧ . . . ∧ eki+1
)

=
i+1∑
j=1

(−1)j−1f(xkjek1 ∧ . . . ∧ êkj ∧ . . . ∧ eki+1
)

=
i+1∑
j=1

(−1)j−1xkjf(ek1 ∧ . . . ∧ êkj ∧ . . . ∧ eki+1
)

= 0.
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Since d∗f = f ◦ d = 0, the differential d∗ in the cochain complex is zero. We obtain

the Ext groups

ExtiA(k, k)
∼= k(

n
i)

for all i ⩾ 0.

In Proposition 4.3.7 we will show that Ext∗A(k, k) is an exterior algebra over k on

n generators in cohomological degree 1, i.e., ExtA(k, k) = Λk(x
∗
1, . . . , x

∗
n).
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Chapter 4

Multiplicative structure of Ext-algebras

4.1 Multiplicative structure using endomorphism complexes

In this section we discuss how to calculate the multiplicative structure of Ext-

algebras directly using an endomorphism complex. First, we need to fix some grading

conventions for chain complexes.

Remark 4.1.1. Let C be a chain complex and A an R-module. Applying the covariant

functor HomR(A,−) to C yields a chain complex

HomR(A,C)

which is the same as the hom complex Hom(A[0], C).

Applying the contravariant functor HomR(−, A) to C yields a cochain complex

HomR(C,A).
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The cochain complex HomR(C,A) is:

degree −2 −1 0 1

// HomR(C−2, A)
∂∗
// HomR(C−1, A)

∂∗
// HomR(C0, A)

∂∗
// HomR(C1, A) // . . .

and the hom complex Hom(C,A[0]) is:

degree 2 1 0 −1

// HomR(C−2, A)
−∂∗
// HomR(C−1, A)

∂∗
// HomR(C0, A)

−∂∗
// HomR(C1, A) // . . .

Up to signs in the differentials, the cochain complex HomR(C,A) corresponds to the

hom complex Hom(C,A[0]) via the following convention: a cochain complex K∗ is

viewed as a chain complex with reversed grading K∗ = K−∗. In particular, a non-

negatively graded cochain complex

K∗ = (0 → K0 d−→ K1 d−→ K2 d−→ . . .)

is identified with a non-positively graded chain complex

K∗ = (0 → K0
d−→ K−1

d−→ K−2
d−→ . . .).

If the chain complex C = (. . .
∂−→ C2

∂−→ C1
∂−→ C0 → 0) is non-negatively graded, then

the hom complex Hom(C,A[0]) is non-positively graded:

degree 1 0 −1 −2

0 // HomR(C0, A) // HomR(C1, A) // HomR(C2, A) // . . .

Proposition 4.1.2. Let P• → M be a projective resolution of an R-module M.
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1. The endomorphism complex Hom(P, P ) has homology groups

HnHom(P, P ) ∼= Ext−n
R (M,M).

2. The isomorphism of graded R-modules

H∗Hom(P, P ) ∼= Ext−∗
R (M,M)

is an isomorphism of graded R-algebras, where the right-hand side is endowed

with the Yoneda product.

Proof. (1) Let M [0] denote the chain complex with M concentrated in degree 0,

and view the projective resolution as a quasi-isomorphism f : P
∼−→ M [0] with

the augmentation d0 : P0 → M in degree 0. Using Theorem 2.2.12, we have a

quasi-isomorphism

f∗ : Hom(P, P ) → Hom(P,M [0]).

Then, we obtain

HnHom(P, P )
∼=−−−−→

Hn(f∗)
HnHom(P,M [0]).

We know that the chain complex Hom(P,M [0]) agrees with the cochain complex

HomR(P,M) up to the regrading convention and signs in the differential, thus

HnHom(P, P ) ∼= HnHom(P,M [0]) ∼= H−nHomR(P,M) ∼= Ext−n
R (M,M).
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(2) We can construct the Yoneda product using projective resolutions of theR-modules

(see Remark 2.5.2). We have the Yoneda product using the projective resolution

P of M :

HnHom(P, P )⊗HmHom(P, P ) //

∼=

��

Hm+nHom(P, P )

∼=

��
HnHom(P,M [0])⊗HmHom(P,M [0]) //

∼=

��

Hm+nHom(P,M [0])

∼=

��

Ext−n
R (M,M)⊗ Ext−m

R (M,M) // Ext
−(m+n)
R (M,M).

Here the top row is induced by the composition product on Hom(P, P ) (see

Lemma 2.2.9 and Lemma 2.2.5) and the bottom row is the Yoneda prod-

uct which is constructed using projective resolutions in Remark 2.5.2. Take

β ∈ Ext−n
R (M,M) and α ∈ Ext−m

R (M,M). Using the quasi-isomorphism f∗ :

Hom(P, P ) → Hom(P,M [0]) from part (1), we have corresponding homology

classes [β̄] ∈ HnHom(P, P ) and [ᾱ] ∈ HmHom(P, P ). The cycle ᾱ is a chain

map ᾱ : P → P of degree m and the cycle β̄ is a chain map β̄ : P → P

of degree n. The R-module maps ᾱi : Pi → Pi+m, which are the graded

pieces of ᾱ, make the parallelograms anticommute if m is odd and commute

if m is even. The cocycle d0 ◦ ᾱ−m : P−m → M represents the element

α ∈ Ext−m
R (M,M), where d0 : P0 → M is the augmentation. Hence the
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R-module map ᾱ−(m+n) : P−(m+n) → P−n is a valid choice for the construc-

tion in Remark 2.5.2. Then the composition

d0 ◦ β̄−n ◦ ᾱ−(m+n) : P−(m+n) → M

represents the Yoneda product βα ∈ Ext
−(m+n)
R (M,M). Hence the above dia-

gram commutes.

Remark 4.1.3. 1. The negative grading Ext−∗ is an artefact of our grading con-

ventions; see Remark 4.1.1.

2. One could also take an injective resolution M → I• and obtain the Ext-algebra

as the cohomology of the endomorphism cochain complex: ExtR(M,M) ∼= H∗Hom(I, I).

Example 4.1.4. Let A = Λk(x) ∼= k[x]/(x2) be the exterior algebra over k on one

generator. In Example 3.2.1, we computed the Ext groups:

ExtiA(k, k) = k for all i ≥ 0

as the cohomology groups of the cochain complex HomA(P, k). We also know that the

quasi-isomorphism P → k induces a quasi-isomorphism between hom complexes

Hom(P, P ) → Hom(P, k[0]) (4.4)

(see Theorem 2.2.12). We compute the multiplicative structure of the Ext-algebra

ExtA(k, k) via the quasi-isomorphism (4.4). Our claim is that the Ext-algebra is

polynomial up to sign.
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Proof. Let α = q : A → k be the canonical generator of Ext1A(k, k), where q is the

quotient map. Here we identify the class α with its unique representative cocycle q.

Via the regrading convention, we can view that as a (-1)-cycle in the hom complex

α ∈ Z−1Hom(P, k[0]). We will lift the cycle α to a cycle ᾱ in the endomorphism

complex ᾱ ∈ Z−1Hom(P, P ). More concretely, the cycle ᾱ will be a chain map

ᾱ : P → P

of degree -1, i.e., α anti-commutes with the boundary maps (see Definition 2.2.8). We

draw the following chain diagram whose parallelograms are anti-commutative:
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degree P
α //

α

&&
P

∼
λ

// k[0]

3 A

x

�� !!

α3=id

��

A

x

��

0

��
2 A

x

�� !!

α2=− id

��

A

x

��

// 0

��
1 A

x

��

q

!!

α1=id

��

A

x

��

// 0

��
0 A

�� ��

A

��

q // k

��
−1 0 0 0.

The degree 2 piece of the chain map α2 is:

− id : A → A.

Likewise the degree i piece of the chain map αi is:

(−1)⌊i/2⌋ id : A → A.

The homology class [ᾱ]i is an element of H−iHom(P, P ). Since H−iHom(P, P )
λ◦−−−→∼=

H−iHom(P, k[0]), the homology class [λ ◦ ᾱi] = αi can be viewed as an element of
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H−iHom(P, k[0]) = ExtiA(k, k)
∼= k. In Example 3.2.1, we found that the quotient

map q : A → k is the generator of ExtiA(k, k). Since αi = (−1)⌊i/2⌋q : A → k, the

homology class αi is a generator of ExtiA(k, k). Thus the Ext-algebra is polynomial

up to sign.

Example 4.1.5. Let A = k[x, y] be a polynomial algebra over k on two generators.

In Example 3.1.4, we computed the Ext groups:

Ext∗A(k, k) =



k, ∗ = 0, 2

k2, ∗ = 1

0, otherwise.

We compute the multiplicative structure of the Ext-algebra Ext∗A(k, k) via the quasi-

isomorphism (4.4). Our claim is that the Ext-algebra is exterior up to sign.

Proof. Let α = [ q 0 ] : A2 → k and β = [ 0 q ] : A2 → k be the canonical generators

of Ext1A(k, k), where q is the quotient map q : A → k. These cocycles can be viewed

as (-1)-cycles in the hom complex, α, β ∈ Z−1Hom(P, k[0]). We will lift the cycles α

and β to cycles ᾱ and β̄ in the endomorphism complex ᾱ, β̄ ∈ Z−1Hom(P, P ). More

concretely, the cycles ᾱ, β̄ will be chain maps ᾱ, β̄ : P → P of degree -1. We draw
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the following chain complex diagram whose parallelograms are anti-commutative:

degree P

α

((α // P
∼
λ

// k[0]

2 A

[−y
x ]

�� $$

α2=[ 0id ]

!!

A

[−y
x ]

��

0

��
1 A2

[ q 0 ]

$$

[x y ]

��

ᾱ1=[ id 0 ]

!!

A2

[x y ]

��

// 0

��
0 A

$$�� !!

A

��

q // k

��
−1 0 0 // 0.

Using the above diagram and applying the same method we can find β1 = [ 0 id ] :

A2 → A and β2 = [ − id
0 ] : A → A2. We have

α1 ◦ α2 = β1 ◦ β2 = 0 : A → A

and

β̄1 ◦ ᾱ2 = −ᾱ1 ◦ β̄2 = id : A → A,
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which implies ᾱ2 = β̄2 = 0 and ᾱ◦β̄ = −β̄◦ᾱ. The homology class [β̄◦ᾱ] is an element

of H−2Hom(P, P ). Since H−2Hom(P, P )
λ◦−−−→∼= H−2Hom(P, k[0]), the homology class

[λ ◦ β̄ ◦ ᾱ] = β ·α can be viewed as an element of H−2Hom(P, k[0]) = Ext2A(k, k)
∼= k.

In Example 3.1.4, we found that the quotient map q : A → k is the generator of

Ext2A(k, k). Since β · α = q : A → k, the homology class β · α is a generator of

Ext2A(k, k). Thus the Ext-algebra is exterior up to sign.

4.2 The tautological Koszul complex

Definition 4.2.1. Let R be a commutative ring, M an R-module, and α : M → R

an R-module map. The Koszul complex associated to α is the exterior algebra on

M

K∗(α) := Λ∗(M)

equipped with the differential d : Kp(α) → Kp−1(α) given by

d(x1 ∧ . . . ∧ xp) =

p∑
j=1

(−1)j−1α(xj)x1 ∧ . . . ∧ x̂j ∧ . . . ∧ xp.

Remark 4.2.2. Definition 4.2.1 generalizes Definition 3.3.1 as follows. Given ele-

ments x1, . . . , xd ∈ R, take the free R-module M = Rd and the linear functional

α = [ x1 x2 ... xd ] : Rd → R

using matrix notation. Then we have K∗(x1, . . . , xd) = K∗(α).
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Lemma 4.2.3. The differential d satisfies d2 = 0, which moreover satisfies the Leibniz

rule. In other words, the Koszul complex K(α) is a DG-algebra.

Proposition 4.2.4. Let α : M → R and β : N → R be R-module maps and consider

the induced map

[ α β ] : M ⊕N → R.

The Koszul complex K([ α β ]) is isomorphic to the tensor product of Koszul complexes

K(α)⊗R K(β).

More generally, given R-modules M1, . . . ,Md and an R-module map

α = [ α1 ... αd ] : M1 ⊕ . . .⊕Md → R,

the Koszul complex K(α) is isomorphic to the tensor product of complexes

K(α1)⊗R . . .⊗R K(αd)

[Bou07, §9.3].

Definition 4.2.5. Let k be a commutative ring and V a k-module. Consider the

inclusion V ∼= S1(V ) ↪→ S(V ) and the map of S(V )-modules

α : S(V )⊗k V → S(V )

induced by extension of scalars along the ring homomorphism k ∼= S0(V ) ↪→ S(V ),

given by α(s ⊗ v) = sv. The map α is the restriction of the multiplication map
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S(V )⊗ S(V ) → S(V ). Via the isomorphism of graded S(V )-algebras

ΛS(V )(S(V )⊗k V ) ∼= S(V )⊗k Λk(V )

(see Proposition 2.8.4), the differential of the Koszul complex K
S(V )
∗ (α) on the left-

hand side corresponds to a differential

d : S(V )⊗k Λ(V ) → S(V )⊗k Λ(V ). (4.5)

The resulting chain complex is called the tautological Koszul complex of V.

Let (x1 . . . xp) ∈ Sp(V ) and (y1∧ . . .∧ yq) ∈ Λq(V ). The differential of the tautological

Koszul complex is given by

d((x1 . . . xp)⊗(y1∧. . .∧yq)) =
q∑

j=1

(x1 . . . xp)yj⊗(y1∧. . .∧ŷj∧. . .∧yq) ∈ Sp+1(V )⊗kΛ
q−1(V ).

Note that the differential d maps the summand Sp(V )⊗kΛ
q(V ) to Sp+1(V )⊗kΛ

q−1(V )

[Bou07, §X.9.3].

Remark 4.2.6. 1. In Definition 4.2.5, we followed Bourbaki’s terminology to de-

fine the tautological Koszul complex [Bou07]. In [Eis95], what Eisenbud called

the tautological Koszul complex is the S(V )-linear dual of the chain complex

(4.5).

2. The chain complex (4.5) decomposes as a direct sum of chain complexes

0 → S0(V )⊗k Λ
n(V ) → S1(V )⊗k Λ

n−1(V ) → . . . → Sn(V )⊗k Λ
0(V ) → 0

indexed by n ≥ 0.
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Proposition 4.2.7. Assume that the k-module V is finite free of rank r, that is

V ∼= kr. The tautological Koszul complex of V is isomorphic to the Koszul com-

plex K(x1, . . . , xr) associated to the generators xi of the polynomial algebra A =

k[x1, . . . , xr].

In other words, the tautological Koszul complex provides a coordinate-free de-

scription of the Koszul complex that was used in Lemma 3.3.11.

Example 4.2.8. Assume that the k-module V is finite free of rank 1 with basis

element x ∈ V, that is V ∼= k. The tautological Koszul complex of V is isomorphic

to the Koszul complex K(x) associated to the generator x of the polynomial algebra

A = k[x] ∼= S(V ). In Example 3.1.2, we calculated the first Ext group:

y ∈ Ext1A(k, k) oooo
∼= HomA(A, k) ∼= k

and considered quotient map y = q : A → k as the canonical generator of this Ext

group. Using the tautological Koszul complex of V ∼= k, we express the generator y as

follows:

y ∈ Homk[x](k[x]⊗k V, k) ∼= Homk(V, k) ∼= V ∗.

It implies that the generator y is in the dual module of V and we obtain y(x) = 1.

Then the generator y is the dual of x, that is, y = x∗.
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4.3 Multiplicative structure using the tautological Koszul

complex

In this section we discuss the classical fact that the Ext-algebra over a polynomial

algebra is exterior using the tautological Koszul complex P (n) ⊗k E(n), outlined in

[Eis95, Exercise 17.21].

Given graded R-algebras A and B, the sign convention for the tensor product of

graded R-algebras A⊗R B is given by the Koszul sign rule:

(a1 ⊗ b1)(a2 ⊗ b2) = (−1)|a2||b1|a1a2 ⊗ b1b2.

In [Eis95, §A2.3], Eisenbud proposed the convention of putting the generators of a

symmetric algebra S(V ) in internal degree 2 and an exterior algebra Λ(V ) in internal

degree 1. We use this sign convention throughout this section.

Lemma 4.3.1. Assume that the k-module V is finite free. Let V ∗ := Homk(V, k)

denote the k-linear dual of V and let t ∈ V ∗⊗k V be the element corresponding to idV

via the isomorphism

V ∗ ⊗k V
∼=−→ Homk(V, V )

cf. Remark 2.6.6. The element t can be viewed as an element of the algebra Λ(V ∗)⊗k

S(V ) via the inclusion of k-modules

V ∗ ⊗k V = Λ1(V ∗)⊗k S
1(V ) ↪→ Λ(V ∗)⊗k S(V ).
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In that algebra, the element t satisfies t2 = 0, where t2 ∈ Λ2(V ∗)⊗k S
2(V ).

Proof. Let {v1, . . . , vr} be a basis of V and {v∗1, . . . , v∗r} the dual basis of V ∗. The

element t =
r∑

i=1

v∗i ⊗ vi. Consider

t2 = (
r∑

i=1

v∗i ⊗ vi)(
r∑

j=1

v∗j ⊗ vj)

=
r∑

i,j=1

(−1)|vi||v
∗
j |(v∗i ∧ v∗j )⊗ (vivj) ∈ Λ2(V ∗)⊗k S

2(V )

=
r∑

i,j=1

(v∗i ∧ v∗j )⊗ (vivj), since |vi| = 2.

In the case i = j, v∗i ∧ v∗j = 0 holds, which leaves only the terms with i ̸= j :

t2 =
r∑

i,j=1
i<j

[(v∗i ∧ v∗j )⊗ (vivj) + (v∗j ∧ v∗i )⊗ (vjvi)]

=
r∑

i,j=1
i<j

[(v∗i ∧ v∗j )⊗ (vivj)− (v∗i ∧ v∗j )⊗ (vivj)] = 0.

Lemma 4.3.2. The S(V )-linear dual of the chain complex

F• = . . . → S(V )⊗k Λ
i+1(V ) → S(V )⊗k Λ

i(V ) → . . .

yields a cochain complex of S(V )-modules F ∗ = HomS(V )(F•, S(V )), which is isomor-

phic to a cochain complex of the form

. . . → Λi(V ∗)⊗k S(V ) → Λi+1(V ∗)⊗k S(V ) → . . . (4.6)

with differential

δ = multiplication by t.
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Proof. We draw the following diagram to show that F ∗ is isomorphic to a cochain

complex (4.6):

HomS(V )(S(V )⊗k Λ
i(V ), S(V ))

d∗−−−→ HomS(V )(S(V )⊗k Λ
i+1(V ), S(V ))x∼=

x∼=

Homk(Λ
i(V ), S(V )) −−−→ Homk(Λ

i+1(V ), S(V ))x∼=
x∼=

Λi(V )∗ ⊗k S(V ) −−−→ Λi+1(V )∗ ⊗k S(V )x∼=
x∼=

Λi(V ∗)⊗k S(V )
δ−−−→ Λi+1(V ∗)⊗k S(V ),

using the isomorphisms from Propositions 2.7.7, 2.6.5, and 2.8.3. Let {e1, . . . , er} be

a basis of V and {e∗1, . . . , e∗r} the dual basis of V ∗. Given indices 1 ≤ j1 < . . . < ji ≤ r,

we denote the set J = {j1, . . . , ji}. We write eJ := ej1 ∧ . . . ∧ eji and e∗J := e∗j1 ∧ . . . ∧

e∗ji . Let e∗J ⊗ s ∈ Λi(V ∗) ⊗k S(V ). Using the isomorphism Λi(V ∗)
∼=−→ Λi(V )∗ from

Proposition 2.7.7, we have (eJ)
∗ ⊗ s ∈ Λi(V )∗ ⊗k S(V ). By the natural isomorphism

Λi(V )∗ ⊗k S(V )
∼=−→ Homk(Λ

i(V ), S(V )) from Proposition 2.6.5, we obtain the values

of the corresponding map Λi(V ) → S(V ) on the basis elements:

(eJ)
∗(eJ)s = 1 · s = s

and

(eJ)
∗(ek1 ∧ . . . ∧ eki)s = 0 · s = 0,

where the indices {k1, . . . , ki} are different from J. Using the natural isomorphism

from Proposition 2.8.3, given β = se∗J ∈ Homk(Λ
i(V ), S(V )) the corresponding map
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via extension of scalars β′ ∈ HomS(V )(S(V )⊗ Λi(V ), S(V )) is

β′(s′ ⊗ y) = s′β(y).

Given indices 1 ≤ k1 < . . . < ki+1 ≤ r, we denote the set K = {k1, . . . , ki+1}. The

differential d∗ of the cochain complex in the top of the diagram is given by

d∗(β′)(s′ ⊗ eK) =(β′ ◦ d)(s′ ⊗ eK)

=β′ (d(s′ ⊗ eK))

=β′

(
i+1∑
ℓ=1

(−1)ℓ−1s′ekℓ ⊗ (ek1 ∧ . . . ∧ êkℓ ∧ . . . ∧ eki+1
)

)

=s′
i+1∑
ℓ=1

(−1)ℓ−1ekℓβ
(
ek1 ∧ . . . ∧ êkℓ ∧ . . . ∧ eki+1

)
.

In the case J ⊈ K, the indices {k1, . . . , kℓ−1, kℓ+1, . . . , ki+1} are different from J, so

we obtain

d∗(β′)(s′ ⊗ eK) = s′
i+1∑
ℓ=1

(−1)ℓ−1ekℓβ
(
ek1 ∧ . . . ∧ êkℓ ∧ . . . ∧ eki+1

)
= 0.

In the case J ⊆ K, the set K is of the form K = J ∪ {km}, which yields

d∗(β′)(s′ ⊗ eK) =s′
i+1∑
ℓ=1
ℓ̸=m

(−1)ℓ−1ekℓβ
(
ek1 ∧ . . . ∧ êkℓ ∧ . . . ∧ eki+1

)
+ s′(−1)m−1ekmβ(eJ)

=0 + s′(−1)m−1ekmβ(eJ)

=s′(−1)m−1ekms.

From Proposition 2.8.3, given d∗(β′) = α′ ∈ HomS(V )(S(V ) ⊗ Λi(V ), S(V )) the cor-

responding map α ∈ Homk(Λ
i(V ), S(V )) is given by

α(eK) = α′(1⊗ eK).
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Using Proposition 2.6.5, we have

∑
1≤k1<k2<...<ki+1≤r

(eK)
∗ ⊗ α(eK) ∈ Λi+1(V )∗ ⊗k S(V ).

Since the set K ranges over all subsets of {1,. . . ,r} of cardinality i+1 and in the case

J ⊈ K, α(eK) = 0, we take the set K as K = J ∪ {k′} for some k′ ∈ {1, . . . , r} \ J .

We denote k′ = km to indicate the position of k′ in the set K. We have

e∗K = e∗J∪{k′} = (−1)m−1(e∗k′ ∧ e∗J)

and

α(eK) = α(eJ∪{k′}) = α′(1⊗ eJ∪{k′}) = (−1)m−1ek′s.

Then we obtain∑
k′∈{1,...,r}\J

(eK)
∗ ⊗ α(eK) =

∑
k′∈{1,...,r}\J

(eJ∪k′)
∗ ⊗ (−1)m−1ek′s

=
∑

k′∈{1,...,r}\J

(ek′ ∧ eJ)
∗ ⊗ ek′s.

Using Proposition 2.7.7,

∑
k′∈{1,...,r}\J

e∗k′ ∧ e∗J ⊗ ek′s ∈ Λi+1(V ∗)⊗ S(V ).

Hence the differential δ of the cochain complex in the bottom of the diagram is

δ(e∗J ⊗ s) =
∑

k′∈{1,...,r}\J

e∗k′ ∧ e∗J ⊗ ek′s.
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Let us show that the differential δ is multiplication by t where t ∈ Λ(V ∗)⊗k S(V ) as

follows:

t(e∗J ⊗ s) =
r∑

ℓ=1

(e∗ℓ ⊗ eℓ)(e
∗
J ⊗ s)

=
r∑

ℓ=1

(−1)|eℓ||e
∗
J |e∗ℓ ∧ e∗J ⊗ eℓs

=
r∑

ℓ=1

e∗ℓ ∧ e∗J ⊗ eℓs, since |eℓ| = 2.

Since e∗ℓ ∧ e∗J = 0 in the case ℓ ∈ J , the range of ℓ is {1, . . . , r} \ J, which yields

t(e∗J ⊗ s) =
∑

ℓ∈{1,...,r}\J

e∗ℓ ∧ e∗J ⊗ eℓs.

Lemma 4.3.3. Let C• be a cochain complex of R-modules that has the structure of

a graded R-algebra such that the differential d : Ci → Ci+1 is given by multiplication

by some fixed element t ∈ C1, that is:

d(x) = tx

for all x ∈ Ci. The cocycles Z(C) ⊆ C form a subalgebra of C. Note that if C was

unital to begin with, Z(C) need not be unital, cf. Lemma 2.2.5.

Proof. Let α, β ∈ Z(C) be two cocycles of C. Since the differential d is given by

multiplication by some fixed element t ∈ C1, we obtain

d(αβ) = t(αβ) = (tα)β = d(α)β = 0,

so that αβ ∈ Z(C) is a cocycle.
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Notation 4.3.4. When working with coalgebras, we use Sweedler’s notation [LV12,

§1.2.1]. In a coalgebra C with comultiplication ∆ : C → C ⊗ C, the comultiplication

of x ∈ C is given by

∆(x) =
n∑

i=1

xi
(1) ⊗ xi

(2)

for xi
(1) and xi

(2) ∈ C. In Sweedler’s notation, this is abbreviated to

∆(x) =
∑
(x)

x(1) ⊗ x(2).

Omitting the summation symbols, we write

∆(x) = x(1) ⊗ x(2).

Proposition 4.3.5 is found in [Eis95, Exercise A3.28] and we follow the sketch of

proof in the section “Hints and Solutions for Selected Exercises” in [Eis95].

Proposition 4.3.5. Let R ↠ k be a quotient ring homomorphism. Let

P• = . . .
d−→ P2

d−→ P1
d−→ P0 → 0

be a projective resolution of k as an R-module, with P0 = R and the augmenta-

tion P0 ↠ k being the quotient map. Assume that each projective R-module Pi is

finitely generated. Taking the R-linear dual yields a cochain complex of R-modules

P ∗ := HomR(P•, R).

Assume that P ∗ satisfies the setup of Lemma 4.3.3. More precisely, P ∗ has the struc-

ture of a graded R-algebra such that the differential d∗ : P i → P i+1 is given by
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multiplication by some fixed element t ∈ P 1, that is:

d∗(x) = tx

for all x ∈ P i.

Consider the graded k-algebra P ∗ ⊗R k together with the canonical cochain map

θ : P ∗ ⊗R k → HomR(P, k).

Since each projective R-module Pi is finitely generated, the cochain map θ is an iso-

morphism. The map of graded k-modules given by the two equal composites in the

diagram

Z(P ∗ ⊗R k)

quotient

��

Z(θ)

∼=
// Z(HomR(P, k))

quotient

��
H(P ∗ ⊗R k)

H(θ)

∼=
// H(HomR(P, k)) = ExtR(k, k)

is an algebra homomorphism, where ExtR(k, k) is endowed with Yoneda product.

Proof. Part 1. Defining the comultiplication.

Let µ : P ∗ ⊗ P ∗ → P ∗ be the multiplication on the cochain complex of R-modules

P ∗ := HomR(P•, R). From the commutativity of the following diagram, we interpret

the multiplication of P ∗ as a comultiplication ∆ : P → P ⊗ P on P :

P ∗∗ µ∗
// (P ∗ ⊗ P ∗)∗ P ∗∗ ⊗ P ∗∗α

∼=
oo

P ∆ //

σ ∼=

OO

P ⊗ P,

σ⊗σ∼=

OO
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see the isomorphisms from Lemma 2.6.8 and Lemma 2.6.11. Let x ∈ P . Using the

isomorphism P
∼=−→ P ∗∗ from Lemma 2.6.8, we have evx ∈ P ∗∗. Applying the map µ∗,

we obtain µ∗(evx) ∈ (P ∗ ⊗ P ∗)∗. For all f, g ∈ P ∗, we have

µ∗(evx)(f ⊗ g) = (f · g)(x) ∈ R, (4.7)

where f · g = µ(f ⊗ g) denotes the product in the algebra P ∗. Using Notation 4.3.4,

given x ∈ P we have ∆(x) = x(1) ⊗ x(2) ∈ P ⊗ P. From the isomorphism in

Lemma 2.6.8, we obtain evx(1)
⊗ evx(2)

∈ P ∗∗⊗P ∗∗. The isomorphism from Lemma 2.6.11

yields α(evx(1)
⊗ evx(2)

) ∈ (P ∗ ⊗ P ∗)∗. For all f, g ∈ P ∗, we have

α(evx(1)
⊗ evx(2)

)(f ⊗ g) = f(x(1))g(x(2)) ∈ R. (4.8)

Equating (4.7) and (4.8), we find that the comultiplication ∆(x) = x(1) ⊗ x(2) is

characterized by

(f · g)(x) = f(x(1))g(x(2)),

for all f, g ∈ P ∗. Let |x| = n and i + j = n, then the piece of ∆(x) in the summand

Pi ⊗R Pj is characterized by

(f · g)(x) = f(x(1),i)g(x(2),j),

for all f ∈ P ∗
i and g ∈ P ∗

j .

Part 2. Relating the comultiplication to the boundary map.

Let f : Pm → R and g : Pn → R be two cocycles and consider the composite

h : Pm+n
∆−→

⊕
i+j=m+n

Pi ⊗ Pj
project−−−−→ Pm ⊗ Pn

f⊗g−−→ R⊗R ∼= R.
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Let x ∈ Pm+n. After composing ∆ and the projection map, we obtain x(1),m⊗x(2),n ∈

Pm ⊗ Pn. Then we have

x(1),m ⊗ x(2),n 7→ f(x(1),m)⊗ g(x(2),n) 7→ f(x(1),m)g(x(2),n) = (f · g)(x) ∈ R. (4.9)

Hence the function h = f · g. We show that the condition on d∗ guarantees the

commutativity of the diagrams:

Pm+n+1
∆ //

d

��

⊕
i+j=m+n+1

Pi ⊗ Pj
project// Pm+1 ⊗ Pn

d⊗1

��
Pm+n

∆ //
⊕

i+j=m+n

Pi ⊗ Pj
project // Pm ⊗ Pn.

We have two R-module maps Pm+n+1 → Pm ⊗ Pn defined by the above diagram.

Since both R-modules in the source and target are finitely generated projective, it

suffices to show that the R-linear duals of the two maps are equal to conclude that

the above diagram commutes. Since the projective R-modules Pm and Pn are finitely

generated, P ∗
m ⊗ P ∗

n is naturally isomorphic to (Pm ⊗ Pn)
∗. Let f ∈ P ∗

m and g ∈ P ∗
n .

First, we consider the dual of the map which is given by the top of the diagram:

Pm+n+1
∆−→

⊕
i+j=m+n+1

Pi ⊗ Pj
project−−−−→ Pm+1 ⊗ Pn

d⊗1−−→ Pm ⊗ Pn
f⊗g−−→ R⊗R ∼= R.

Let x ∈ Pm+n+1. After composing ∆ and the projection map, we obtain x(1),m+1⊗

x(2),n ∈ Pm+1 ⊗ Pn. Applying the composition of d⊗ 1 and f ⊗ g, we obtain

(f⊗g)◦(d⊗1)(x(1),m+1⊗x(2),n) = ((f◦d)⊗g)(x(1),m+1⊗x(2),n) = d∗(f)(x(1),m+1)⊗g(x(2),n) ∈ R⊗R.
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Then we have

d∗(f)(x(1),m+1)⊗ g(x(2),n) 7→ d∗(f)(x(1),m+1)g(x(2),n) = (d∗(f) · g)(x) ∈ R.

Second, we consider the dual of the map which is given by the bottom of the diagram:

Pm+n+1
d−→ Pm+n

∆−→
⊕

i+j=m+n

Pi ⊗ Pj
project−−−−→ Pm ⊗ Pn

f⊗g−−→ R⊗R ∼= R.

In Equation (4.9), we showed that x ∈ Pm+n maps to (f · g)(x) ∈ R. After composing

with the map d we have

(f · g) ◦ d = d∗(f · g).

We are comparing two functions d∗(f) · g and d∗(f · g). By the condition on P ∗, we

obtain

d∗(f · g) = t · (f · g) = (tf) · g = d∗(f) · g.

Thus the diagram commutes.

Part 3. Representing the Yoneda products.

Let α = [f ] ∈ ExtmR (k, k) be represented by a cocycle f : Pm → k and β = [g] ∈

ExtnR(k, k) be represented by a cocycle g : Pn → k. Let ∆′ : Pm+n → Pn ⊗ Pm denote

the composition of ∆ and the projection map. Since Pm is projective and the map

P0 → k is onto, there exists a lift α0 = f ′ : Pm → P0 of f to P0. We obtain the
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commutative diagram:

Pm+n
∆′
//

d
��

Pn ⊗ Pm
1⊗f ′

//

d⊗1
��

Pn ⊗R ∼= Pn

d
��

g // k

...

��

...

��

...

��
Pm+1

∆′
//

d
��

P1 ⊗ Pm
1⊗f ′

// P1 ⊗R ∼= P1

d
��

Pm

f

""

��

f ′
// P0 ⊗R ∼= P0

��

...

��
P0

��
k k.

The maps αi = (1 ⊗ f ′) ◦∆′ : Pm+i → Pi satisfy d ◦ αi = αi−1 ◦ d. In particular for

i = n, the map αn is

(1⊗ f ′) ◦∆′ : Pm+n → Pn.

By Remark 2.5.2, the composition g ◦ αn :

g ◦ ((1⊗ f ′) ◦∆′) : Pm+n → k

represents the Yoneda product βα in Extm+n
R (k, k). By Equation (4.9), the product

g · f ∈ P ∗ ⊗ k is the composite

g · f : Pm+n
∆−→

⊕
i+j=m+n

Pi ⊗ Pj
project−−−−→ Pn ⊗ Pm

g⊗f−−→ k ⊗ k ∼= k,
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which yields

g · f = g ◦ ((1⊗ f ′) ◦∆′) : Pm+n → k.

Thus g · f is a representative of the Yoneda product

[g · f ] = [g][f ] = βα ∈ Extm+n
R (k, k).

Remark 4.3.6. 1. If R is Noetherian, then the R-module k (being finitely gener-

ated) admits a resolution by finitely generated projective R-modules [Wei94, Def-

inition 3.3.9].

2. If multiplication on P ∗ is commutative or graded-commutative, then the coho-

mology H(P ∗⊗R k) inherits a graded k-algebra structure. In that case, the con-

clusion is equivalent to H(θ) being an algebra homomorphism. If H(θ) is more-

over an isomorphism, the conclution is that the multiplication on H(P ∗⊗R k) ∼=

ExtR(k, k) agrees with the Yoneda product.

Proposition 4.3.7. Let k be a commutative ring and let V a finite free k-module of

rank r, i.e., V ∼= kr. The Ext algebra over a polynomial algebra is exterior:

ExtS(V )(k, k) ∼= Λ(V ∗).

Proof. We use the tautological Koszul complex F• = S(V ) ⊗k Λ(V ) to prove this

isomorphism. By applying the functor − ⊗S(V ) k to the cochain complex F ∗ =

HomS(V )(F•, S(V )) we get a cochain complex of k-modules:

HomS(V )(F•, S(V ))⊗S(V ) k
∼=−→ HomS(V )(F•, k).
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We compute Ext groups using the k-module cochain complex HomS(V )(F•, k). Note

that composition of S(V )-module maps S(V ) ⊗k Λi+1(V ) → S(V ) ⊗k Λi(V ) →

k is zero, as argued in the proof of Lemma 3.3.11. Hence the cochain complex

HomS(V )(F•, k) has zero differential. By definition of Ext, the cohomology groups

are the Ext groups:

H i(HomS(V )(F•, k)) ∼= ExtiS(V )(k, k).

The algebra F ∗ ∼= Λ(V ∗)⊗kS(V ) has differential δ = multiplication by t (see Lemma 4.3.2).

Then the algebra F ∗ ⊗S(V ) k ∼= Λ(V ∗) has zero differential. Hence the cohomology of

F ∗ ⊗S(V ) k is given by

H(F ∗ ⊗S(V ) k) = F ∗ ⊗S(V ) k ∼= Λ(V ∗).

Since F ∗ satisfies Proposition 4.3.5, the algebra structure on F ∗ is compatible with

the Ext-algebra. We obtain an algebra isomorphism

H(F ∗ ⊗S(V ) k) ∼= ExtS(V )(k, k) ∼= Λ(V ∗).

Remark 4.3.8. We constructed the Yoneda product using endomorphism complexes

(see Proposition 4.1.2 ) and projective resolutions of the R-modules (see Remark 2.5.2).

In Remark 4.1.1, the cochain complex HomR(P, k) is isomorphic to the hom complex

Hom(P, k[0]) up to a sign in the differential and in Remark 2.5.2, there is a sign

discrepancy between parallelograms that commute versus anticommute (see Defini-

tion 2.2.8). Hence the Yoneda product using endomorphism complexes agrees with
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the Yoneda product using projective resolutions up to a sign.
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Chapter 5

A proof using Koszul duality for algebras

In this chapter, we provide a proof that the Ext-algebra over a polynomial algebra

is exterior and vice versa (Proposition 5.4.3). The main references of this chapter are

[PP05] and [Wu16], both of which assume that the ground ring k is a field. In [Pos21],

Koszul duality for algebras is developed over an arbitrary ground ring k, working with

k-bimodules. We will always assume that k is commutative and work with k-modules

instead of bimodules. Some of the material in this chapter is found in [Pos21, §10.1];

we fill in some details.

5.1 Quadratic algebras

Facts about quadratic algebras are from [PP05] and [Wu16, §4.2].

Definition 5.1.1. Let k be a commutative ring. A quadratic algebra A =
⊕
n∈N

An
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over k is a graded algebra that satisfies A0 = k and admits a presentation

A ∼= T (A1)/I

where T (A1) is the tensor algebra of A1 and I is the two-sided ideal generated by a

module R ⊆ A1 ⊗k A1 of homogeneous elements of degree two in T (A1).

Observe that the module R is a quadratic relation set R = (kerα) ∩ (A1 ⊗k A1)

where α : T (A1) → A is the canonical map defined by m1 ⊗ . . .⊗mi 7→ m1 . . .mi for

all i ∈ N+.

Example 5.1.2. Here are some examples of quadratic algebras.

1. The tensor algebra T (V ) is quadratic since the tensor algebra can be represented

as T (V ) = T (V )/(0).

2. The symmetric algebra S(V ) is quadratic since the symmetric algebra is the

quotient of the tensor algebra S(V ) = T (V )/I, where I is generated by {x⊗y−

y ⊗ x | x, y ∈ V }.

3. The exterior algebra Λ(V ) is quadratic since the exterior algebra is the quotient

of the tensor algebra Λ(V ) = T (V )/I, where I is generated by {x⊗ x | x ∈ V }.

5.2 Koszul algebras

Facts about Koszul algebras are taken from [Wu16, §4.1].
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Definition 5.2.1. Let k be a commutative ring. A Koszul algebra A =
⊕
n∈N

An is

a graded algebra that satisfies A0 = k and A0
∼= A/

⊕
n>0

An considered as a graded

A-module admits a graded projective resolution:

. . . → P 2 → P 1 → P 0 → A0 → 0

such that P i is generated as a Z-graded A-module by its degree i component, i.e.,

P i =
⊕
j∈Z

P i
j (decomposition into graded pieces) satisfies P i = AP i

i (see [PP05, §2.1]).

Notation 5.2.2. Let R be a Z-graded ring and M =
⊕
i∈Z

Mi be a Z-graded R-module.

The notation

M(n) =
⊕
j∈Z

M(n)j

denotes the same R-module M with shifted grading M(n)j = Mj+n [Wu16, Notation

2.3.11].

Definition 5.2.3. Let A be a graded algebra and M,N a pair of graded A-modules.

The graded homomorphism functor is

HomA(M,N) =
⊕
j∈Z

Homj
A(M,N),

where Homj
A(M,N) is the module of all homomorphisms of graded A-modules that

decrease the degree by j, that is,

f : Mk → Nk−j.
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We denote by

ExtiA(M,N) =
⊕
j∈Z

Exti,jA (M,N)

the ith derived functor of the graded homomorphism functor. The first grading i is

called the homological grading and the second j is called the internal one [PP05, §1.1].

Example 5.2.4. Consider the polynomial ring A = k[x, y] =
∞⊕
j=0

k[x, y]j which is

graded by degree of homogeneous polynomials. Using Notation 5.2.2 we obtain the

graded version P• of the (length 2) free resolution of k as a k[x, y]-module from Ex-

ample 3.1.4:

0 → A(−2)
[−y
x ]

−−−→ A2(−1)
[x y ]−−−→ A → k → 0.

Note that as graded A-modules, A is generated in degree 0, A2(−1) is generated in

degree 1 and A(−2) is generated in degree 2. This free resolution implies that k[x, y]

is Koszul.

We compute the bigraded Ext groups, Exti,jA (k, k) in graded k[x, y]-modules. The

cochain complex of graded k-modules HomA(P•, k) is

0 → HomA(A, k)
d−→ HomA(A

2(−1), k)
d−→ HomA(A(−2), k) → 0.

Note that d = 0, HomA(A, k) ∼= k(0), HomA(A
2(−1), k) ∼= k2(−1) and

HomA(A(−2), k) ∼= k(−2). Thus the cochain complex has the form:

0 → k(0)
0−→ k2(−1)

0−→ k(−2) → 0.
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The Ext groups are concentrated in diagonal bidegrees Exti,iA (k, k) :

Exti,iA (k, k) =



k, i = 0

k2, i = 1

k, i = 2

0, otherwise.

We obtain Exti,jA (k, k) = 0 for i ̸= j. A graded algebra A should satisfy this condition

to be Koszul [PP05, §2.1 Definition 1(a)].

Example 5.2.5. Let k be a commutative ring and V a finitely generated projective

k-module. The symmetric algebra S(V ) and the exterior algebra Λ(V ) are Koszul

[PP05, §2.1 Example 1].

Proposition 5.2.6. If the algebra A is Koszul, then the algebra A is quadratic [Wu16,

Proposition 4.2.12].

5.3 Koszul dual algebra of a quadratic algebra

Facts about the Koszul dual algebra of a quadratic algebra are from [Wu16, §5.1].

Definition 5.3.1. Let T (V ) be the tensor algebra of V over k. The orthogonal

submodule of any submodule W ⊆ V ⊗j is defined as

W⊥ = {u ∈ (V ∗)⊗j | u(w) = 0 for all w ∈ W},
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where u(w) denotes the pairing from Lemma 2.7.6. The symbol ⟨W ⟩ denotes the

two-sided ideal of T (V ) generated by W , i.e.,

⟨W ⟩ = T (V )WT (V )

and the symbol ⟨W⊥⟩ denotes the two-sided ideal of T (V ∗) generated by W⊥, i.e.,

⟨W⊥⟩ = T (V ∗)W⊥T (V ∗).

Lemma 5.3.2. Let k be a commutative ring. Assume that V is finitely generated

projective and W ⊆ V ⊗ V is a submodule such that V ⊗ V/W is projective. Then

the following hold.

1. W and V ⊗ V/W are also finitely generated projective.

2. There is a natural isomorphism W
∼=−→ (W⊥)⊥.

Proof. (1) Since V is finitely generated projective, there exists a k-module Q such

that V ⊕Q ∼= kr is finite free. Consider

krr ∼= (V ⊕Q)⊗ (V ⊕Q)

∼= (V ⊗k V )⊕ (V ⊗k Q)⊕ (Q⊗k V )⊕ (Q⊗k Q).

Thus V ⊗k V is finitely generated projective. Since V ⊗ V is finitely generated

and a quotient of a finitely generated module is finitely generated, V ⊗ V/W is

finitely generated.

We have a short exact sequence of k-modules:

0 //W �
� // V ⊗ V // // V ⊗ V/W // 0 . (5.10)
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Since V ⊗ V/W is projective and the map r : V ⊗ V → V ⊗ V/W is surjective,

there exists a map s : V ⊗V/W → V ⊗V such that r ◦ s = idV⊗V/W . Then, the

above sequence (5.10) is split and we obtain V ⊗V ∼= W⊕(V ⊗V/W ). Following

the fact that V ⊗ V is finitely generated projective, its direct summand W is

also finitely generated projective.

(2) We have a long exact sequence from applying Homk(−, k) to the sequence (5.10):

0 // Homk(V ⊗ V/W, k) // Homk(V ⊗ V, k) // Homk(W,k)

δ // Ext1k(V ⊗ V/W, k) // Ext1k(V ⊗ V, k) // Ext1k(W,k) δ // . . .

Since V ⊗ V/W is projective over k, we have Ext1k(V ⊗ V/W, k) = 0. We get

the short exact sequence:

0 // (V ⊗ V/W )∗ // (V ⊗ V )∗ //W ∗ // 0.

Using the isomorphism V ∗ ⊗ V ∗ ∼= (V ⊗ V )∗ (see Lemma 2.6.10) and the defi-

nition of W⊥ in Definition 5.3.1,

W⊥ ∼=−→ Homk(V ⊗ V/W, k) = (V ⊗ V/W )∗.

Then, we have

0 //W⊥ // V ∗ ⊗ V ∗ //W ∗ // 0. (5.11)

We apply Homk(−, k) to the sequence (5.11):

0 → (W⊥)⊥ → V ∗∗ ⊗ V ∗∗ → (W⊥)∗ → 0.
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Since V andW are finitely generated projective, the natural maps V → V ∗∗ and

W → W ∗∗ are isomorphisms (see Lemma 2.6.8). Hence via the identification

V ⊗ V ∼= V ∗∗ ⊗ V ∗∗, we get

W = (W⊥)⊥.

Definition 5.3.3. Let A = T (V )/⟨W ⟩ be a quadratic algebra, where ⟨W ⟩ is generated

by the quadratic relation set W ⊆ V ⊗2. The Koszul dual algebra of A is defined

as

A! = T (V ∗)/⟨W⊥⟩.

Note that A! is a quadratic algebra. We can express A! as a graded algebra

A! =
⊕
n∈N

A!
n

with A!
1 = V ∗ [Wu16, Remark 5.1.6].

Remark 5.3.4. Given a quadratic presentation A = T (V )/⟨W ⟩, we have A1 = V and

A2 = V ⊗ V/W. Assume that V is finitely generated projective and W ⊆ V ⊗ V is a

submodule such that V ⊗V/W is projective. We write A! in a way that is independent

of the quadratic presentation of A as follows:

A! = T (A∗
1)/⟨A∗

2⟩,

where α∗ : A∗
2 ↪→ A∗

1 ⊗ A∗
1

∼=−→ (A1 ⊗ A1)
∗ is the dual of the multiplication map α :

A1 ⊗ A1 → A2, cf. [Pos21, Proposition 1.2]. Note that α∗ is injective since α is

surjective.

79



Proposition 5.3.5. Let A = T (V )/⟨W ⟩ be a Koszul algebra. Assume that V is

finitely generated projective and W ⊆ V ⊗ V is a submodule such that V ⊗ V/W is

projective. There is a natural isomorphism (A!)! ∼= A.

Proof. Using Lemma 5.3.2, we have

(A!)! = T (V ∗∗)/⟨(W⊥)⊥⟩ ∼= T (V )/⟨W ⟩ = A.

The following proposition is found in [Wu16, Example 5.1.8] in the case where k

is a field.

Proposition 5.3.6. Let V be a finitely generated projective k-module. The symmetric

algebra S(V ) and exterior algebra Λ(V ) are Koszul dual to each other.

Proof. We consider the symmetric algebra of V , S(V ) = T (V )/⟨Ws⟩, where ⟨Ws⟩

is generated by Ws = {x ⊗ y − y ⊗ x | x, y ∈ V } and the exterior algebra of V ∗,

Λ(V ∗) = T (V ∗)/⟨We⟩, where ⟨We⟩ is generated by We = {δ ⊗ δ | δ ∈ V ∗}. For any

δ ∈ V ∗ and x, y ∈ V , we have

(δ ⊗ δ)(x⊗ y − y ⊗ x) = δ(x)δ(y)− δ(y)δ(x) = 0.

This implies that

We ⊆ W⊥
s .

Now we show the reverse inclusion W⊥
s ⊆ We. First, we assume that V is finite

free. Let {e1, . . . , er} be a basis of V and {e∗1, . . . , e∗r} be the dual basis of V ∗. Let
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φ ∈ W⊥
s ⊆ V ∗ ⊗ V ∗. We express φ in terms of the basis elements e∗i ⊗ e∗j of V ∗ ⊗ V ∗

as follows:

φ =
r∑

i,j=1

αij(e
∗
i ⊗ e∗j)

where αij ∈ k. Using Lemma 2.7.3, the basis of We in terms of the basis elements

{e∗i ⊗ e∗j | 1 ≤ i, j ≤ r} is

{e∗i ⊗ e∗j + e∗j ⊗ e∗i | 1 ≤ i < j ≤ r} ∪ {e∗i ⊗ e∗i | 1 ≤ i ≤ r}.

The element φ pairs trivially with all of Ws, in particular:

φ(ek ⊗ eℓ − eℓ ⊗ ek) = 0

r∑
i,j=1

αij(e
∗
i ⊗ e∗j)(ek ⊗ eℓ − eℓ ⊗ ek) = 0

r∑
i,j=1

αij(e
∗
i ⊗ e∗j)(ek ⊗ eℓ)−

r∑
i,j=1

αij(e
∗
i ⊗ e∗j)(eℓ ⊗ ek) = 0

αkℓ − αℓk = 0 by Proposition 2.7.7

αkℓ = αℓk

where 1 ≤ k < ℓ ≤ r. We obtain

φ =
r∑

i=1

αii(e
∗
i ⊗ e∗i ) +

∑
1≤i<j≤r

αij(e
∗
i ⊗ e∗j) +

∑
1≤i<j≤r

αji(e
∗
j ⊗ e∗i )

=
r∑

i=1

αii(e
∗
i ⊗ e∗i ) +

∑
1≤i<j≤r

αij(e
∗
i ⊗ e∗j + e∗j ⊗ e∗i ).

Hence, φ is a k-linear combination of the basis of We, i.e., φ lies in We. Thus, we have

W⊥
s ⊆ We
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and therefore

W⊥
s = We.

We deduce

(S(V ))! = T (V ∗)/⟨W⊥
s ⟩ = T (V ∗)/⟨We⟩ = Λ(V ∗)

and

(Λ(V ∗))! = (S(V ))!! ∼= S(V ).

In the case where V is finite free, the natural inclusion We ⊆ W⊥
s is an isomor-

phism. Using the fact that a finitely generated projective module is a retract of a

finite free module, we have the same natural isomorphism between We and W⊥
s (see

Lemma 2.6.3). Thus, we get the same above results when V is finitely generated

projective.

Example 5.3.7. Let A = k[x, y] be a polynomial algebra in two variables. We present

the algebra A as a quotient of a tensor algebra, A = T (V )/⟨R⟩ where V = k ⊕ k is

the free module of rank 2 generated by x and y and the set R = {x⊗ y− y⊗ x}. The

Koszul dual of A is A! = T (V ∗)/⟨R⊥⟩ where R⊥ = {x∗⊗y∗+y∗⊗x∗, x∗⊗x∗, y∗⊗y∗}.

Thus

A! = Λ(x∗, y∗),

i.e., the exterior algebra on the dual generators.
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5.4 Multiplicative structure using Koszul duality for alge-

bras

In this section we prove the classical facts that the Ext-algebra over a symmetric

algebra is exterior and the Ext-algebra over an exterior algebra is polynomial using

Koszul duality for algebras as outlined in [Tam18].

Theorem 5.4.1. Let k be a commutative ring and A = T (V )/⟨W ⟩ a quadratic alge-

bra. Assume that V is finitely generated projective and W ⊆ V ⊗ V is a submodule

such that V ⊗ V/W is projective. If A is a Koszul algebra, then the Ext-algebra

ExtA(k, k) is isomorphic to the Koszul dual algebra A!, i.e.,

ExtA(k, k) ∼= A!

[PP05, §2.1 Definition 1].

Remark 5.4.2. In [Pos21, Proposition 2.23], the author states that the Ext-algebra

is isomorphic to the opposite of the Koszul dual algebra A!, considering the definition

of the natural pairing between V ⊗ V and V ∗ ⊗ V ∗ by

(f ⊗ g)(u⊗ v) = g(u)f(v),

where f, g ∈ V ∗ and u, v ∈ V [Pos21, Lemma 1.1, §3.4]. This different pairing formula

leads to a different definition of the Koszul dual algebra A!, namely the opposite of

the quadratic dual algebra A! defined in [PP05, §1.2]. In [PP05, §2.1 Definition 1], it
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is stated that the Ext-algebra is isomorphic to the Koszul dual algebra A! as a result

of defining the natural pairing between V ⊗ V and V ∗ ⊗ V ∗ by

(f ⊗ g)(u⊗ v) = f(u)g(v),

where f, g ∈ V ∗ and u, v ∈ V. In Lemma 2.6.10, we used the pairing formula which

is used in [PP05, §1.2] to define the natural pairing between M ⊗N and M∗ ⊗N∗.

Proposition 5.4.3. Let k be a commutative ring and V a finite free k-module.

1. The Ext-algebra over a symmetric algebra is exterior:

ExtS(V )(k, k) ∼= Λ(V ∗).

2. The Ext-algebra over an exterior algebra is polynomial:

ExtΛ(V ∗)(k, k) ∼= S(V ).

Proof. The symmetric algebra S(V ) and exterior algebra Λ(V ∗) are Koszul. Using

Theorem 5.4.1 and Proposition 5.3.6, we have

ExtS(V )(k, k) ∼= (S(V ))! = Λ(V ∗)

and

ExtΛ(V ∗)(k, k) ∼= (Λ(V ∗))! = S(V ).
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(French). MR0274237
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