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1. Stable homotopy groups from unstable homotopy groups

1.1. Background. The homotopy groups of a space form a Π-algebra, whereas the homotopy
groups of a spectrum form a π∗-module, where π∗ = π∗(S

0) denotes the stable homotopy
ring. One would like investigate the relationship between these two algebraic structures.
How much information about stable homotopy operations can be recovered from unstable
homotopy operations? More precisely, consider the diagram:

Top∗

π∗
��

Σ∞
//
Sp

Ω∞
oo

π∗
��

ΠAlg
Stab //

Modπ∗
Ω∞
oo

where the top row consists of the suspension spectrum functor Σ∞ from (pointed) topological
spaces to spectra and its right adjoint Ω∞, the “zeroth space” functor. The bottom func-
tor Ω∞ is the restriction functor that makes unstable maps between spheres act via their
stabilization, and it commutes with homotopy: Ω∞π∗ = π∗Ω

∞. The stabilization functor
Stab: ΠAlg → Modπ∗ is the left adjoint of Ω∞, and is the functor that comes as close as
possible to making the diagram commute.

There is a comparison map Stab(π∗X) → πst
∗ X = π∗(Σ

∞X) for every space X, which is
an isomorphism for free objects, i.e., wedges of spheres. Hence, one can obtain a spectral
sequence converging to the stable homotopy groups πst

∗ X via a Stover resolution of X by
spheres, analogous to the Hurewicz spectral sequence of [Bla90].

1.2. Project. The goals of the project are the following.

(1) Study the properties of the functor Stab, tools to compute it, as well as its left derived
functors.

(2) Construct a natural spectral sequence of the form

(L∗Stab)(π∗X) ⇒ πst
∗ (X)

computing the stable homotopy groups of a space X, starting from the derived func-
tors of stabilization applied to the Π-algebra π∗X.

(3) Investigate convergence and vanishing lines in the spectral sequence.
(4) Apply the spectral sequence to Eilenberg–MacLane spaces K(G,n).
(5) Apply the spectral sequence to some finite CW complexes.

This project was inspired by discussions with Haynes Miller and David Blanc.

References: [Sto90], [Bla90], [Bla94], [DKSS94].
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2. Operations on Quillen cohomology

2.1. Background. André–Quillen cohomology is a cohomology theory for commutative rings.
It was introduced in the 1960s as a tool to solve problems in commutative algebra using meth-
ods from homotopy theory [And67] [Qui70]. Since then, it has found many applications in
topology and in algebra [GS07]. The construction is available in any algebraic category C,
not just commutative rings. One can define the Quillen cohomology HQ∗(X;M) of an object
X with coefficients in a Beck module M over X.

Quillen cohomology HQ∗(X;M) is more than a graded abelian group: it carries the ad-
ditional structure of cohomology operations. These are not well understood in general, but
have been studied in certain cases. For (supplemented) commutative F2-algebras, Quillen
cohomology is equipped with a Lie bracket and Steenrod-type operations [Goe90]. Since
Quillen cohomology is defined via simplicial methods, one expects a relationship between
cohomology operations and homotopy operations, found in the homotopy π∗(X•) of a sim-
plicial object X•. Given a simplicial commutative F2-algebra X•, its homotopy π∗(X•) is a
commutative F2-algebra equipped with higher divided squares [Dwy80] [Goe90].

More generally, homotopy operations have been studied for algebras over an operad P
[Fre00] [Fre09]. Fresse showed that the homotopy π∗(X•) of a simplicial P -algebra is a
P -algebra with divided symmetries, a structure described more explicitly by Ikonicoff [Iko20].
The example of commutative F2-algebras suggests that Koszul duality controls the rela-
tionship between homotopy and cohomology operations. For p odd, operations on Quillen
cohomology of commutative Fp-algebras have been computed as a graded Fp-vector space
by Arone, Brantner, and Mathew [AB21] [BM19]. In the spectral context, operations on
topological André–Quillen cohomology of E∞ HFp-algebras have been computed by Zhang
[Zha25].

2.2. Project. The goals of the project are the following.

(1) Study the algebraic theory that controls operations on Quillen cohomology. Deter-
mine conditions under which that theory is operadic.

(2) Specialize to the case where the algebraic category C is the category of algebras over
an operad P .

(3) Investigate to what extent Koszul duality controls the relationship between homotopy
and cohomology operations.

(4) Work out explicit examples other than commutative F2-algebras.
(5) Determine the relations among operations on Quillen cohomology of commutative

Fp-algebras for p odd, building on the results of [AB21] [BM19] [Zha25].

This project was inspired by discussions with Benoit Fresse, Lukas Brantner, and Adela
Zhang.

References: [Qui67], [Qui70], [Dwy80], [Goe90], [GL95], [Fre00], [Fre09], [Pri70], [Pri10, §5],
[AB21], [BM19], [Zha25].
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3. The Künneth spectral sequence in triangulated categories

3.1. Background. The classical Künneth theorem in topology computes the homology of a
product X × Y from the homology of the two spaces X and Y . For integral homology, there
is a natural short exact sequence of abelian groups

0 →
⊕
i+j=n

Hi(X)⊗Hj(Y ) → Hn(X × Y ) →
⊕

i+j=n−1

TorZ1 (Hi(X), Hj(Y )) → 0

[Hat02, §3.B] [Bre97, §VI.1]. For a general commutative ring R, there is a natural spectral
sequence of R-modules

E2
p,q =

⊕
i+j=q

TorRp (Hi(X;R), Hj(Y ;R)) ⇒ Hp+q(X × Y ;R).

More generally, for an E1 ring spectrum E and spectra X and Y , there is a natural spectral
sequence of abelian groups

E2
p,q = TorE∗

p (E∗(X), E∗(Y ))q ⇒ Ep+q(X ∧ Y ).

Yet more generally, for a right E-module M and a left E-module N , the Künneth spectral
sequence has the form

E2
p,q = TorE∗

p (π∗(M), π∗(N))q ⇒ πp+q(M ∧L N)

[EKMM97, Theorem IV.4.7]. There is also a generalization to stable ∞-categories [Lur17,
Proposition 7.2.1.19].

3.2. Project. The Adams spectral sequence can be constructed in any triangulated category
with a choice of projective class P that dictates which Adams resolutions are allowed [Chr98].
Similarly, the goal of the project is to develop the Künneth spectral sequence in a triangulated
category relative to a projective class P .

(1) In a symmetric monoidal triangulated category, construct a natural spectral sequence
abutting to π∗(X ⊗ Y ) whose E2 term involves P-relative derived functors.

(2) Find conditions under which the E2 term has a homological-algebraic description, for
instance the Tor groups

Torπ∗1
p (π∗X, π∗Y )q

over the graded endomorphism ring of the tensor unit 1.
(3) Investigate convergence of the spectral sequence as well as vanishing lines.
(4) Specialize the spectral sequence to familiar triangulated categories: modules over

an E∞ ring spectrum, (in particular) DG-modules over a commutative DG-algebra,
equivariant stable homotopy categories, motivic stable homotopy categories, derived
categories of quasi-coherent sheaves, stable module categories, etc.

(5) Compute some explicit examples.

This project was inspired by discussions with Sean Tilson.

References: [EKMM97, §IV.4], [Lur17, §7.2.1], [Sch12, §II.6], [Til18], [Chr98].
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