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Abstract

The work we present in this thesis is an application of the monoidal properties

of the Dold–Kan correspondence and is constituted of two main parts. In the first

one, we observe that by a theorem of Christensen and Hovey, the category of non-

negatively graded chain complexes of left R-modules has a model structure, called

the Hurewicz model structure, where the weak equivalences are the chain homotopy

equivalences. Hence, the Dold–Kan correspondence induces a model structure on the

category of simplicial left R-modules and some properties, notably it is monoidal. In

the second part, we observe that changing the enrichment of an enriched, tensored

and cotensored category along the Dold–Kan correspondence does not preserve the

tensoring nor the cotensoring. Thus, we generalize this observation to any weak

monoidal Quillen adjunction and we give an insight of which properties are preserved

and which are weakened after changing the enrichment of an enriched model category

along a right weak monoidal Quillen adjoint.
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Chapter 1

Introduction

1.1 Motivation

On the one hand, for a nice bicomplete abelian category A, two of the well-known

standard model structures on the category Ch(A) of unbounded chain complexes of

objects of A are the projective model structure, for which weak equivalences are quasi-

isomorphisms and fibrations are degreewise epimorphisms, and the Hurewicz model

structure, for which weak equivalences are chain homotopy equivalences and fibrations

are degreewise split epimorphisms. May and Ponto [MP12, Chapter 18] gave a clear

description of these two model structures along with their monoidal properties when

A is the category ModR of left R-modules for a given ring R. The Hurewicz model

structure on the category Ch(R) of unbounded chain complexes of left R-modules was

introduced by Golasiński and Gromadzki [GG82], using work of Kamps [Kam78]. It

was later constructed using different methods in [Col99], [SV02], [CH02], [Wil13, §I],
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and [Gil15]. Quillen [Qui67, §II.4] introduced the projective model structure on the

category Ch≥0(A) of non-negatively graded chain complexes of objects of A, that is

with quasi-isomorphisms as weak equivalences and degreewise monomorphisms with

degreewise projective cokernel as cofibrations. One of the motivations of the first part

of this work was to complete this square, that is to give an explicit description of the

Hurewicz model structure on Ch≥0(A). David White [Whi17] pointed out that such a

model structure can be obtained using work of Christensen and Hovey [CH02], which

was kindly confirmed to us by Dan Christensen. In [CH02], given a bicomplete abelian

category A with a projective class, Christensen and Hovey construct a model structure

on Ch(A) that reflects the homological algebra of the projective class in the sense that

it encodes the Ext groups and more general derived functors. A general description

of such a model structure on the category Ch≥0(A) of non-negatively graded chain

complexes of objects of A under mild conditions is given by [CH02, Corollary 6.4].

On the other hand, for a V-model category C and a strong monoidal Quillen

adjunction F : W // V : Goo , the categoryG∗C obtained by changing the enrichment

along G is a W-model category [Rie14, Chapter 3 and § 11.3]. But, the Dold–Kan

correspondence, as an instance of weak monoidal Quillen adjunctions, is not strong

[SS03]. In this case, we are wondering which properties are preserved and which ones

might be weakened.

2



1.2 Main results

In the first part of this work, we show that the Hurewicz model structure on

Ch≥0(A) satisfies similar properties, in particular it is monoidal, as its analogue

on unbounded chain complexes Ch(A) and the proofs follow mostly from what is

done in [MP12, Chapter 18]. The mixed model structure is obtained from the pro-

jective and the Hurewicz model structures on Ch≥0(A), and Proposition 3.2.5 and

Proposition 3.2.7 give the enrichment relations between those three structures. Our

main contribution in this part is showing that the Hurewicz model structure on the

category sModR of simplicial R-modules is monoidal whenever R is commutative, see

Proposition 3.3.4. We also characterize the fibrations and cofibrations respectively

in terms of homotopy lifting and homotopy extension, see Proposition 3.3.3.

In the second part, we observe in Proposition 4.1.4 that, for monoidal cate-

gories V and W , after a change of enrichment along the lax monoidal adjunction

F : W // V : Goo , a necessary condition for a W-enriched category G∗V to admit

a tensoring or a cotensoring over W is for F to be strong monoidal. But this is

not the case for the Dold–Kan correspondence [SS03]. We will thus define weaker

versions of the tensoring and the cotensoring in Definition 4.3.1, both preserved

by any weak monoidal Quillen adjunction. We will also show that other proper-

ties of enriched model categories, such as the presence of a model structure on the

underlying category and SM7, are preserved after the change of enrichment along
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a weak monoidal Quillen adjunction F : W // V : Goo under the condition that

F (1W) ∼= 1V . Hence, we give some equivalent formulations of the unit axiom in

Corollary 4.4.2 and Proposition 4.4.3, we introduce the notion of weak V-model

category C in Definition 4.5.1, and we show that in this case, G∗C is a weak

W-model category in Theorem 4.5.3.

1.3 Organization

The thesis is organized as follows. In Chapter 2, we will recall some back-

ground material on enriched model categories, on monoidal properties of the Dold–

Kan correspondence and on projective classes. In Chapter 3, we will describe the

Hurewicz model structure on Ch≥0(R) as an instance of the Christensen–Hovey setup

and we will show that Dold–Kan correspondence transfers the existing monoidal

model structure on Ch≥0(R) to a monoidal model structure on sModR. Finally,

in Chapter 4, we will introduce the notions of weak V-adjunction, weak V-tensoring,

weak V-cotensoring and weak V-model category, and we will show that the three

latter ones are preserved by the change of enrichment along a weak monoidal Quillen

adjunction. In the last chapter, namely Chapter 5, we give some directions for related

future work.
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Chapter 2

Preliminaries

The chapter is organized as follows. In Section 2.1, we define and give some

of the properties of monoidal and enriched categories. In Section 2.2, we discuss

some properties of tensored and cotensored categories. In Section 2.3, we describe

some monoidal properties of the Dold–Kan correspondence. In Section 2.4, we de-

fine and give some of the properties of monoidal and enriched model categories.

In Section 2.5, we describe some facts about model categories and the associated

homotopy categories. Finally, in Section 2.6, we define the notion of projective class

and give some examples.

2.1 Monoidal categories and enriched categories

Most of the material we review here can be found in [Hov99, Chapter 4],

[MP12, Chapter 16], [Rie14, Chapter 3] and [Bor94, § 6].
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Definition 2.1.1. A monoidal category is a category V equipped with

• a bifunctor −⊗− : V × V → V, called the tensor product,

• an object 1 ∈ V, called the tensor unit,

• a natural isomorphism αx,y,z : (x⊗ y)⊗ z
∼= // x⊗ (y ⊗ z) , called the associa-

tor,

• two natural isomorphisms λx : 1⊗ x
∼= // x and ρx : x⊗ 1

∼= // x , respec-

tively called left and right unitor,

satisfying both the triangle and pentagon identities respectively given as follows:

(x⊗ 1)⊗ y

ρx⊗y
&&

αx,1,y
// x⊗ (1⊗ y)

x⊗λyxx

x⊗ y,

(w ⊗ x)⊗ (y ⊗ z)
αw,x,y⊗z

))

((w ⊗ x)⊗ y)⊗ z

αw⊗x,y,z

55

αw,x,y⊗z
��

w ⊗ (x⊗ (y ⊗ z))

(w ⊗ (x⊗ y))⊗ z αw,x⊗y,z

// w ⊗ ((x⊗ y)⊗ z).

w⊗αx,y,z

OO

A monoidal category V is said to be symmetric if it is also equipped with a specified

natural isomorphism Bx,y : x ⊗ y → y ⊗ x, called braiding, satisfying the hexagon
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identity given by

(x⊗ y)⊗ z

Bx,y⊗z
��

αx,y,z
// x⊗ (y ⊗ z)

Bx,y⊗z
// (y ⊗ z)⊗ x

αy,z,x

��

(y ⊗ x)⊗ z αy,x,z
// y ⊗ (x⊗ z)

y⊗Bx,z

// y ⊗ (z ⊗ x)

and the identity By,x ◦Bx,y = idx⊗y.

Definition 2.1.2. For a symmetric monoidal category V, a V-category (a.k.a. a

V-enriched category) C consists of

• a hom-object C(x, y) ∈ V, for any objects x, y ∈ C,

• a morphism 1x : 1 → C(x, x) in V, for any object x ∈ C,

• a morphism ◦ : C(y, z)⊗ C(x, y) → C(x, z) in V, for any objects x, y, z ∈ C,

such that the following diagrams in V commute for all x, y, z, w ∈ C:

C(z, w)⊗ C(y, z)⊗ C(x, y)
◦⊗id

��

id⊗◦
// C(z, w)⊗ C(x, z)

◦
��

C(y, w)⊗ C(x, y) ◦
// C(x,w),

C(x, y)⊗ 1

∼=
ρ

((

id⊗1x // C(x, y)⊗ C(x, x)
◦
��

C(x, y),

C(y, y)⊗ C(x, y)
◦
��

1⊗ C(x, y)1y⊗id
oo

∼=
λ

vv

C(x, y).

Definition 2.1.3 (Closed symmetric monoidal category). A symmetric monoidal

category V is closed if for all object v ∈ V, the tensor product functor −⊗ v : V → V
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has a right adjoint functor [v,−] : V → V,

−⊗ v : V //
// V : [v,−] ,

that is, for any u, v, w ∈ V, we have a natural bijection

V(u⊗ v, w) ∼= V(u, [v, w]), (2.1.1)

natural in all arguments. The objects [v, w] is called the internal hom of v and w.

Proposition 2.1.4. [Rie14, Remark 3.3.9] The hom-set V(−,−) in the isomorphism

(2.1.1) can be replaced with the internal hom, denoted V(−,−) := [−,−], to obtain

an analogous isomorphism

V(u⊗ v, w) ∼= V(u,V(v, w)),

in V.

Definition 2.1.5. For two monoidal categories (V ,⊗,1V) and (W ,⊗,1W), a lax

monoidal functor is a functor G : V → W together with

• a morphism η : 1W → G(1V), called the lax monoidal unit,

• a natural transformation µ, given by µx,y : G(x) ⊗ G(y) → G(x ⊗ y) for any

objects x, y ∈ V, called the lax monoidal transformation,

satisfying the following conditions.
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(i) Associativity: For objects x, y, z ∈ V, the following diagram in W commutes

(G(x)⊗G(y))⊗G(z)

µx,y⊗G(z)

��

α // G(x)⊗ (G(y)⊗G(z))

G(x)⊗µy,z
��

G(x⊗ y)⊗G(z)

µx⊗y,z

��

G(x)⊗G(y ⊗ z)

µx,y⊗z

��

G((x⊗ y)⊗ z)
G(α)

// G(x⊗ (y ⊗ z)).

(ii) Unitality: For objects x ∈ V, the following diagram in W commutes

1W ⊗G(x)
η⊗G(x)

//

λG(x)

��

G(1V)⊗G(x)

µ1V ,x

��

G(x) G(1V ⊗ x).
G(λx)

oo

A lax monoidal functor G is said to be strong monoidal if the transformations µ

and η are isomorphisms. An oplax monoidal functor F : W → V is defined

analogously except that the structure arrows are going in the opposite direction.

The following lemma introduce one of the most important tools used in our forth

chapter.

Lemma 2.1.6 (Change of base). [Bor94, Proposition 6.4.3] In the presence of any

lax monoidal functor G : V → W, any V-category C has an associated W-category, de-

noted G∗C, with the same objects and the hom-objects given by G∗C(x, y) := G(C(x, y)).

Proposition 2.1.7. A change of enrichment along a composite (GH)∗ is the com-

posite of change of enrichments G∗H∗.
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Proof. Change of enrichment along GH is given by:

(GH)∗C(x, y) = (GH)C(x, y)

= G(HC(x, y))

= GH∗C(x, y)

= (G∗H∗)C(x, y).

Lemma 2.1.8. [Bor94, Proposition 6.4.2] The functor of underlying sets

V(1,−) : V → Set is lax monoidal.

Hence, one can change the base of enrichment of any V-category C from V to the

category Set of sets and obtain the underlying category of C as defined below.

Definition 2.1.9. The underlying category C0 of a V-category C has the same

objects and has hom-sets C(x, y) := V(1, C(x, y)), for any x, y ∈ C. The iden-

tities idx ∈ C(x, x) are defined to be the specified morphisms 1x ∈ V(1, C(x, x)).

The composition is defined hom-wise by the following arrow in Set

C(y, z)⊗ C(x, y) // C(x, z)

V(1, C(y, z))⊗ V(1, C(x, y)) µ
// V(1, C(y, z)⊗ C(x, y))

V(1,◦)
// V(1, C(x, z)),

where the first arrow is the lax monoidal transformation of V(1,−) and the second

one is obtained by applying V(1,−) to the composition morphism for C.

Lemma 2.1.10. If (V ,⊗,1) is a closed symmetric monoidal category, then the un-

derlying category of the V-category V is the unenriched category V itself.
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Definition 2.1.11. A V-functor F : C → D between V-categories is given by an

object map C ∋ x 7→ Fx ∈ D together with morphisms C(x, y) Fx,y
// D(Fx, Fy) in V,

for any x, y ∈ C, such that the following diagrams commute, for any x, y, z ∈ C

C(y, z)⊗ C(x, y) ◦ //

Fy,z⊗Fx,y

��

C(x, z)
Fx,z

��

D(Fy, Fz)⊗D(Fx, Fy) ◦
// D(Fx, Fz),

1

1Fx
$$

1x // C(x, x)
Fx,x

��

D(Fx, Fx).

The following definition can be found in [Kel82, § 1.3] or [Bor94, Corollary 6.4.4];

see also [Rie14, Exercise 3.5.3].

Definition 2.1.12. The underlying functor F0 : C0 → D0 of a V-functor F : C → D

is defined on objects by F as follows

Ob(C0)
F0 // Ob(D0)

Ob(C) F // Ob(D)

and on hom-sets, it is given by the following composite

x→ y � F0 // Fx→ Fy

1 → C(x, y) 1 → C(x, y) −−→
Fx,y

D(Fx, Fy),

for any x, y ∈ Ob(C).

Definition 2.1.13. A V-natural transformation α : F ⇒ G between a pair of

V-functors F,G : C //
// D consists of a morphism αx : 1 → D(Fx,Gx) in V for

11



each x ∈ C such that for all x, y ∈ C the following diagram commutes

C(x, y)
Gx,y

��

Fx,y
// D(Fx, Fy)

(αy)∗
��

D(Gx,Gy)
(αx)∗

// D(Fx,Gy),

where (αx)
∗ and (αy)∗ are respectively given by

(αx)
∗ : D(Gx,Gy) ∼= D(Gx,Gy)⊗ 1

id⊗αx−−−→ D(Gx,Gy)⊗D(Fx,Gx)
◦−→ D(Fx,Gy),

(αy)∗ : D(Fx, Fy) ∼= 1⊗D(Fx, Fy)
αy⊗id−−−→ D(Fy,Gy)⊗D(Fx, Fy)

◦−→ D(Fx,Gy).

The (Enriched) Yoneda Lemma is a major tool used in some of the proofs in

Chapter 4.

Proposition 2.1.14 (Yoneda Lemma). Let C be a locally small category, with cat-

egory of functors denoted Fun(C,Set). For any functor X ∈ Fun(C,Set), there is

a canonical isomorphism HomFun(C,Set)(y(c), X) ∼= X(c) between the set of natural

transformations from the representable functor y(c), given by

y : Cop → Fun(C,Set)

c 7→ y(c) = C(c,−),

to X, and the value of X at c.

Proposition 2.1.15 (Enriched Yoneda Lemma). Given a V-functor F : C → V and

an object x ∈ C, the set of V-natural transformations α : C(x,−) → F is in natural
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bijection with the set of elements of F (x) ∼= V(1, F (x)), that is, the set of morphisms

1 → F (x), obtained by the composition 1
1x−→ C(x, x) αx−→ F (x).

The (Enriched) Yoneda Lemma yields the following.

Lemma 2.1.16. Let C be a V-category. The following statements are equivalent.

1. The objects x, y ∈ C are isomorphic as objects of C.

2. The representable functors C(x,−), C(y,−) : C //
// Set are naturally isomor-

phic.

3. The underlying functors of the representable functors C(x,−), C(y,−) : C //
// V

are naturally isomorphic.

4. The representable V-functors C(x,−), C(y,−) : C //
// V are V-isomorphic.

Definition 2.1.17. A V-equivalence of categories is given by a V-functor

F : C → D satisfying the following properties.

• Essentially surjective, i.e., every d ∈ D is isomorphic (in D0) to some Fc.

• V-Fully faithful, i.e., for each x, y ∈ C, the map Fx,y : C(x, y) → D(Fx, Fy)

is an isomorphism in V.

Definition 2.1.18. A V-adjunction consists of V-functors F : C → D and

G : D → C together with

13



• V-natural isomorphisms D(Fc, d) ∼= C(c,Gd) in V, for any c ∈ C and d ∈ D, or

equivalently

• V-natural transformations η : idC =⇒ GF (unit) and ε : FG =⇒ idD (counit)

satisfying the triangle identities

G

idG ""

ηG
// GFG

Gϵ
��

G,

F

idF ""

Fη
// FGF

ϵF
��

F.

2.2 Tensored and cotensored categories

Background material on tensored and cotensored categories can be found in

[Kel82, § 1], [Bor94, § 6.5] and [Rie14, § 3.7].

Definition 2.2.1. • A V-category C is tensored over V if for any v ∈ V and

x ∈ C, there is an object x⊗ v ∈ C together with isomorphisms

C(x⊗ v, y) ∼= V(v, C(x, y)), for all y ∈ C.

• A V-category C is cotensored over V if for any v ∈ V and y ∈ C, there is an

object yv ∈ C together with isomorphisms

C(x, yv) ∼= V(v, C(x, y)), for all x ∈ C.

Remark 2.2.2. The functor x ⊗ − : V → C admits a right adjoint C(x,−) : C → V

by the enriched Yoneda Lemma.
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Lemma 2.2.3. Let (V ,⊗,1) be a closed symmetric monoidal category and suppose

C is a tensored V-category. Then the tensoring is unital and associative, i.e., there

exist natural isomorphisms

x⊗ 1 ∼= x, x⊗ (u⊗ v) ∼= (x⊗ u)⊗ v, for all u, v ∈ V , x ∈ C.

The following statement is found in [Rie14, Proposition 3.7.10]. Since the proof

was left as an exercise, we fill in some details here.

Proposition 2.2.4. Suppose C and D are tensored and cotensored V-categories and

F : C0
// D0 : Goo is an adjunction between the underlying categories (an unenriched

adjunction). Then the data of the following determines the other:

(i) a V-adjunction D(Fc, d)
φ−→∼= C(c,Gd),

(ii) a V-functor F together with natural isomorphisms F (c⊗ v) ∼= F (c)⊗ v,

(iii) a V-functor G together with natural isomorphisms G(dv) ∼= (Gd)v.

Proof. (i) =⇒ (ii) We have

D(F (c⊗ v), d) ∼= C(c⊗ v,Gd) by hypothesis

∼= V(v, C(c,Gd)) by enriched tensor-hom adjunction

∼= V(v,D(Fc, d)) by hypothesis

∼= D(F (c)⊗ v, d) by enriched tensor-hom adjunction.
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Therefore, F (c⊗ v) ∼= F (c)⊗ v by the enriched Yoneda Lemma and the naturality is

given by the naturality of the V-adjunction D(Fc, d) ∼= C(c,Gd).

(ii) =⇒ (i) We want to enriched the functor G : D0 → C0 as

Gd,d′ : D(d, d′) ? // C(Gd,Gd′) ∼= V(1V , C(Gd,Gd′)), for all d, d′ ∈ D.

Hence, the map Gd,d′ is given by the following diagram. For any v ∈ V , we have

V(v,D(d, d′))

tensoring ∼=
��

(Gd,d′)∗// V(v, C(Gd,Gd′))
∼= tensor-hom adjunction
��

D(d⊗ v, d′)

(εd⊗id)∗

##

C(Gd⊗ v,Gd′)

∼= unenriched adjunction F⊣G
��

D(F (Gd⊗ v), d′)

∼= since F (c⊗v)∼=Fc⊗v
��

D(FGd⊗ v, d′).

Also, we have

V(v,D(Fc, d)) ∼= D(Fc⊗ v, d) by the unenriched adjunction F ⊣ G

∼= D(F (c⊗ v), d) by hypothesis

∼= C(c⊗ v,Gd) by the unenriched adjunction F ⊣ G

∼= C(v, C(c,Gd)) by the definition of tensoring.

Therefore, D(Fc, d) ∼= C(c,Gd) by the Yoneda Lemma and the naturality is given by

the naturality of the isomorphism F (c⊗ v) ∼= Fc⊗ v.
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(i) =⇒ (iii) We have

D(c,G(dv)) ∼= C(Fc, dv) by hypothesis

∼= V(Fc⊗ v, d) by the definition of tensoring

∼= V(F (c⊗ v), d) by hypothesis since (i) ⇔ (ii)

∼= C(c⊗ v,Gd) by the unenriched adjunction F ⊣ G

∼= C(c, (Gd)v) by the definition of cotensoring.

Therefore, G(dv) ∼= (Gd)v by the Yoneda Lemma and the naturality is given by the

naturality of the V-adjunction D(Fc, d) ∼= C(c,Gd) and the isomorphism

F (c⊗ v) ∼= F (c)⊗ v.

(iii) =⇒ (i) We want to enriched the functor G : D0 → C0 as

Gd,d′ : D(d, d′) ? // C(Gd,Gd′) ∼= V(1V , C(Gd,Gd′)), for all d, d′ ∈ D.

Hence, the map Gd,d′ is given by the following diagram. For any v ∈ V , we have

V(v,D(d, d′))

cotensoring ∼=
��

(Gd,d′)∗// V(v, C(Gd,Gd′))
∼= cotensoring
��

D(d, d′v)

(εd⊗id)∗

""

C(Gd, (Gd′)v)
∼= since (Gd′)v∼=G(d′v)
��

D(Gd,G(d′v))

∼= unenriched adjunction F⊣G
��

D(FGd, d′v).

17



Also, we have

V(v,D(Fc, d)) ∼= D(Fc, dv) by definition of cotensoring

∼= C(c,G(dv)) by the unenriched adjunction F ⊣ G

∼= C(c, (Gd)v) by hypothesis

∼= V(v, C(c,Gd)) by definition of cotensoring.

Therefore, D(Fc, d) ∼= C(c,Gd) by the Yoneda Lemma and the naturality is given by

the naturality of the isomorphism G(dv) ∼= (Gd)v.

Theorem 2.2.5. Suppose we have an adjunction F : W // V : Goo between closed

symmetric monoidal categories such that the left adjoint F is strong monoidal. Then

for any tensored and cotensored V-category C, the W-category G∗C becomes canoni-

cally tensored and cotensored over W, given respectively by

x⊗ w := x⊗ Fw and xw := xFw, for any x ∈ C, w ∈ W .

Corollary 2.2.6. The strong monoidal adjunction F ⊣ G of Theorem 2.2.5 is a

W-adjunction with respect to the induced W-category structure on V, i.e., on G∗V.

In the following proposition we see how to transport the tensoring and the coten-

soring along an equivalence of categories.

Proposition 2.2.7. Let D be a V-enriched category tensored and cotensored over a

closed symmetric monoidal category V, and an equivalence of categories

F : C // D : Goo .
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(a) We can transport the tensoring from D to C by

c⊗ v := G(Fc⊗ v), for all c ∈ C and v ∈ V .

(b) We can transport the cotensoring from D to C by

cv := G((Fc)v), for all c ∈ C and v ∈ V .

2.3 Monoidal properties of the Dold–Kan correspondence

Here, we recall the definition of the tensor product and the hom complex of chain

complexes of R-modules. Before, let us review the following about R-modules.

Lemma 2.3.1. 1. For a commutative ring R, the category of R-modules ModR

endowed with the usual tensor product over R and the R-module structure on

its hom set, (ModR,⊗R, R,HomR), is a closed symmetric monoidal category.

2. For an arbitrary ring R, the category of left R-modules ModR is enriched, ten-

sored, and cotensored over the category Ab of abelian groups. Here, for an

abelian group A and a left R-module M , the action of R on the tensoring M⊗ZA

is given by:

r(m⊗ a) := (rm)⊗ a, for all r ∈ R,m ∈M and a ∈ A.

Similarly, the action of R on the cotensoring HomZ(A,M) is given by:

(rf)(a) := r(f(a)), for all r ∈ R, f ∈ HomZ(A,M) and a ∈ A.
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Definition 2.3.2. For a commutative ring R, the category of chain complexes of

R-modules Ch(R) is endowed with a tensor product defined as follows:

(X ⊗ Y )n :=
⊕
i∈Z

Xi ⊗R Yn−i, with d(x⊗ y) := d(x)⊗ y + (−1)|x|x⊗ d(y).

Definition 2.3.3. For an arbitrary ring R, the category of chain complexes of left

R-modules Ch(R) is endowed with a hom complex defined as follows:

HomCh(R)(X, Y )n :=
∏
i∈Z

HomR(Xi, Yi+n), with (df)(x) := d(f(x))−(−1)|f |f(d(x))

which is a chain complex of abelian groups. If R is commutative, then the hom complex

is a chain complex of R-modules.

Lemma 2.3.4. For a commutative ring R, the category Ch(R) endowed with the

tensor product ⊗ and the hom complex HomCh(R), (Ch(R),⊗, R[0],HomCh(R)), is a

closed symmetric monoidal category. Here the tensor unit R[0] is the chain complex

with R concentrated in degree 0.

Definition 2.3.5. The good truncation functor τ≥0 : Ch(R) → Ch≥0(R) is defined

by

(τ≥0C)n :=



Cn, if n ≥ 1

ker(d0), if n = 0

0, otherwise

for any complex C ∈ Ch(R).
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Lemma 2.3.6. 1. For a commutative ring R, the category Ch≥0(R) endowed with

the tensor product ⊗ and the hom complex HomCh≥0(R) := τ≥0(HomCh(R)),

(Ch≥0(R),⊗, R[0],HomCh≥0(R)), is a closed symmetric monoidal category.

2. For an arbitrary ring R, the category Ch≥0(R) is enriched, tensored and coten-

sored over the category Ch≥0(Z) of non-negatively graded chain complexes of

abelian groups.

• The enrichment is given by the hom complex HomCh≥0(R)(X, Y ) in Ch≥0(Z)

as defined in item (1.) above, for any complexes X and Y in Ch≥0(R).

• The tensoring is given by X⊗K in Ch≥0(R) as defined in Definition 2.3.2,

where X is seen as a complex of abelian groups with the R-action induced

by the action described in item (2.) of Lemma 2.3.1, for any complexes

X in Ch≥0(R) and K in Ch≥0(Z).

• The cotensoring is given by XK := HomCh≥0(Z)(K,X) in Ch≥0(R) as

defined in item (1.) above, where X is seen as a complex of abelian

groups with the R-action induced by the action described in item (2.) of

Lemma 2.3.1, for any complexes X in Ch≥0(R) and K in Ch≥0(Z).

Let us recall the definition of a simplicial object. Read more on simplicial objects

in [Wei94, § 8.1].

Definition 2.3.7. Let ∆ be the simplex category, that is, the category whose objects
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are the finite ordered sets [n] = {0 < 1 < · · · < n} for integers n ≥ 0, and whose

morphisms are non-decreasing functions. A simplicial object A in a category A is

a contravariant functor from ∆ to A, that is, A : ∆op → A. We denote by sA the

category of simplicial objects in A.

The following can be found in [GJ99, §II.2].

Lemma 2.3.8. 1. For a commutative ring R, the category sModR of simplicial

R-modules has a closed symmetric monoidal structure. The tensor product is

given by the degreewise tensor product defined (A ⊗ B)n := An ⊗R Bn, for any

simplicial R-modules A and B. The constant simplicial R-module c(R) is the

tensor unit, that is, c(R) ⊗ A ∼= A. The internal hom of simplicial R-modules

A and B is the simplicial R-module HomsModR
(A,B) given in degree n by the

R-module

HomsModR
(A,B)n := HomsModR(A⊗R∆n, B).

2. For an arbitrary ring R, the category sModR of simplicial left R-modules is

enriched, tensored and cotensored over the category sAb of simplicial abelian

groups.

• The tensoring is given by A⊗K in sModR as defined in item (1.) above,

where A is seen as a simplicial abelian group, for any objects A in sModR

and K in sAb.
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• The enrichment is given by HomsModR
(A,B)n := HomsModR(A ⊗ Z∆n, B)

in sAb, for any objects A and B in sModR.

• The cotensoring is given by AK := HomsAb(K,A) in sModR as defined in

item (1.) above, where A is seen as a simplicial abelian group, for any

objects A in sModR and K in sAb.

Definition 2.3.9. • The standard interval in simplicial sets is

∆1 := Hom∆(−, [1]). It comes with three structure maps: inclusion at 0 given

by d1 : ∆0 → ∆1, inclusion at 1 given by d0 : ∆0 → ∆1 and the collapse map

s0 : ∆1 → ∆0.

• The standard interval in simplicial left R-modules is given by R∆1. It comes

with structure maps which are obtained by applying the free left R-module functor

R : sSet → sModR to the structure maps for ∆1, so we have inclusion at 0,

ι0 = R(d1) : R∆0 → R∆1, inclusion at 1, ι1 = R(d0) : R∆0 → R∆1, and the

collapse map collR∆0 = R(s0) : R∆1 → R∆0.

• The standard cylinder of A is the simplicial left R-module given by A⊗R∆1.

It comes with structure maps: inclusion at 0, ι0 = idA ⊗R(d1) : A→ A⊗R∆1,

inclusion at 1, ι1 = idA ⊗ R(d0) : A → A ⊗ R∆1, and the collapse map

collA = idA ⊗ collR∆0 : A ⊗ R∆1 → A, since R∆0 is the constant simplicial

left R-module c(R), which is the tensor unit.

23



Definition 2.3.10. Let A ∈ sModR.

• The unnormalized chain complex (a.k.a. Moore complex) of A is the

chain complex C(A) with the same graded left R-module as A, i.e., C(A)n := An,

and with the differential ∂n : C(A)n → C(A)n−1 given by the alternating sum of

the face maps ∂n :=
∑n

i=0(−1)idi.

• The normalized chain complex of A is the subcomplex N(A) ↪→ C(A) given

by the joint kernel N(A)n := ∩n−1
i=0 ker(di) and with the differential

∂n : N(A)n → N(A)n−1 given by ∂n := (−1)ndn.

• The degenerate subcomplex of a C(A) is the subcomplex D(A) ↪→ C(A)

defined in degree n ≥ 0 by the submodule D(A)n ⊆ C(A)n generated by the

degenerate n-simplices and given by D(A)n :=
n−1⊕
i=0

si(An−1).

Definition 2.3.11. Let C ∈ Ch≥0(R). The denormalization of C is the simplicial

R-module Γ(C) defined as follows. In degree n, Γ(C) is given by

Γ(C)n :=
⊕

[n]↠[k]

Ck,

where the direct sum is indexed by surjective maps [n] ↠ [k] in the simplex category ∆.

For a map f : [m] → [n] in ∆, we have the corresponding map

f ∗ : Γ(C)n → Γ(C)m, which by definition is

f ∗ :
⊕

[n]↠[k]

Ck →
⊕

[m]↠[r]

Cr,
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whose restriction to the summand labelled by the surjective map δ : [n] ↠ [k] is given

by the composition

Ck
d∗−→ Cs ↪→

⊕
[m]↠[r]

Cr,

where [m] t // // [s]
d−→ [k] is the epi-mono factorization of [m]

f−→ [n]
δ−→ [k]. Here, the

map

Cs ↪→
⊕

[m]↠[r]

Cr

is the inclusion into the summand Cs labelled by the surjective map t : [m] ↠ [s] in

∆ and the map d∗ : Ck → Cs, corresponding to the monomorphism d : [s] → [k] in

∆, is defined by the formula

d∗ =



id if d is of form id : [k] → [k]

∂k if d is of form dk : [k − 1] → [k]

0 otherwise.

Remark 2.3.12. The normalization N : sModR → Ch≥0(R) and the denormal-

ization Γ : Ch≥0(R) → sModR are functors.

Theorem 2.3.13. The pair of functors N : sModR
//

Ch≥0(R) : Γ,
∼=oo given by the

normalization N and the denormalization Γ, form an equivalence of categories called

the Dold–Kan correspondence.

Definition 2.3.14. The Eilenberg–Zilber map (a.k.a. shuffle map) is the natural
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transformation of chain complexes

EZ : C(A)⊗ C(B) → C(A⊗B), for any A,B ∈ sModR,

defined by

EZ(a⊗ b) :=
∑
(µ,ν)

sign(µ, ν) · sν(a)⊗ sµ(b) ∈ C(A⊗B)p+q = Ap+q ⊗Bp+q,

with simplices a ∈ Ap and b ∈ Bq, where the sum is taken over all (p, q)-shuffles, i.e.,

permutations of the set {1, ..., p+ q} which leave the first p elements and the last q el-

ements in the natural order. A shuffle is of the form (µ, ν) = (µ1, ..., µp, ν1, ..., νq) and

the corresponding degeneracy maps are sµ = sµp−1 · · · sµ1−1 and sν = sνq−1 · · · sν1−1.

Proposition 2.3.15. The Eilenberg–Zilber map EZ : C(A) ⊗ C(B) → C(A ⊗ B)

makes the unnormalized chain complex functor C : sModR → Ch≥0(R) lax monoidal,

and induces the chain map EZ : N(A) ⊗ N(B) → N(A ⊗ B) defined by

EZ([a]⊗ [b]) = [EZ(a⊗ b)], which makes N : sModR → Ch≥0(R) lax monoidal.

Definition 2.3.16. The Alexander–Whitney map is the natural transformation

of chain complexes

AW : C(A⊗B) → C(A)⊗ C(B), for any A,B ∈ sModR,

defined by

AW(a⊗ b) =
⊕
p+q=n

d̃p(a)⊗ dq0(b),
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for simplices a ∈ An and b ∈ Bn, where d̃p : Ap+q → Ap is the front face and

dq0 : Bp+q → Bq is the back face, induced respectively by the injective monotone

maps δ̃p : [p] → [p + q] and δq0 : [q] → [p + q] defined by δ̃p(i) = i, i = 0, ..., p and

δq0(j) = p+ j, j = 0, ..., q.

Proposition 2.3.17. The Alexander–Whitney map AW : C(A⊗B) → C(A)⊗ C(B)

makes the unnormalized chain complex functor C : sModR → Ch≥0(R) oplax monoidal,

and induces the chain map AW : N(A⊗B) → N(A)⊗N(B) defined by

AW([a⊗ b]) =
∑
p+q=n

[
d̃p(a)⊗ dq0(b)

]
, for a⊗ b ∈ C(A⊗B),

which makes N : sModR → Ch≥0(R) oplax monoidal.

Proposition 2.3.18. For simplicial R-modules A and B, the chain complex

N(A)⊗N(B) is a deformation retract of N(A⊗B) given by the following two diagrams

N(A)⊗N(B) EZ //

id

;;
N(A⊗B) AW // N(A)⊗N(B), N(A⊗B) AW //

id

;;
N(A)⊗N(B) EZ //

��

N(A⊗B).

That is, the composite AW◦EZ is the identity, and the composite EZ◦AW is naturally

chain homotopic to the identity.

Proposition 2.3.19. The multiplicative map µ : Γ(C)⊗ Γ(D) → Γ(C ⊗D), defined

by the composition

Γ(C)⊗ Γ(D)

∼=η

��

µ
// Γ(C ⊗D)

ΓN(Γ(C)⊗ Γ(D))
Γ(AW)

// Γ(NΓ(C)⊗NΓ(D)),

Γ(ϵ⊗ϵ)∼=

OO
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where η : A
∼=−→ ΓN(A) and ϵ : NΓ(C)

∼=−→ C are any natural isomorphisms exhibiting

N and Γ as adjoint equivalences, defines a lax monoidal structure on Γ.

Nice examples of computations involving Eilenberg–Zilber EZ and

Alexander–Whitney AW maps can be found in [Opa21, Chapter 3].

Lemmas 2.3.4, 2.3.6 and 2.3.8 can be extended to the case where the category

of R-modules ModR is replaced by an abelian category A as given by the following

two propositions.

Proposition 2.3.20. For a bicomplete closed symmetric monoidal abelian category

A, we have that

1. Ch≥0(A) is a closed symmetric monoidal category,

2. Ch(A) is a closed symmetric monoidal category,

3. sA is a closed symmetric monoidal category.

Proposition 2.3.21. For a bicomplete abelian category A, we have that

1. Ch≥0(A) is enriched, tensored and cotensored over Ch≥0(Z),

2. Ch(A) is enriched, tensored and cotensored over Ch(Z),

3. sA is enriched, tensored and cotensored over sAb.
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Remark 2.3.22. All the results in Sections 3.1, 3.2 and 3.3 are true for any abelian

category A satisfying the assumptions of Propositions 2.3.20 or 2.3.21. But mostly

we focus in Chapter 3 on the case A = ModR for convenience.

2.4 Monoidal model categories and enriched model categories

Most of the material we review here can be found in [Hov99, Chapter 4],

[MP12, Chapter 16] and [Rie14, Chapter 11]. Let us start by recalling the defini-

tion of a model category.

Definition 2.4.1. A model category is a category C with three distinguished classes

of maps: weak equivalences, cofibrations, and fibrations, satisfying:

• MC1: Small limits and colimits exist in C.

• MC2: (2-out-of-3) If f and g are morphisms of C such that gf is defined and

two of f , g and gf are weak equivalences, then so is the third.

• MC3: (Retracts) If g is a morphism belonging to one of the distinguished

classes, and f is a retract of g, then f belongs to the same distinguished class.

• MC4: (Lifting) Define a map to be a trivial cofibration (a.k.a. acyclic

cofibration) if it is both a cofibration and a weak equivalence. Similarly, define

a map to be a trivial fibration (a.k.a. acyclic fibration) if it is both a

fibration and a weak equivalence. Then trivial cofibrations have the left lifting
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property with respect to fibrations, and cofibrations have the left lifting property

with respect to trivial fibrations, as given respectively by the following diagrams:

X� _

i ∼
��

f
// E

p
����

Y g
//

∃h

>>

B,

X� _
i
��

f
// E

p∼
����

Y g
//

∃h
>>

B.

• MC5: (Factorization) Any morphism f factors in two ways, a cofibration fol-

lowed by a trivial fibration, and a trivial cofibration followed by a fibration.

Definition 2.4.2. A monoidal model category is a model category V equipped

with the structure of a closed symmetric monoidal category (V ,⊗,1) such that the

following two compatibility conditions are satisfied.

(i) Pushout-product axiom: For every pair of cofibrations i : a → b and

k : x → y both in V, their pushout-product i□k, that is, the induced mor-

phism out of the pushout given by (a⊗ y)⨿a⊗x (b⊗ x)
i2k // b⊗ y , is itself a

cofibration in V, which moreover is acyclic if i or k is.

(ii) Unit axiom: For every cofibrant object x ∈ V and every cofibrant replacement

of the tensor unit q : Q1 → 1 (i.e. a weak equivalence with cofibrant source) in

V, the resulting morphism x⊗Q1
x⊗q
// x⊗ 1

∼= // x is a weak equivalence.

Remark 2.4.3. [MP12, Lemma 16.4.5] The pushout-product axiom is equivalent to

the following axiom.
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Pullback-power axiom: For a cofibration i : a → b and a fibration

p : x → y in V, their pullback-power (i∗, p∗), that is, the induced morphism into

the pullback given by [b, x]
(i∗,p∗)−−−→ [a, x]×[a,y] [b, y], is a fibration in V, which moreover

is acyclic if i or p is.

Definition 2.4.4. Let V be a monoidal model category. A V-model category is

a V-category C, which is tensored and cotensored over V, with the structure of a

model category on the underlying category C0 such that the following two compatibility

conditions are satisfied.

(i) External pushout-product axiom: For every pair of cofibrations i : x → y

in C0 and k : a → b in V, their pushout-product i2k, that is, the induced

morphism out of the pushout given by (x⊗ b)⨿x⊗a (y ⊗ a)
i2k // y ⊗ b , is itself

a cofibration in C0, which moreover is acyclic if i or k is.

(ii) External Unit axiom: For every cofibrant object x in C0 and every cofi-

brant replacement of the tensor unit q : Q1 → 1 in V, the resulting morphism

x⊗Q1
x⊗q
// x⊗ 1

∼= // x is a weak equivalence in C0.

Remark 2.4.5. [MP12, Lemma 16.4.5] The external pushout-product axiom is equiv-

alent to the following two axioms.

• External pullback-power axiom: For a cofibration i : a → b in V and a

fibration p : x → y in C0, their pullback-power (i∗, p∗), that is, the induced
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morphism into the pullback given by xb
(i∗,p∗)−−−→ xa ×ya y

b, is a fibration in C0,

which moreover is acyclic if i or p is.

• SM7: For a cofibration i : a → b and a fibration p : x → y both in C0, their

pullback-power (i∗, p∗), that is, the induced morphism into the pullback given by

C(b, x) (i∗,p∗)−−−→ C(a, x)×C(a,y)C(b, y), is a fibration in V, which moreover is acyclic

if i or p is.

Lemma 2.4.6. For any V-category C equipped with a model structure satisfying the

external pushout-product axiom, we have the following for any x, y ∈ C and v ∈ V.

1. The tensor x⊗ v ∈ C is cofibrant, whenever x and v are cofibrant.

2. The cotensor xv ∈ C is fibrant, whenever x is fibrant and v is cofibrant.

3. The hom object C(x, y) ∈ V is fibrant, whenever x is cofibrant and y is fibrant.

Definition 2.4.7. For V and W two model categories, a pair F : V //W : Goo of

adjoint functors is a Quillen adjunction if the following equivalent conditions are

satisfied.

1. F preserves cofibrations and acyclic cofibrations.

2. G preserves fibrations and acyclic fibrations.

3. F preserves cofibrations and G preserves fibrations.
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4. F preserves acyclic cofibrations and G preserves acyclic fibrations.

Definition 2.4.8. For V and W two monoidal model categories, a lax (or weak)

monoidal Quillen adjunction is a Quillen adjunction (F ⊣ G) : W // Voo be-

tween the underlying model categories, equipped with the structure of a lax monoidal

functor on G with respect to the underlying monoidal categories such that the induced

structure of an oplax monoidal functor on F satisfies the following properties.

(i) For all cofibrant objects x, y ∈ W the oplax monoidal transformation

F (x⊗ y)
δx,y−−→
∼

F (x)⊗ F (y) is a weak equivalence in V.

(ii) For some (hence any) cofibrant replacement of the tensor unit q : Q1W → 1W

in W, the composition F (Q1W)
F (q)

// F (1W) ε // 1V , with the oplax monoidal

counit ε, is a weak equivalence in V.

This is called a strong monoidal Quillen adjunction if F is a strong monoidal

functor, that is the maps δx,y and ε are isomorphisms. In this case the first condition

above on F is vacuous, and the second becomes vacuous if the unit object of W is

cofibrant. If a weak monoidal Quillen adjunction is also a Quillen equivalence it is

called a weak monoidal Quillen equivalence.

Example 2.4.9. The Dold–Kan correspondence is a weak monoidal Quillen equiva-

lence but not strong since neither the normalization N : sModR → Ch≥0(R) nor the

denormalization Γ : Ch≥0(R) → sModR is a strong monoidal functor.
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2.5 Facts about model categories

Here we review some background material on the notion of homotopy category.

These are mainly from [Hov99, Chapter 1], [Rie14, Chapter 2] and

[MP12, Chapter 14].

Definition 2.5.1. Let C be a category with a subcategory of weak equivalences W.

The homotopy category of C, if it exists, is a category Ho(C) together with a functor

γ : C → Ho(C), which is the identity on objects and takes weak equivalences from W

to isomorphisms and satisfying the following universal property.

If F : C → D is a functor that sends maps of W to isomorphisms, then there is a

unique functor Ho(F ) : Ho(C) → D such that Ho(F ) ◦ γ = F .

Definition 2.5.2. Let C be a model category, and f, g : B → X be two maps in C.

1. A cylinder object for B is a factorization of the fold map ∇ : B
∐
B → B

into a cofibration B
∐
B

i0+i1
↪−−−→ B′ followed by a weak equivalence B′ s−→

∼
B.

2. A path object for X is a factorization of the diagonal map X → X ×X into

a weak equivalence X r−→
∼
X ′ followed by a fibration X ′ (p0,p1)

−−−−−↠ X ×X.

3. A left homotopy from f to g is a map H : B′ → X for some cylinder object

B′ for B such that Hi0 = f and Hi1 = g. We say that f and g are left

homotopic, written f
l∼ g, if there is a left homotopy from f to g.
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4. A right homotopy from f to g is a map K : B → X ′ for some path object

X ′ for X such that p0K = f and p1K = g. We say that f and g are right

homotopic, written f
r∼ g, if there is a right homotopy from f to g.

5. We say that f and g are homotopic, written f ∼ g, if they are both left and

right homotopic.

6. The map f is a homotopy equivalence if there is a map h : X → B such that

hf ∼ idB and fh ∼ idX .

Proposition 2.5.3. Let C be a model category, and f, g : B → X be two maps in C.

1. If f l∼ g and h : X → Y , then hf
l∼ hg. Dually, if f r∼ g and h : A → B, then

fh
r∼ gh.

2. If X is fibrant, f l∼ g, and h : A→ B, then fh
l∼ gh. Dually, if B is cofibrant,

f
r∼ g, and h : X → Y , then hf

r∼ hg.

3. If B is cofibrant, then the left homotopy is an equivalence relation on C(B,X).

Dually, if X is fibrant, then the right homotopy is an equivalence relation on

C(B,X).

4. If B is cofibrant and h : X → Y is a trivial fibration or a weak equivalence

between fibrant objects, then h induces an isomorphism

C(B,X)/
l∼

∼=−→ C(B, Y )/
l∼ .
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Dually, if X is fibrant and h : A → B is a trivial cofibration or a weak equiva-

lence between cofibrant objects, then h induces an isomorphism

C(B,X)/
r∼

∼=−→ C(A,X)/
r∼ .

5. If B is cofibrant, then f
l∼ g implies f r∼ g. Furthermore, if X ′ is any path

object for X, there is a right homotopy K : B → X ′ from f to g. Dually, if X

is fibrant, then f
r∼ g implies f l∼ g, and there is a left homotopy from f to g

using any cylinder object for B.

Corollary 2.5.4. Let C be a model category, B be a cofibrant object of C, and X be a

fibrant object of C. Then the left homotopy and right homotopy relations coincide and

are equivalence relations on C(B,X). Furthermore, if f ∼ g : B → X, then there is

a left homotopy H : B′ → X from f to g using any cylinder object B′ for B. Dually,

there is a right homotopy K : B → X ′ from f to g using any path object X ′ for X.

For a model category C, let Cc (resp. Cf , Ccf ) denote the full subcategory of

cofibrant (resp. fibrant, both cofibrant and fibrant) objects of C.

Corollary 2.5.5. The homotopy relation on the morphisms of Ccf is an equivalence

relation and is compatible with composition. Hence the category Ccf/∼ exists.

Proposition 2.5.6. Suppose C is a model category. Then a map of Ccf is a weak

equivalence if and only if it is a homotopy equivalence.
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Corollary 2.5.7. Suppose C is a model category. Let γ : Ccf → Ho(Ccf ) and

δ : Ccf → Ccf/ ∼ be the canonical functors. Then there is a unique isomorphism

of categories Ccf/∼
j−→∼= Ho(Ccf ) such that jδ = γ. Furthermore j is the identity on

objects.

Theorem 2.5.8. Suppose C is a model category. Let γ : C → Ho(C) denote the

canonical functor.

1. The inclusion Ccf ↪→ C induces an equivalence of categories

Ccf/∼
∼=−→ Ho(Ccf )

∼=−→ Ho(C).

2. There are natural isomorphisms

C(QRX,QRY )/∼ ∼= Ho(C)(γX, γY ) ∼= C(RQX,RQY )/∼

where Q denotes a cofibrant replacement and R denotes a fibrant replacement

in C. In addition, there is a natural isomorphism

Ho(C)(γX, γY ) ∼= C(QX,RY )/∼

and, if X is cofibrant and Y is fibrant, there is a natural isomorphism

Ho(C)(γX, γY ) ∼= C(X, Y )/∼. In particular, Ho(C) is a category (with small

hom sets).

3. The functor γ : C → Ho(C) identifies left or right homotopic maps.

37



4. Saturation: If f : A → B is a map in C such that γf is an isomorphism in

Ho(C), then f is a weak equivalence.

Proposition 2.5.9. Suppose C is a model category. Then the inclusion functors

induce equivalences of categories

Ho(Ccf ) → Ho(Cc) → Ho(C) and Ho(Ccf ) → Ho(Cf ) → Ho(C).

Definition 2.5.10. Let C and D be model categories.

1. If F : C → D is a left Quillen functor, define the total left derived functor

LF : Ho(C) → Ho(D) to be the composite Ho(C) Ho(Q)−−−→ Ho(Cc)
Ho(F )−−−→ Ho(D).

2. If G : D → C is a right Quillen functor, define the total right derived functor

RG : Ho(D) → Ho(C) of G to be the composite

Ho(D)
Ho(R)−−−→ Ho(Df )

Ho(G)−−−→ Ho(C).

Example 2.5.11. Let C be a V-enriched model category tensored over V.

• The total left derived tensor product, denoted − ⊗L − on Ho(V) is given by

u⊗L v := Qu⊗Qv, for any u, v ∈ V.

• The total left derived tensoring, denoted −⊗L−, on Ho(C) over Ho(V) is given

by x⊗L v := Qx⊗Qv, for any x ∈ C and v ∈ V.

• The total right derived hom objects, denoted RC(−,−), on Ho(C) is given by

RC(x, y) := C(Qx,Ry), for any x, y ∈ C.
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Remark 2.5.12. In the case of a V-enriched model category C that is tensored and

cotensored over V, the homotopy category Ho(C) inherits a Ho(V)-enrichment, a ten-

soring and a cotensoring over Ho(V); see [Rie14, Theorem 10.2.12],

[MP12, Remark 16.4.13] and [Hov99, Theorem 4.3.4].

2.6 Projective classes

Here, we review some background material from [CH02].

Definition 2.6.1. Let A be an abelian category. For an object P ∈ A, a map

f : B → C in A is said to be P -epic if the induced map of hom sets

HomA(P, f) : HomA(P,B) → HomA(P,C) is a surjection of abelian groups.

For a collection of objects P, the map f : B → C is P-epic if it is P -epic for

all P ∈ P.

Example 2.6.2. In an abelian category A, any split epimorphism f : B → C in A is

A-epic. Indeed, f : B → C is a split epimorphism if and only if the induced map of

hom sets HomA(P, f) : HomA(P,B) → HomA(P,C) is a surjection of abelian groups

for any object P ∈ A.

Definition 2.6.3. For an abelian category A, a projective class on A is a collection

P of objects of A and a collection E of maps in A such that

(i) E is precisely the collection of all P-epic maps;
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(ii) P is precisely the collection of all objects P such that each map in E is P -epic;

(iii) for each object B ∈ A there is a map j : P → B in E with P ∈ P.

Example 2.6.4. Let A be an abelian category. Take P to be the collection of all

objects and E to be the collection of all split epimorphisms f : B → C. Here (P , E)

is a projective class, called the trivial projective class.

Example 2.6.5. Let us consider a functor U : A → B of abelian categories, together

with a left adjoint F : B → A . Then U and F are additive, U is left exact and F is

right exact. If (P ′, E ′) is a projective class on B, we define

P := {retracts of FP for P ∈ P ′} and E := {B f−→ C such that UB Uf−→ UC ∈ E ′}.

Then (P , E) is a projective class on A, called the pullback of (P ′, E ′) along the right

adjoint U .
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Chapter 3

The Hurewicz Model Structure on Simplicial

R-modules

The chapter is organized as follows. In Section 3.1, we describe the Hurewicz

model structure on Ch≥0(R) as an instance of the Christensen–Hovey setup and we

give some of its monoidal properties. Now that we have the projective (Quillen) and

the Hurewicz model structures on Ch≥0(R), in Section 3.2, we give a description of

the resulting mixed model structure together with the enrichment relations between

these three model structures. In Section 3.3, we show that Dold–Kan correspondence

transfers the Hurewicz model structure from Ch≥0(R) to a monoidal model structure

on sModR. Finally, in Section 3.4, we explain how the Bousfield model structure on

the category Ch≥0(A) of non-negatively graded cochain complexes of objects of A is

recovered from the Christensen–Hovey setup.
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3.1 Hurewicz model structure on Ch≥0(A)

In this section, we show that the Hurewicz model structure on Ch≥0(A) is an

instance of the Christensen–Hovey model structures, for a bicomplete abelian category

A. Also, we prove some related properties.

Proposition 3.1.1. [CH02, Corollary 6.4] If A is a bicomplete abelian category with

a projective class P, then the category Ch≥0(A) of non-negatively graded chain com-

plexes of objects of A is endowed with a model structure as follows.

1. A map f is a weak equivalence, i.e., a P-equivalence, if HomA(P, f) is a

quasi-isomorphism for each P ∈ P.

2. A map f is a fibration, i.e., a P-fibration, if HomA(P, f) is surjective in

positive degrees (but not necessarily in degree 0) for each P ∈ P.

3. A map f is a cofibration, i.e., a P-cofibration, if it is a degreewise split

monomorphism with degreewise P-projective cokernel.

Here, HomA(P, f) denotes the map in Ch≥0(Z) obtained by applying the functor

HomA(P,−) : A → Ab degreewise. In this model structure, every complex is fibrant,

and a complex is cofibrant if and only if it is a complex of P-projectives.

The next two lemmas are useful in the description of the Hurewicz model structure

on the category Ch≥0(A) of the non-negatively graded chain complexes of objects in

an abelian category A later on.
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Lemma 3.1.2. Let B be an abelian category and g : X → Y a map in Ch(B).

The map g is a degreewise split epimorphism if and only if for every M ∈ B,

the map g∗ : HomB(M,X) → HomB(M,Y ) in Ch(Z) is a degreewise surjection,

where HomB(M,X) ∈ Ch(Z) is the chain complex obtained by applying the func-

tor HomB(M,−) : B → Ab degreewise to X.

Proof. ( =⇒ ) Verified since split epimorphisms are universal, hence the image of the

degreewise split epimorphism g by the functor HomB(M,−) : B → Ab is a degreewise

split epimorphism.

( ⇐= ) From M = Yn, the map (gn)∗ : HomB(Yn, Xn) → HomB(Yn, Yn) is surjective.

Then take sn ∈ HomB(Yn, Xn) such that (gn)∗(sn) = gnsn = idYn .

Lemma 3.1.3. Let U : A → B be a functor of abelian categories, with a left adjoint

F : B → A. If P is the projective class on A given by the pullback of the trivial

projective class on B, then we have the following.

1. A map f : X → Y in Ch≥0(A) is a P-equivalence if and only if the map

Uf : UX → UY is a chain homotopy equivalence in Ch≥0(B).

2. A map f : X → Y in Ch≥0(A) is a P-fibration if and only if the map

Uf : UX → UY in Ch≥0(B) is a degreewise split epimorphism in positive de-

grees.

Proof. (1.) The proof of [CH02, Lemma 3.1 (b)] is still valid here since the cofiber C
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of Uf is given by Cn = (UY )n ⊕ (UX)n−1 and so C ∈ Ch≥0(B).

(2.) By Proposition 3.1.1, the map f : X → Y in Ch≥0(A) is a P-fibration if and

only if the following map, induced by Uf given by the adjunction F ⊣ U ,

HomA(FM, f) ∼= HomB(M,Uf) : HomB(M,UX) → HomB(M,UY )

is degreewise surjective in positive degrees for every M ∈ B (trivial projective class).

By Lemma 3.1.2, this is equivalent to Uf : UX → UY being degreewise split

epimorphism in positive degrees.

We have the following model structure on Ch≥0(A).

Proposition 3.1.4. For A a bicomplete abelian category, Ch≥0(A) has a model struc-

ture given by the following.

1. A map f is a weak equivalence if it is a chain homotopy equivalence.

2. A map f is a fibration if it is a degreewise split epimorphism in positive degrees

(not necessarily in degree zero).

3. A map f is a cofibration if it is a degreewise split monomorphism.

Moreover, every complex is fibrant and cofibrant.

Proof. Parts (1.) and (2.) are obtained by applying Lemma 3.1.3 with

U = idA : A → A. In other words, take the trivial projective class on A.
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Part (3.) is given by Proposition 3.1.1 and so a map f : X → Y in Ch≥0(A) is a

cofibration if and only if it is a degreewise split monomorphism, and every complex

is fibrant and cofibrant, since all objects in A are P-projectives.

The model structure on Ch≥0(A) defined in Proposition 3.1.4 is called the

Hurewicz model structure (or h-model structure), in light of the following

characterization of the cofibrations and fibrations.

Proposition 3.1.5.

1. A map i : A → X in Ch≥0(A) is an h-cofibration if and only if it satisfies the

homotopy extension property (HEP).

2. A map p : E → B in Ch≥0(A) is an h-fibration if and only if it satisfies the

homotopy lifting property (HLP).

Proof. (1.) Recall from [MP12, Proposition 18.3.6] that an r-cofibration and an

r-fibration are respectively a degreewise split monomorphism and a degreewise split

epimorphism of unbounded complexes. The proof of [MP12, Proposition 18.3.6] ap-

plies here, since any degreewise split monomorphism i : A → X of non-negatively

graded chain complexes is an r-cofibration when viewed as a map of unbounded chain

complexes and its mapping cylinder Mi = X ∪i A ⊗ I, computed in Ch(A), is a
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non-negatively graded chain complex. Here, the interval complex I is given by

Z


−1

1


−−−−→ Z⊕ Z

in degrees 1 and 0, and zero in all other degrees.

(2.) ( =⇒ ) Assume that a map p : E → B in Ch≥0(A) is a h-fibration. Consider the

inclusion i0 : A→ A⊗ I given in degree n ≥ 0 by

(i0)n : An → (A⊗ I)n ∼= An−1 ⊕ An ⊕ An

a 7→ (0, a, 0).

As in [MP12, Proposition 18.3.6], since i0 is an acyclic cofibration, by

Proposition 3.1.4 the lifting property of the model structure gives that p satis-

fies the HLP.

( ⇐= ) Assume that a map p : E → B in Ch≥0(A) satisfies the HLP. We want to

show that p is a h-fibration, i.e., a degreewise split epimorphism in positive degree.

The mapping cocylinder τ≥0(Np) = τ≥0

(
E ×B B

I
)

of p is given in degree n by

(
τ≥0

(
E ×B B

I
))
n
∼=



En ⊕Bn ⊕Bn+1, if n ≥ 1

E0 ⊕B1, if n = 0

0, otherwise,
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where τ≥0 : Ch(A) → Ch≥0(A) is the good truncation functor. Consider the map

(ev0, p∗) given at any degree n > 0 by

(
EI

)
n

(ev0,p∗)n
//

∼=
��

(
τ≥0

(
E ×B B

I
))
n

∼=
��

En ⊕ En ⊕ En+1
(id,pn,pn+1)

// En ⊕Bn ⊕Bn+1.

Since p satisfies the HLP, the map (ev0, p∗) has a section σ : τ≥0(Np) → EI . For n > 0,

the map sn : Bn → En given by the composition

Bn
� � //

sn

''(
E ×B B

I
)
n

σn //

∼=
��

(
EI

)
n

(ev1)n
//

∼=
��

En

Bn
� � // En ⊕Bn ⊕Bn+1

σn // En ⊕ En ⊕ En+1
proj2 // En

b � // (0, b, 0) � // (e0, e1, e2)
� // e1

(3.1.1)

is a section of pn : En → Bn. Thus p : E → B is a degreewise split epimorphism in

positive degree.

For background on the HEP and HLP, see [May99, §6.1, 7.1].

Now we provide an example of a map of non-negatively graded chain complexes

which is not an h-fibration when viewed as a map in Ch(A) but is an h-fibration in

Ch≥0(A), where A is some abelian category.

Example 3.1.6. For C in Ch≥0(A), take the chain complex C ′ with C ′
n = Cn for

n ̸= 0 and C ′
0 = B0(C) the 0-boundaries of C. The map p : C ′ → C given by

the identity in positive degrees and the inclusion of 0-boundaries B0(C) ↪→ C0 in
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degree 0 is an h-fibration. By Proposition 3.1.5, it satisfies the HLP. Let us check

this fact directly. Considering the left-hand side diagram below with f ∼ g with the

homotopy H and given a lift f̃ , we want to lift the homotopy H into H̃ such that

∂H̃ + H̃∂ = g̃ − f̃ , for some lift g̃ of g.

C ′

p

��

A

f̃

??

f

""

g

<<CH

��

=⇒

...

��

...

��

...

��

A2

��

H̃2

<<

��

f̃2,g̃2
// C2

∂
��

p2
// C2

��

A1

H̃1

;;

��

f̃1,g̃1
// C1

∂
��

p1
// C1

��

A0

H̃0

;;

��

f̃0,g̃0
// B0(C)

��

� � p0 // C0

��

0

H̃−1

;;

0 0

For n ≥ 1, we take H̃n = Hn and g̃n = gn. For n = 0, we have ∂H̃0+ H̃−1∂ = g̃0− f̃0.

So g̃0 = f̃0 + ∂H0, with H̃0 = H0 since H̃−1 = 0.

The Hurewicz model structure on the category Ch≥0(R) of the non-negative graded

chain complexes of (left) R-modules satisfies the following monoidal property.

Proposition 3.1.7.

1. For a commutative ring R, the Hurewicz model structure on Ch≥0(R) is monoidal.

2. For an arbitrary ring R, the Hurewicz model structure on Ch≥0(R) is enriched

over Ch≥0(Z).

Proof. The proof follows from its analogue on Ch(R) [MP12, End of §18.3]. If we

take maps i : A→ X in Ch≥0(R) and j : Y → Z in Ch≥0(R) (or in Ch≥0(Z)), then all
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objects in the diagrams in that proof are non-negatively graded, i.e., live in Ch≥0(R)

(or in Ch≥0(Z)).

3.2 Relation with other model structures on Ch≥0(R)

Given the Hurewicz model structure described above and the well-known Quillen

model structure on the non-negatively graded chain complexes of left R-modules

Ch≥0(R), by [Col06, Theorem 2.1] there is a new model structure on Ch≥0(R) given

as follows.

Proposition 3.2.1. There is a mixed model structure on Ch≥0(R) given by the

following classes of maps.

1. The m-weak equivalences are the quasi-isomorphisms.

2. The m-fibrations are the degreewise split epimorphisms in positive degrees (not

necessarily in degree zero).

3. The m-cofibrations are the maps satisfying the left lifting property (LLP) with

respect to acyclic fibrations (F ∩W).

Remark 3.2.2. Since the Quillen and Hurewicz model categories, respectively denoted

by Ch≥0(R)q [Jar03, Remark 1.6] and Ch≥0(R)h are monoidal, then the above men-

tioned mixed model category, denoted by Ch≥0(R)m is also monoidal, by

[Col06, Proposition 6.6].
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The next two lemmas are useful in the description of the relationships between

the three monoidal model category mentioned in Remark 3.2.2.

Lemma 3.2.3. In Ch≥0(R) (or in Ch(R)), if a map f is a q-cofibration and a q-weak

equivalence, i.e., a quasi-isomorphism, then f is a h-weak equivalence, i.e., a chain

homotopy equivalence.

Proof. Let f : A �
� ∼ // X be an acyclic q-cofibration. We have the following split

short exact sequence of graded R-modules

0 // A �
� f

∼
// X // X/A // 0

since coker(f) = X/A is degreewise projective. Since f is a quasi-isomorphism, we

have H∗(X/A) = 0 by the long exact sequence, i.e., X/A is weakly contractible.

Also, X/A is a q-fibrant and q-cofibrant complex, and so it is contractible by White-

head’s Theorem in model categories [Hov99, Proposition 1.2.8]. Therefore, by

[MP12, Lemma 18.2.8], f is a chain homotopy equivalence.

Lemma 3.2.4. In Ch≥0(R) (or in Ch(R)), if a map j is an m-cofibration and an

m-weak equivalence, i.e., a quasi-isomorphism, then j is an h-weak equivalence, i.e.,

a chain homotopy equivalence.

Proof. Let j : A �
� ∼ // X be an acyclic m-cofibration, i.e., an m-cofibration and a

quasi-isomorphism. As an m-cofibration, by [MP12, Theorem 17.3.5], j factors as
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follows

A � p

i
  

� �

∼
j

// X

X ′

∼
f

>> ,

where i is a q-cofibration and f is a chain homotopy equivalence. Since j is also

a quasi-isomorphism, then by the 2-out-of-3 property, i is a quasi-isomorphism too.

Hence by Lemma 3.2.3, i is a chain homotopy equivalence and so by the 2-out-of-3

property, j is a chain homotopy equivalence too.

We have the following relations between three of the model structures on Ch≥0(R).

Proposition 3.2.5. For a commutative ring R, we have the following.

1. Ch≥0(R)h is enriched over Ch≥0(R)q.

2. Ch≥0(R)h is enriched over Ch≥0(R)m.

3. Ch≥0(R)m is enriched over Ch≥0(R)q.

Proof. Before we prove each of the enrichments, let us recall that we have the following

comparison between the different classes of maps defining the three model structures.

Wh ⊊ Wm = Wq, Cq ⊊ Cm ⊊ Ch and Fh = Fm ⊊ Fq.

For (1.), let i : K ↪→ L and j : A ↪→ X be respectively a h-cofibration and a

q-cofibration. i□j is an h-cofibration since Cq ⊊ Ch and Ch≥0(R)h is monoidal.

A similar argument works for the case where i is an acyclic h-cofibration. If instead
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j is an acyclic q-cofibration, then by Lemma 3.2.3, j is an acyclic h-cofibration.

Hence, the above argument applies again.

For (2.), the argument here is the same as in (1.) above, after replacing Lemma 3.2.3

by Lemma 3.2.4.

For (3.), Ch≥0(R)m is enriched over Ch≥0(R)q, since we have Cq ⊊ Cm and Wm = Wq,

and also Ch≥0(R)m is monoidal by Remark 3.2.2.

Lemma 3.2.6. In Ch≥0(R), the chain complex M [0] given by the R-module M con-

centrated in degree 0, is m-cofibrant if and only if M is projective.

Proof. By [Col06, Corollary 3.7], M [0] is m-cofibrant if and only if it is h-cofibrant and

homotopy equivalent to a q-cofibrant complex. But all complexes are h-cofibrant, and

q-cofibrant complexes are the degreewise projective ones. Hence, M [0] is m-cofibrant

if and only if it is homotopy equivalent to a degreewise projective complex P , in which

case M is a retract of the projective R-module P0, hence M is projective. Conversely,

if M is projective, then M [0] is q-cofibrant.

Proposition 3.2.7. For a commutative ring R that admits a non-projective module,

we have the following.

1. Ch≥0(R)q is not enriched over Ch≥0(R)h.

2. Ch≥0(R)m is not enriched over Ch≥0(R)h.

3. Ch≥0(R)q is not enriched over Ch≥0(R)m.
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Proof. For (1.), consider the q-cofibration i : 0 → R[0] and the h-cofibration j : 0 → L

that is not a q-cofibration, i.e., where L is not degreewise projective. We have that

the map i□j = j : 0 → L is not a q-cofibration.

For (2.), similarly, consider the h-cofibration j : 0 → M [0], with M non-projective.

The map j is not an m-cofibration since by Lemma 3.2.6, M [0] is not m-cofibrant.

For (3.), similarly, consider the complex L given by M
1−→ M in degrees 1 and 0,

and zero in all other degrees, with M non-projective. The map j : 0 → L is an

m-cofibration since L is a contractible complex. But j is not a q-cofibration.

3.3 Induced Hurewicz model structure on sModR

The following well-known fact tells us that having an equivalence of categories,

one can transport a model structure from one category to the other.1

Proposition 3.3.1. Let C be a model category given by the three classes of maps WC,

CC and FC, and U : D → C an equivalence of categories. Then the classes

WD := {f : d→ d′ | Uf ∈ WC}

CD := {f : d→ d′ | Uf ∈ CC}

FD := {f : d→ d′ | Uf ∈ FC}

form a model structure on D.
1For more details, see for instance: https://math.stackexchange.com/questions/2171572/

transferring-model-structures-along-an-equivalence-of-categories
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Proof. Observe that the category C is complete and cocomplete if and only if the

category D is complete and cocomplete. The class WD satisfies 2-out-of-3 since the

class WC does. The three classes in D are closed under retracts since the three classes

in C are. Also, the three classes WD, CD and FD are closed under composition and

contain isomorphisms, since WC, CC and FC do. In particular, the three classes are

closed under isomorphisms in the arrow category. Therefore, the factorization and

lifting axioms are invariant under equivalence of category.

Hence, the Dold–Kan correspondence induces a model structure on the category

of simplicial R-modules sModR, also called the Hurewicz model structure, and given

by the following classes of maps.

1. A map f is a weak equivalence if its normalizationN(f) is an h-weak equivalence

in Ch≥0(R).

2. A map p is a fibration if its normalization N(f) is an h-fibration in Ch≥0(R).

3. A map i is a cofibration if its normalization N(f) is an h-cofibration in Ch≥0(R).

Moreover, every object is fibrant and cofibrant.

Proposition 2.3.18 induces the following.

Proposition 3.3.2. Let R be a ring (not necessary commutative). For A ∈ sAb

and B ∈ sModR, the chain complex N(B)N(A) is a deformation retract of N
(
BA

)
in

Ch≥0(R) and this is given by the following two diagrams
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N(B)N(A) AW∗
//

id

==
N

(
BA

) EZ∗
// N(B)N(A), N

(
BA

) EZ∗
//

id

==
N(B)N(A) AW∗

//

��

N
(
BA

)
.

That is, the composite EZ∗ ◦ AW∗ is the identity, and the composite AW∗ ◦ EZ∗ is

naturally chain homotopic to the identity.

Proof. Here we consider the categories Ch≥0(R) and sModR enriched respectively over

the closed symmetric monoidal categories Ch≥0(Z) and sAb as stated in

Lemmas 2.3.6 and 2.3.8.

ConsiderDn the n-disk chain complex, i.e., the chain complex with Z 1−→ Z in degrees n

and n− 1, and zero in all other degrees. In degree n, we have:

N
(
BA

)
n
∼= HomCh≥0(Z)(D

n, N
(
BA

)
)

∼= HomsAb

(
Γ(Dn), BA

)
, by the Dold–Kan correspondence

∼= HomsAb(A⊗ Γ(Dn), B), by the unenriched tensor-hom adjunction

∼= HomCh≥0(Z)(N(A⊗ Γ(Dn)), N(B)), by the Dold–Kan correspondence

and

(
N(B)N(A)

)
n
∼= HomCh≥0(Z)

(
Dn, N(B)N(A)

)
∼= HomCh≥0(Z)(N(A)⊗Dn, N(B)), by the unenriched tensor-hom

adjunction.
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Hence, we have the following comparison of n-chains

N
(
BA

)
n

∼=
��

EZ∗
// (
N(B)N(A)

)
nAW∗

oo

∼=
��

HomCh≥0(Z)(N(A⊗ Γ(Dn)), N(B)) HomCh≥0(Z)(N(A)⊗Dn, N(B))

given by:

N(B) N(A⊗ Γ(Dn))
f
oo

AW
��

AW∗(g)

''

N(A)⊗Dn

EZ∗(f)

gg

g
//

EZ

OO

N(B).

From Proposition 2.3.18 and by functoriality, we have

EZ∗ ◦ AW∗ = (AW ◦ EZ)∗ = id.

We now show that the map AW∗ ◦ EZ∗ is chain homotopic to the identity, by

adapting a proof due to Opadotun of an analogous statement [Opa21, Theorem 6.3.1].

The n-disk Dn induces, as n varies, in the category Ch≥0(Z) the diagram D• given

by

0 // D0 δ0 // D1 δ1 // D2 δ2 // D3 // · · ·

where the coboundary map δn is the identity in degree n and 0 elsewhere. Hence, D•

forms a cochain complex in the category Ch≥0(Z). Applying the denormalization Γ

degreewise, we obtain Γ(D•)

0 // Γ(D0)
Γ(δ0)

// Γ (D1)
Γ(δ1)

// Γ (D2)
Γ(δ2)

// Γ (D3) // · · ·

as a cochain complex in the category sAb. From Proposition 2.3.18, there is a

chain homotopy Hn : EZ ◦AW ∼ id for each n. By naturality of Hn, as n varies, we
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obtain a diagram of cochain complexes of chain complexes

N(A⊗ Γ(D•))� _

ι0
��

EZ◦AW

''

N(A⊗ Γ(D•))⊗N
(
Z∆1

) H // N (A⊗ Γ (D•))

N (A⊗ Γ (D•)) .
?�

ι1

OO

id

77

Applying HomCh≥0(Z)(−, N(B)) degreewise, we obtain a diagram in Ch≥0(R)

HomCh≥0(Z)(N(A⊗ Γ(D•)), N(B))

HomCh≥0(Z) (N(A⊗ Γ(D•))⊗N (Z∆1) , N(B))

ι∗1
��

ι∗0

OO

HomCh≥0(Z) (N (A⊗ Γ (D•)) , N(B))

AW ∗◦EZ∗
mm

H∗
oo

idqq

HomCh≥0(Z) (N (A⊗ Γ (D•)) , N(B)) .

To show that AW ∗ ◦ EZ∗ ∼ id it suffices to show that

HomCh≥0(Z)
(
N (A⊗ Γ (D•))⊗N

(
Z∆1

)
, N(B)

)
is a path object for HomCh≥0(Z) (N (A⊗ Γ (D•)) , N(B)), i.e., the restriction map in

Ch≥0(R)

HomCh≥0(Z) (N (A⊗ Γ (D•)) , N(B)) → HomCh≥0(Z) (N (A⊗ Γ (D•))⊗N (Z∆1) , N(B)) (3.3.1)

induced by ∆1 → ∆0 is a chain homotopy equivalence. By Proposition 2.3.18, the

map (3.3.1) is a retract of the map

HomCh≥0(Z) (N (A⊗ Γ (D•)) , N(B)) → HomCh≥0(Z)
(
N

(
A⊗ Γ (D•)⊗ Z∆1

)
, N(B)

)
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which a calculation identifies as the map

N
(
BA

)
→ N

(
BA⊗Z∆1

)
. (3.3.2)

The map A ⊗ Z∆1 → A collapsing the cylinder is a homotopy equivalence in sAb.

Hence the induced map on cotensoring BA → BA⊗Z∆1 is a homotopy equivalence in

sModR. Applying normalization yields a chain homotopy equivalence in Ch≥0(R),

namely the map (3.3.2).

The following proposition gives us some homotopy properties satisfies by the

Hurewicz model structure on sModR given above.

Proposition 3.3.3. In the Hurewicz model structure on sModR, the three classes of

maps are characterized as follows.

1. A map is a weak equivalence if and only if it is a homotopy equivalence.

2. A map is a fibration if and only if it satisfies the HLP.

3. A map is a cofibration if and only if it satisfies the HEP.

Proof. Here we consider the categories Ch≥0(R) and sModR enriched, tensored and

cotensored over Ch≥0(Z) and sAb respectively, as describe in Lemmas 2.3.6 and

2.3.8.

(1.) Two maps f, f ′ : A → B in sModR are homotopic if and only if their normal-

izations N(f), N(f ′) : N(A) → N(B) are chain homotopic [Wei94, Theorem 8.4.1].
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Therefore f is a homotopy equivalence if and only if N(f) is a chain homotopy equiv-

alence, i.e., f is a weak equivalence in sModR.

(2.) ( =⇒ ) Let p : E → B be a fibration in sModR. Consider the lifting problem in

sModR given by

A� _
ι0 ∼
��

f
// E

p
����

A⊗ Z∆1
g
//

?
::

B.

Applying the normalization N ,

N(A)� _
ι0 ∼
��

� v

N(ι0)

∼
))

N(f)
// N(E)

N(p)
����

N(A)⊗N (Z∆1) �
�

EZ

∼ //

∃h
33

N (A⊗ Z∆1)
N(g)

//

∃H

88

N(B)

there exists a lift h by assumption. Also, there exists a lift H in the square given

by the identity N(g) ◦ EZ = N(p) ◦ h, thanks to the fact that the map EZ is a split

monomorphism and a chain homotopy equivalence by Proposition 2.3.18, i.e., EZ

is a trivial Hurewicz cofibration and so satisfies the Left Lifting Property (LLP) with

respect to the Hurewicz fibration N(p) in Ch≥0(R). Applying the denormalization Γ,

A� _
Γ(ι0) ∼

��

� v

ι0
∼

))

f
// E

p
����

Γ (N(A)⊗N (Z∆1)) �
�

Γ(EZ)

∼ //

Γ(h)
33

A⊗ Z∆1
g
//

Γ(H)

::

B.

So the homotopy Γ(H) gives a solution to the lifting problem. Therefore p satisfies

the HLP in sModR.
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( ⇐= ) Let p : E → B be a map satisfying the HLP in sModR. Thanks to

Proposition 3.1.5, it suffices to solve the following lifting problem in Ch≥0(R) given

by

A� _
ι0 ∼
��

f
// N(E)

N(p)

��

A⊗N (Z∆1) g
//

?
77

N(B).

Applying the denormalization Γ,

Γ(A)� _
ι0 ∼
��

Γ(f)
// E

p

��

Γ(A)⊗ Z∆1

Γ(AW )

∼ // //

∃h
33

Γ (A⊗N (Z∆1))
Γ(g)

// B

there exists a lift h by assumption. Applying the normalization N ,

AkK

ι0
∼

��

� _

N(ι0) ∼
��

f
// N(E)

N(p)
����

N (Γ(A)⊗ Z∆1) AW
∼
// //

N(h)
33

A⊗N (Z∆1) g
// N(B)

A⊗N (Z∆1)
( �

EZ
∼

55

we have AW ◦ EZ = id by Proposition 2.3.18. So the homotopy H = N(h) ◦ EZ

gives a solution to the lifting problem. Therefore p is a fibration.

(3.) The proof here is quite similar to the case of fibrations in (2.) above.

( =⇒ ) Let i : A → X be a cofibration in sModR. Consider the lifting problem in
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sModR given by

A� _

i

��

f
// BZ∆1

ev0∼
����

X g
//

?

<<

B.

Applying the normalization N ,

N(A)� _

N(i)

��

N(f)
// N

(
BZ∆1

)
N(ev0)

∼

'' ''

EZ∗

∼
// // N(B)N(Z∆

1)

ev0∼
����

N(X)

∃H
99

∃h
44

N(g)
// N(B)

there exists a lift h by assumption. Also, there exists a lift H in the square given by

the identity EZ∗ ◦ N(f) = h ◦ N(i), thanks to the fact that the map EZ∗ is a split

epimorphism and a chain homotopy equivalence by Proposition 3.3.2, i.e., EZ∗ is

a trivial Hurewicz fibration and so satisfies the Right Lifting Property (RLP) with

respect to the Hurewicz cofibrationN(i) in Ch≥0(R). Applying the denormalization Γ,

A� _

i

��

f
// BZ∆1

ev0

∼

'' ''

Γ(EZ∗)

∼
// // Γ

(
N(B)N(Z∆1)

)
Γ(ev0)∼
����

X

Γ(H)

>>

Γ(h)
44

g
// B.

So the homotopy Γ(H) gives a solution to the lifting problem. Therefore i satisfies

the HEP in sModR.

( ⇐= ) Let i : A → X be a map satisfying the HEP in sModR. Thanks to

Proposition 3.1.5, it suffices to solve the following lifting problem in Ch≥0(R) given
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by

N(A)

N(i)

��

f
// BN(Z∆1)

ev0∼
����

N(X) g
//

?

::

B.

Applying the denormalization Γ,

A

i

��

Γ(f)
// Γ

(
BN(Z∆1)

)
� �Γ(AW

∗)

∼
//

Γ(ev0)

∼

&& &&

Γ(B)Z∆
1

ev0∼
����

X
Γ(g)

//

∃h

44

Γ(B)

where Γ(AW∗) is the denormalization of the map AW∗ given in Proposition 3.3.2,

there exists a lift h by assumption. Applying the normalization N ,

BN(Z∆1)

ev0
∼

||||

N(A)� _

N(i)

��

f
// BN(Z∆1) � �

AW∗
∼ // N

(
Γ(B)Z∆

1
)

N(ev0) ∼
����

EZ∗
∼

88 88

N(X)

N(h)
44

g
// B

we have EZ∗ ◦ AW∗ = id by Proposition 3.3.2. So the homotopy H = EZ∗ ◦N(h)

gives a solution to the lifting problem. Therefore i is a cofibration.

The Hurewicz model structure on the category sModR of the simplicial R-modules

satisfies the following monoidal property.

Proposition 3.3.4. 1. For a commutative ring R, the category sModR with the

Hurewicz model structure is a monoidal model category.
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2. For an arbitrary ring R, the Hurewicz model structure on sModR is an en-

riched model category over the category sAb of simplicial abelian groups, with

the Hurewicz model structure.

Proof. For item (1.), we consider the category sModR endowed with the closed sym-

metric monoidal structure as described in Lemma 2.3.8.

Let i : X → Y and k : V → W be cofibrations in sModR. Let us show that their

pushout product i2k : X ⊗W ⨿X⊗V Y ⊗ V → Y ⊗W is a cofibration too, i.e., for

any acyclic fibration j : A → B, the following lifting problem admits a solution by

Proposition 3.3.3,

X ⊗W ⨿X⊗V Y ⊗ V

i2k
��

f̃
// A

j∼
����

Y ⊗W
g̃

//

?

66

B.

Applying the normalization N ,

N(X)⊗N(W )⨿N(X)⊗N(V ) N(Y )⊗N(V )
� _

N(i)2N(k)
��

� �EZ⨿EZEZ

∼
// N(X ⊗W ⨿X⊗V Y ⊗ V )

N(i2k)

vv

N(f̃)
// N(A)

N(j)∼

����

N(Y )⊗N(W )� _

EZ ∼
��

N(Y ⊗W )
N(g̃)

//

∃h

33

N(B)

(3.3.3)

there exists a lift h in the outer square thanks to the fact that EZ ◦ (N(i)2N(k)) is

the composition of cofibrations by Proposition 2.3.18 and so satisfies the LLP with

respect to the acyclic fibration N(j) in Ch≥0(R), since the Hurewicz model structure
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turns Ch≥0(R) into a monoidal model category as we have shown in

Proposition 3.1.7. Applying the denormalization Γ, we have

Γ
(
N(X)⊗N(W )⨿N(X)⊗N(V ) N(Y )⊗N(V )

)
� _

Γ(N(i)2N(k))
��

� �Γ(EZ⨿EZEZ)

∼
// X ⊗W ⨿X⊗V Y ⊗ V

hH

i2k

vv

f̃
// A

j∼

����

Γ(N(Y )⊗N(W ))� _

Γ(EZ) ∼
��

Y ⊗W
g̃

//

Γ(h)

44

B.

Now assume moreover that i : X → Y and k : V → W are cofibrations (with

either of the two being additionally a weak equivalence) in sModR. We have to show

that their pushout product i2k : X ⊗ W ⨿X⊗V Y ⊗ V → Y ⊗ W is an acyclic

cofibration. We have that N(i)2N(k) is an acyclic cofibration in the monoidal model

category Ch≥0(R)h. Hence, considering the upper-left triangle of the diagram (3.3.3),

we have that N(i)2N(k) and EZ are both chain homotopy equivalences in Ch≥0(R)h

by Proposition 2.3.18. Moreover, because the two pushouts in

N(X)⊗N(W )⨿N(X)⊗N(V ) N(Y )⊗N(V ) �
�EZ⨿EZEZ

∼
// N(X ⊗W )⨿N(X⊗V ) N(Y ⊗ V )

are homotopy pushouts in the Hurewicz model category Ch≥0(R)h, the map EZ⨿EZEZ

is a chain homotopy equivalence. So, by the 2-out-of-3 property, N(i2k) is a chain

homotopy equivalence. Therefore, i2k is an acyclic cofibration in sModR.

For item (2.), consider the proof of item (1.) where we take the map k from sAb and

apply item (2.) from Proposition 3.1.7.
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3.4 Bousfield model structure on Ch≥0(A)

For a bicomplete abelian category A with an injective class I, i.e., the dual of a pro-

jective class [Chr98, §2], one can recover the Bousfield model structure [Bou03, §4.4]

on the category Ch≥0(A) of non-negatively graded cochain complexes over A. For a

bicomplete pointed category A (not necessarily abelian) with an injective class I, since

the opposite category (cA)op of cosimplicial objects in A satisfies (cA)op ∼= s(Aop),

applying [CH02, Theorem 6.3] to the opposite category Aop yields the following model

structure on cA.

Proposition 3.4.1. If for each X in cA and each I in I, A(X, I) is a fibrant sim-

plicial set, then the following classes of maps form a model structure on cA.

1. A map f is a weak equivalence if it is an I-equivalence, i.e., A(f, I) is a weak

equivalence of simplicial sets, for each I ∈ I.

2. A map f is a cofibration if A(f, I) is a fibration of simplicial sets, for each

I ∈ I.

3. A map f is a fibration if it has the RLP with respect to all I-acyclic cofibrations.

Now, assuming A to be abelian, the hypothesis of Proposition 3.4.1 holds. The
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Dold–Kan correspondence yields the diagram

s(Aop)

∼=
��

N //

Ch≥0(Aop)
Γ

∼=oo

∼=
��

(cA)op
∼= // (Ch≥0(A))op

and so induces a model structure on the category Ch≥0(A) of non-negatively graded

cochain complexes of objects in A given as follows by dualizing [CH02, Corollary 6.4],

also found in [Bou03, §4.4].

Corollary 3.4.2 (Bousfield model structure). Let A be a bicomplete abelian category

with an injective class I. The category Ch≥0(A) of non-negatively graded cochain

complexes of objects in A has a model structure given as follows.

1. A map f is a weak equivalence if A(f, I) is a quasi-isomorphism in Ch≥0(Z),

for each I ∈ I.

2. A map f is a cofibration if it is I-monic in positive degrees (but not necessarily

in degree 0) in A, i.e., A(f, I) is surjective in positive degrees, for each I ∈ I.

3. A map f is a fibration if it is a degreewise split epimorphism with I-injective

kernel.

Moreover, every complex is cofibrant, and a complex is fibrant if and only if it is a

complex of I-injectives.

Taking I to be the trivial injective class given by all objects of A yields the

following example.
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Example 3.4.3. For A a bicomplete abelian category, Ch≥0(A) has a model structure

given by:

1. A map is a weak equivalence if it is a cochain homotopy equivalence.

2. A map is a cofibration if it is a degreewise split monomorphism in positive

degrees.

3. A map is a fibration if it is a degreewise split epimorphism.

Moreover, every complex is fibrant and cofibrant.
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Chapter 4

Change of Enrichment along a Weak

Monoidal Quillen Pair

The chapter is organized as follows. In Section 4.1, we give the conditions un-

der which the tensoring and cotensoring structures are preserved. In Section 4.2,

we introduce the notion of weak enriched adjunction and we show that any weak

monoidal Quillen adjunction lifts to a weak enriched adjunction. In Section 4.3, we

introduce the notions of weak tensoring and weak cotensoring, and we show that

they are preserved by any weak monoidal Quillen adjunction. In Section 4.4, we

introduce equivalent formulations of the unit axiom and we prove that some impli-

cations between them hold, whenever the tensoring is replaced by its weak version.

In Section 4.5, we introduce the notion of weak V-model category and we show that

this is preserved by a change of enrichment along a weak monoidal Quillen adjunction.

Finally, in Section 4.6, we apply some of the above mentioned results in the case of
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the Dold–Kan correspondence.

4.1 Preservation of tensoring and cotensoring

Given an adjunction F : W // V : Goo , the following lemma gives us a necessary

and sufficient condition for which the change of enrichment along the right adjoint G

preserves the underlying category, that is, (G∗C)0 ∼= C0 for any V-category C. In this

case, any potential model structure on C0 is preserved.

Lemma 4.1.1. Let (F ⊣ G) be an adjunction given by F : W // V : Goo , where the

right adjoint G is lax monoidal. The following are equivalent.

1. F (1W) ∼= 1V .

2. G commutes with the underlying set functors, that is, the following diagram

commutes (up to natural isomorphism)

V G //

V(1V ,−)=U
!!

W
W(1W ,−)=U

��

Set,

(4.1.1)

where U is the underlying set functor.

3. Change of enrichment along G : V → W preserves the underlying category for

every V-enriched category C, that is, the following diagram commutes (up to
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natural isomorphism)

V−Cat
G∗ //

U∗ &&

W−Cat

U∗
��

Cat,

(4.1.2)

where U∗ is the forgetful functor.

Proof. (1) ⇐⇒ (2) The adjunction (F ⊣ G) gives us the following natural bijection

V(F (1W), v) ∼= W(1W , Gv),∀v ∈ V , (4.1.3)

and the commutativity of (4.1.1) gives us the following natural bijection

V(1V , v) ∼= W(1W , Gv),∀v ∈ V . (4.1.4)

Hence (4.1.3) and (4.1.4) gives us the following natural bijection

V(F (1W), v) ∼= V(1V , v) ⇐⇒ F (1W) ∼= 1V , by the Yoneda Lemma.

(2) =⇒ (3) Since (2) is equivalent to (1), F (1W) ∼= 1V holds. Then the underlying

categories are preserved and so the commutativity of (4.1.2) holds on objects. On

hom objects, we have

U∗G∗C(x, y) := (UG)∗C(x, y), by Proposition 2.1.7

∼= U∗C(x, y), ∀x, y ∈ C,

natural since (4.1.1) is.
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(3) =⇒ (2) The category V is V-enriched as a monoidal category and we have

U∗G∗V(1V , v)

:=
��

∼= // U∗V(1V , v)

:=
��

UGV(1V , v)

∼=
��

UV(1V , v)

∼=
��

W(1W , Gv) : UGv
∴ ∼=

// Uv : V(1V , v),

(4.1.5)

for any v ∈ V , that is, the solid diagram induces an isomorphism UGv ∼= Uv given

by the dashed map. All the maps in diagram (4.1.5) are natural in W , so we are

done.

Corollary 4.1.2. For any adjunction (F ⊣ G) with F strong monoidal, G preserves

the underlying sets.

Proof. This follows from Lemma 4.1.1, since F strong monoidal implies F (1W) ∼= 1V

and G lax monoidal, as the right adjoint of the strong (and so oplax) monoidal functor

F .

The following example illustrates Lemma 4.1.1.

Example 4.1.3. 1. The normalization N and the denormalization Γ defining the

Dold–Kan correspondence sModR
N //

Ch≥0(R)∼=
Γ
oo are both not strong monoidal

but preserve underlying sets.

• The underlying set of a simplicial left R-module A• is given by its

0-simplices, i.e., U(A•) = A0, and the underlying set of a chain complex
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is given by its 0-cycles, in particular, U(N(A•)) = Z0(N(A•)). But since

N(A•) is a non-negatively graded chain complex, we have

Z0(N(A•)) = N(A•)0 = A0 by definition.

• The underlying set of a chain complex C is given by its 0-cycles, i.e.,

U(C) = Z0(C) = C0 since C is non-negatively graded. But since the

underlying set of a simplicial R-module is given by its 0-simplices, then

U(Γ(C)) = Γ(C)0 = C0.

2. The geometric realization sSet
|·|−→ Top is strong monoidal but

U(|X•|) ≇ U(X•) = X0, i.e., | · | does not preserve the underlying set. Note

that the geometric realization | · | does not admit a left adjoint, since it doesn’t

preserve infinite products.

The following proposition gives us a necessary and sufficient condition, that is, F

strong monoidal, under which the tensoring or the cotensoring is preserved by a change

of enrichment along the right adjoint of the lax monoidal adjunction F : W // V : Goo .

Proposition 4.1.4. Let V and W be two closed symmetric monoidal categories, and

G be a lax monoidal functor such that the following is an adjunction F : W
//
V : Goo .

1. If F is strong monoidal, then for a V-category C, the W-category G∗C admits a

tensoring or a cotensoring over W given respectively by:

x⊗ w := x⊗ Fw and xw := xFw, for any x ∈ C and w ∈ W .
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2. If F (1W) ∼= 1V and the W-category G∗V admits a tensoring or a cotensoring

over W, then F is strong monoidal.

Proof. (1.) See [Rie14, Proposition 3.7.11].

(2.) Assume that F (1W) ∼= 1V and the W-category G∗V admits a tensoring over W .

We have the following bijection for any w ∈ W and v1, v2 ∈ V .

HomG∗V(v1 ⊗ w, v2) ∼= HomW(w,G∗V(v1, v2)), by definition of the tensoring

HomV(v1 ⊗ w, v2) ∼= HomW(w,GV(v1, v2)), (G∗V)0 ∼= V0 since F (1W) ∼= 1V

∼= HomV(Fw,V(v1, v2)), by the unenriched adjunction F ⊣ G

∼= HomV(v1 ⊗ Fw, v2), by the unenriched tensor-hom adjunction

=⇒ v1 ⊗ w ∼= v1 ⊗ Fw, by the unenriched Yoneda Lemma applied to V .

In particular for v1 = 1V ,1V ⊗ w ∼= 1V ⊗ F (w) ∼= F (w). Hence, applying the

associativity of the tensoring we have the following for any w1, w2 ∈ W :

(1V ⊗ w1)⊗ w2

∼= //

∼=
��

1V ⊗ (w1 ⊗ w2)

∼=
��

F (w1)⊗ w2

∼=
��

F (w1 ⊗ w2) +3 F (w1 ⊗ w2) ∼= F (w1)⊗ F (w2).

F (w1)⊗ F (w2)

∴ ∼=

55
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Now, assume that F (1W) ∼= 1V and the W-enriched category G∗V admits a coten-

soring over W . We have the following bijection for any w ∈ W and v1, v2 ∈ V .

HomG∗V(v1, v
w
2 )

∼= HomW(w,G∗V(v1, v2)), by definition of the cotensoring

HomV(v1, v
w
2 )

∼= HomW(w,GV(v1, v2)), since F (1W) ∼= 1V

∼= HomV(Fw,V(v1, v2)), by the unenriched adjunction F ⊣ G

∼= HomV(v1 ⊗ Fw, v2), by the unenriched tensor-hom adjunction

∼= HomV(v1,V(Fw, v2)), by the unenriched tensor-hom adjunction

=⇒ vw2
∼= V(Fw, v2) =: vFw2 , by the unenriched Yoneda Lemma applied in V .

By the exponential law and the Yoneda Lemma, we have the following for any

w1, w2 ∈ W and v ∈ V :

(vw2)w1
∼= //

∼=
��

vw1⊗w2

∼=
��

V(F (w1),V(F (w2), v))

∼=
��

V(F (w1 ⊗ w2), v) +3 F (w1 ⊗ w2) ∼= F (w1)⊗ F (w2).

V(F (w1)⊗ F (w2), v)

∴ ∼=

44

This completes the proof.

4.2 Weak enriched adjunction

The proposition bellow gives the necessary and sufficient condition under which

the lax monoidal adjunction F : W // V : Goo lifts to a W-adjunction

F : W //
G∗V : Goo .
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Proposition 4.2.1. The lax monoidal adjunction F : W // V : Goo lifts to a

W-adjunction F : W //
G∗V : Goo if and only if the left adjoint F is strong monoidal.

Proof. ( =⇒ ) Let us show that the functor F satisfies the natural isomorphisms

F (w ⊗ w′) ∼= Fw ⊗ Fw′, for any w,w′ ∈ W .

G∗V(F (w ⊗ w′), v) ∼= W(w ⊗ w′, Gv) by enriched F ⊣ G

∼= W(w,W(w′, Gv)) by the tensor-hom adjunction on W

∼= W(w,G∗V(Fw′, v)) by enriched F ⊣ G

:= W(w,GV(Fw′, v)) by definition

∼= G∗V(Fw,V(Fw′, v)) by enriched F ⊣ G

∼= G∗V(Fw ⊗ Fw′, v) by the tensor-hom adjunction on V .

Therefore, F (w⊗w′) ∼= Fw⊗Fw′ by the enriched Yoneda Lemma and the naturality

is given by the naturality of the unenriched adjunction F ⊣ G.

( ⇐= ) The converse is found in [Rie14, Corollary 3.7.12]. This relied on

[Rie14, Proposition 3.7.10], which we spelled out in Proposition 2.2.4.

Below we provide more details about the converse of the above proof. Let us

start by lifting both functors F and G to W-functors and produce some natural

isomorphisms G∗V(Fw, v) ∼= W(w,Gv) in W . This is done under the assumption

that the left adjoint F is strong monoidal.

1. Lifting F to a W-functor.
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• On objects, the W-functor is given by the original unenriched functor F

as follows

Ob(W)
F−→ Ob(G∗V) := Ob(V).

• On hom objects, the W-functor

W(x, y)
Fx,y

// G∗V(Fx, Fy) := GV(Fx, Fy)

is defined by its adjunct F̃x,y obtained successively through the adjunction

F ⊣ G and the tensor-hom adjunction, by the composite

FW(x, y)⊗ Fx
//
F (W(x, y)⊗ x)∼=

δoo F (ev)
// Fy.

• The W-functor F preserves compositions as shown by the following dia-

gram chase obtained successively through the adjunction F ⊣ G and the

tensor-hom adjunction.

F (W(y, z)⊗W(x, y))⊗ Fx

∼=
δ

rr

F (◦)⊗Fx

**

FW(y, z)⊗ FW(x, y)⊗ Fx

22

F (Fy,z)⊗F (Fx,y)⊗Fx
��

◦⊗Fx
// FW(x, z)⊗ Fx

F̃x,z

��

FGV(Fy, Fz)⊗ FGV(Fx, Fy)⊗ Fx

(ϵ⊗ϵ)⊗Fx
��

V(Fy, Fz)⊗ Fy

ev

**V(Fy, Fz)⊗ V(Fx, Fy)⊗ Fx ◦ //

id⊗ev
22

◦⊗Fx
,,

Fz

V(Fx, Fz)⊗ Fx.

ev

44

(4.2.1)
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• The W-functor F preserves identities as shown by the following diagram

chase obtained successively through the adjunction F ⊣ G and the tensor-

hom adjunction,

F1W ⊗ Fx

∼=ϵ⊗Fx
��

F1x⊗Fx// FW(x, x)⊗ Fx

F̃x,x
��

1V ⊗ Fx

OO

λFx

// Fx.

(4.2.2)

• The underlying functor of the W-functor F : W → G∗V is the original

functor F : W → V . Indeed, for any map f : x→ y in W , we have

(
Fx

Ff−→ Fy
)

1W
Ff

// G∗V(Fx, Fy) = GV(Fx, Fy)

1W
f

//W(x, y)
Fxy−−→ G∗V(Fx, Fy) = GV(Fx, Fy)

since the following diagram, formed by the adjuncts of the maps above, is

commutative:

F1W ⊗ Fx

∼=
��

∼= // F (1W ⊗ x)

∼=
��

1V ⊗ Fx

η⊗Fx

OO

1⊗Fx
��

∼=
λx //

Fxoo
Ff

// Fy

∼=
��

FW(x, y)⊗ Fx
//

F (W(x, y)⊗ x).
δ

∼=oo

F (ev)

OO

(4.2.3)

2. Lifting G to a W-functor.
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• On objects,

Ob(V) =: Ob(G∗V)
G−→ Ob(W)

given by the original unenriched functor G.

• On hom objects,

GV(x, y) =: G∗V(x, y)
Gx,y

//W(Gx,Gy)

is given by its adjunct G̃x,y obtained, through the tensor-hom adjunction

by the composite

GV(x, y)⊗Gx
µ
// G(V(x, y)⊗ x)

G(ev)
// Gy.

• The W-functor G preserves compositions as shown by the following dia-

gram chase obtained through the tensor-hom adjunction.

GV(y, z)⊗GV(x, y)⊗Gx

Gy,z⊗Gx,y⊗Gx

��

GV(y,z)⊗G̃x,y

++

◦⊗Gx
// GV(x, z)⊗Gx

G̃x,z

��

GV(y, z)⊗Gy

G̃y,z

))W(Gy,Gz)⊗W(Gx,Gy)⊗Gx
◦̃ //

◦⊗Gx
++

Gz

W(Gx,Gz)⊗Gx

ev

55

(4.2.4)

• The W-functor G preserves identities as shown by the following diagram
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chase obtained through the tensor-hom adjunction.

1W ⊗Gx

λGx
((

1x⊗Gx// GV(x, x)⊗Gx

G̃x,x

��

Gx

(4.2.5)

• The underlying functor of the W-functor G : G∗V → W is G : V → W .

Indeed, for any map f : x→ y in V , we have

(
Gx

Gf−→ Gy
)

1W
Gf

//W(Gx,Gy)

1W
f

// G∗V(x, y) = GV(x, y) Gxy−−→ W(Gx,Gy)

since the following diagram, formed by the adjuncts of the maps above, is

commutative:

1W ⊗Gx

1⊗Gx
((

∼= // Gx
Gf

// Gy

GV(x, y)⊗Gx µ
// G(V(x, y)⊗ x)

G(ev)

OO
(4.2.6)

3. The isomorphisms G∗V(Fw, v) ∼= W(w,Gv) in W is given by the Yoneda
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Lemma. Indeed,

W(w′, G∗V(Fw, v)) := W(w′, GV(Fw, v)) by definition

∼= V(Fw′,V(Fw, v)) by the unenriched adjunction F ⊣ U

∼= V(Fw ⊗ Fw′, v) by the tensor-hom adjunction

∼= V(F (w ⊗ w′), v) since F is strong monoidal

∼= W(w ⊗ w′, Gv) by the unenriched adjunction F ⊣ U

∼= W(w′,W(w,Gv)) by the tensor-hom adjunction.

The naturality is given by the one of the different adjunctions.

In the case of a weak Quillen adjunction F : W // V : Goo , the left adjoint F is

not necessary strong monoidal and so, the adjunct F ⊣ G lift to a weak version of

the W-adjunction F : W
//
G∗V : Goo defined as follows.

Definition 4.2.2. Let C and D be V-model categories. A weak V-adjunction

F : C // D : Goo consists of natural maps D(Fc, d) → C(c,Gd) that are weak equiv-

alences in V, for any cofibrant c ∈ C and fibrant d ∈ D.

Proposition 4.2.3. Let V and W be monoidal model categories. Any weak monoidal

Quillen adjunction F : W // V : Goo lifts to a weak W-adjunction

F : W //
G∗V : Goo .

Proof. For any w1 ∈ W , any cofibrant w2 ∈ W and any fibrant v ∈ V , we have the
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following.

W(w1, G∗V(Fw2, v)) := W(w1, GV(Fw2, v)), by definition

∼= V(Fw1,V(Fw2, v)), by the adjunction F ⊣ G

∼= V(Fw1 ⊗ Fw2, v), by the tensor-hom adjunction

δ∗−→ V(F (w1 ⊗ w2), v), δ the comultiplication map of F

∼= W(w1 ⊗ w2, Gv), by the adjunction F ⊣ G

∼= W(w1,W(w2, Gv)), by the tensor-hom adjunction. (4.2.7)

For w1 = G∗V(Fw2, v), the image of the identity gives us the comparison map

G∗V(Fw2, v)
ϕw2,v−−−→ W(w2, Gv).

For w1, w2 cofibrant in W , F (w1 ⊗ w2)
δ−→
∼
Fw1 ⊗ Fw2 is a weak equivalence in V .

Then applying V(−, v), with fibrant v ∈ V , we obtain the following weak equivalence

V(Fw1 ⊗ Fw2, v)
δ∗−→
∼

V(F (w1 ⊗ w2), v),

since V(−, v), with v fibrant, preserves weak equivalences between cofibrant objects

in V by [Rie14, Lemma 9.2.3].

We want to show that the map ϕw2,v constructed above is a weak equivalence when

w2 ∈ W is cofibrant and v ∈ V is fibrant. By saturation [Hov99, Theorem 1.2.10], it

suffices to show that the induced map [w1, G∗V(Fw2, v)]
(ϕw2,v)∗−−−−−→ [w1,W(w2, Gv)] of

hom sets in Ho(W), is a bijection for any cofibrant w1 ∈ W . By Remark 2.5.12,
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Ho(V) and Ho(W) are closed symmetric monoidal categories, and this fact gives us

the following.

[w1, G∗V(Fw2, v)] := [w1, GV(Fw2, v)], by definition

∼= [w1,RG (V(Fw2, v))], since V(Fw2, v) is fibrant

∼= [LF (w1),V(Fw2, v)], by the derived adjunction

∼= [LF (w1)⊗L F (w2), v], by the derived tensor-hom in Ho(V)

∼= [F (w1)⊗ F (w2), v], since w1 and w2 are cofibrant

δ∗−→∼= [F (w1 ⊗ w2), v], since δ is a weak equivalence

∼= [LF (w1 ⊗ w2), v], since w1 ⊗ w2 is cofibrant

∼= [w1 ⊗ w2,RG(v)], by the derived adjunction

∼= [w1,W(w2,RG(v))], by the derived tensor-hom in Ho(W)

∼= [w1,W(w2, Gv)], since v is fibrant,

where RG and LF are respectively the right and the left derived functor of the

adjunction F ⊣ G.

The following lemma is used in the proof of Proposition 4.3.3.
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Lemma 4.2.4. Consider the map W(w1, G∗V(Fw2, v)) → W(w1,W(w2, Gv)) con-

structed in Equation (4.2.7). In the special case w1 = Gv and w2 = 1W , we have

W(Gv,G∗V(F1W , v)) → W(Gv,W(1W , Gv))

G(ε∗ ◦ η) 7→ η̃,

with v
η

∼=
// V(1V , v)

ε∗ // V(F1W , v) .

Proof. From the series of maps in (4.2.7), diagram chasing gives the following:

W(Gv,GV(F (1W), v)) ∋ G(ε∗ ◦ η)
_

��∼= // V(FGv,V(F (1W), v)) ∋ ε∗ ◦ η ◦ ϵv_

��∼= // V(FGv ⊗ F (1W), v) ∋ ev ◦ (η ⊗ id) ◦ (ϵ⊗ ε)
_

��δ∗ // V(F (Gv ⊗ 1W), v)

∼=
��

V(FGv, v)
∼=

F (ρ̃)∗
oo

∼=
��

∋ ϵ_

��∼= //W(Gv ⊗ 1W , Gv) W(Gv,Gv)
∼=
ρ̃∗

oo ∋ id_

��∼= //W(Gv,W(1W , Gv)) ∋ η̃.

The step with δ∗ relied on the counitality equation of the oplax monoidal functor

F .

The change of enrichment along a weak monoidal Quillen adjunction preserved

the SM7 axiom, whenever the left adjoint preserved the tensor unit as stated by the

following lemma.
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Lemma 4.2.5. Let V and W be monoidal model categories. For any weak monoidal

Quillen adjunction F : W // V : Goo such that F (1W) ∼= 1V , the change of enrich-

ment along G preserves SM7.

Proof. Consider a V-enriched model category C satisfying SM7. The category G∗C

is a W-enriched category since G is a lax monoidal functor. Also, G∗C has the same

underlying category as C by Lemma 4.1.1, i.e., (G∗C)0 = C0, since F (1W) ∼= 1V .

In particular, the underlying category (G∗C)0 of G∗C has the same model structure

as C0. Let us show that the model category G∗C satisfies SM7. Let i : a ↪→ b be a

cofibration and p : x↠ y be a fibration in (G∗C)0 = C0. We have

G∗C(b, x)
(i∗,p∗)

//

1○

G∗C(a, x)×G∗C(a,y) G∗C(b, y)

3○

GC(a, x)×GC(a,y) GC(b, y)

GC(b, x)
G(i∗,p∗)

// G
(
C(a, x)×C(a,y) C(b, y)

)∼= 2○

OO

where the 1○ and 3○ are given by the definition of the change of enrichment.

The isomorphism 2○ holds since G preserves limits as a right adjoint functor.

Since the V-enriched model category C satisfies SM7, the map

(i∗, p∗) : C(b, x) → C(a, x)×C(a,y) C(b, y)

is a fibration. Hence G(i∗, p∗) is also a fibration since G : V → W is a right Quillen

functor. Same for acyclic fibrations.
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4.3 Weak tensoring and weak cotensoring

We define the weak tensoring and the weak cotensoring as follows.

Definition 4.3.1. Let C be a V-enriched model category satisfying SM7.

• A weak tensoring of C over V is a bifunctor − ⊗ − : C × V → C, satisfying

the external pushout-product axiom, together with a natural map

φv,x,y : C(x⊗ v, y) → V(v, C(x, y)) (4.3.1)

which is a weak equivalence in V for cofibrant v ∈ V, cofibrant x ∈ C, and fibrant

y ∈ C, and a natural map ρx : x⊗1 → x, for any x ∈ C, satisfying the following

commutative diagram

C(x⊗ 1, y)

φ1,x,y

��

C(x, y)ρ∗xoo

∼=
ww

V(1, C(x, y)).

• A weak cotensoring of C over V is a bifunctor (−)− : C ×Vop → C, satisfying

the external pullback-power axiom, together with natural map

ψv,x,y : C(x, yv) → V(v, C(x, y)) (4.3.2)

which is a weak equivalence in V for cofibrant v ∈ V, cofibrant x ∈ C and fibrant

y ∈ C, and a natural map ηy : y → y1, for any y ∈ C, satisfying the following
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commutative diagram

C(x, y1)
ψ1,x,y

��

C(x, y)(ηy)∗
oo

∼=
ww

V(1, C(x, y)).

Example 4.3.2. Tensoring and cotensoring are a special kind of weak tensoring and

weak cotensoring, respectively.

The change of enrichment along a weak monoidal Quillen adjunction preserved

the weak tensoring and the weak cotensoring, whenever the left adjoint preserved the

tensor unit as stated by the following result.

Proposition 4.3.3. Let V and W be monoidal model categories. For any weak

monoidal Quillen adjunction F : W // V : Goo such that F (1W) ∼= 1V , the change

of enrichment G∗ along the right adjoint G : V → W preserves the weak tensoring

and the weak cotensoring.

Proof. SM7: Note that G∗C satisfies SM7, by Lemma 4.2.5.

Weak tensoring: Assume that C is weakly tensored over V . Let us show that the

bifunctor −⊗− : G∗C ×W → G∗C, given by x⊗w := x⊗ Fw, satisfies the external

pushout-product axiom. Let i : a → b be a (acyclic) cofibration in W and k : x → y

be a (acyclic) cofibration in (G∗C)0 = C0. The pushout-product i2k of i and k given
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by

x⊗ b⨿x⊗a y ⊗ a
k2i // y ⊗ b

x⊗ Fb⨿x⊗Fa y ⊗ Fa
k2Fi

// y ⊗ Fb

is a (acyclic) cofibration in (G∗C)0 = C0 since Fi : Fa→ Fb is a (acyclic) cofibration

in V as F is a left Quillen functor and the bifunctor −⊗− : C × V → C satisfies the

external pushout-product axiom.

Define the natural map φ̃w,x,y : G∗C(x⊗w, y) → W(w,GC(x, y)) to be the composite

G∗C(x⊗ w, y) := G∗C(x⊗ Fw, y)
GφFw,x,y−−−−−−→ G∗V(Fw, C(x, y)) −→ W(w,GC(x, y)), (4.3.3)

where the last arrow is the natural weak equivalence thanks to the existing weak

W-adjunction by Proposition 4.2.3, given by the weak monoidal Quillen adjunction

F ⊣ G. For a cofibrant object w ∈ W , Fw ∈ V is also cofibrant and so the map φ̃w,x,y

is a weak equivalence, for cofibrant objects x ∈ C and w ∈ W , and the fibrant object

y ∈ C, since the map GφFw,x,y is a weak equivalence as the right Quillen functor

G preserves weak equivalences between fibrant objects. Consider the natural map

ρ̃x : x⊗ 1W → x given by the composite

x⊗ 1W :

ρ̃x

66x⊗ F (1W)
x⊗ε
// x⊗ 1V

ρx
// x , (4.3.4)

where F1W
ε−→ 1V is the counit map of the oplax monoidal functor F . The unitality
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condition follows from the following commutative diagram

GC(x⊗ 1W , y) :

φ̃

��

GC(x⊗ F (1W), y)

Gφ

��

GC(x⊗ 1V , y)
G(id⊗ε)∗

oo

Gφ

��

GC(x, y)Gρ∗
oo

Gη

∼=

zz

1○

GV(F (1W), C(x, y))

ψ

��

GV(1V , C(x, y))Gε∗
oo

2○

W(1W , GC(x, y)) GC(x, y),η̃

∼=
oo

∼= Gη

OO

where the square 1○ is commutative by the naturality of φ and the square 2○ is

commutative by Lemma 4.2.4, where v = C(x, y).

Weak cotensoring: Now, assume that C is weakly cotensored over V . Let us show

that this bifunctor (−)− : G∗C × Wop → G∗C, given by yw := yFw, satisfies the

external pullback-power axiom. Let i : a → b be a (acyclic) cofibration in W and

p : x → y be a (acyclic) fibration in (G∗C)0 = C0. The pullback-power (i∗, p∗) of i

and p given by

xb
(i∗,p∗)

// xa ×ya y
b

xFb
((Fi)∗,p∗)

// xFa ×yFa yFb

is a (acyclic) fibration in (G∗C)0 = C0 since Fi : Fa → Fb is a (acyclic) cofibration

in V as F is a left Quillen functor and the bifunctor (−)− : C × Vop → C satisfies the

external pullback-power axiom.
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Define the natural map ψ̃w,x,y : G∗C(x, yw) → W(w,GC(x, y)) to be the composite

G∗C(x, yw) := GC(x, yFw)
GψFw,x,y−−−−−→ GV(Fw, C(x, y)) −→ W(w,GC(x, y)), (4.3.5)

where the last arrow is the natural weak equivalence thanks to the existing weak

W-adjunction, by Proposition 4.2.3, given by the weak monoidal Quillen adjunction

F ⊣ G. For a cofibrant object w ∈ W , Fw ∈ V is also cofibrant and so the map ψ̃w,x,y

is a weak equivalence, for cofibrant objects x ∈ C and w ∈ W , and the fibrant object

y ∈ C, since the map GψFw,x,y is a weak equivalence as the right Quillen functor

G preserves weak equivalences between fibrant objects. Consider the natural map

η̃x : x→ x1W given by the composite

x

η̃x

77

ηx
// x1V xε // xF (1W ) : x1W . (4.3.6)

The unitality condition holds as the dual of the weak tensoring case proved above.

Remark 4.3.4. Since an isomorphism is in particular a weak equivalence, the change

of enrichment G∗ of a V-enriched model category C satisfying SM7 and tensored and

cotensored over V yields a W-enriched model category G∗C endowed with a weak

tensoring and a weak cotensoring over W.

An analogous result to Remark 2.5.12 for weak tensoring and weak cotensoring

is given by the following proposition.

Proposition 4.3.5. Let C be a V-enriched model category satisfying SM7.
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1. The homotopy category Ho(C) inherits a Ho(V)-enrichment

[Rie14, Theorem 10.2.12].

2. If the category C is weakly tensored over V, then Ho(C) inherits a tensoring over

Ho(V).

3. If the category C is weakly cotensored over V, then Ho(C) inherits a cotensoring

over Ho(V).

Proof. (1.) Let us just observe that the homotopy category Ho(C) is enriched over

the homotopy category Ho(V), with the enrichment given by the total derived functor

RC : Ho(C)op × Ho(C) → Ho(V)

RC(x, y) = γC(Qx,Ry), (4.3.7)

where γ : V → Ho(V) is the localization functor, that is, the functor that inverts the

weak equivalences in V . For the details of the proof, see [Rie14, Theorem 10.2.12].

(2.) The weak tensoring on C over V is given by a map

φv,x,y : C(x⊗ v, y) → V(v, C(x, y))

which is a weak equivalence for cofibrant v ∈ V , cofibrant x ∈ C, and fibrant y ∈ C.

Applying the functor γ : V → Ho(V), we obtain the map

γφv,x,y : γC(x⊗ v, y) → γV(v, C(x, y))
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which is an isomorphism for cofibrant v ∈ V , cofibrant x ∈ C, and fibrant y ∈ C.

Hence,

RC(x⊗ v, y) ∼= RV(v,RC(x, y)) (4.3.8)

for cofibrant v ∈ V , cofibrant x ∈ C, and fibrant y ∈ C since the tensoring of cofibrant

objects is cofibrant and the hom object from cofibrant to fibrant objects is fibrant

by Lemma 2.4.6. Now, let us show that the total derived functor ⊗L of the weak

tensoring on C over V defines a tensoring on Ho(C) over Ho(V). Let v ∈ V , x, y ∈ C.

We have,

RC(x⊗L v, y) := RC(Qx⊗Qv, y)

∼= RC(Qx⊗Qv,Ry)

∼= RV(Qv,RC(Qx,Ry)) by (4.3.8)

∼= RV(v,RC(x, y)).

The naturality here is given by the naturality of RV and RC.

(3.) The proof for the cotensoring over Ho(V) is similar to the one of tensoring.

4.4 Unit Axiom

In this section, we present some alternate forms of the external unit axiom (see

item (ii) in Definition 2.4.4) not necessarily involving the tensoring. We start with

the following statement that generalizes the one on simplicial model categories from
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[GJ99, Proposition II.3.10].

Proposition 4.4.1. Let C be a V-model category. Let x and y be respectively cofibrant

and fibrant objects of C, and v be a cofibrant object of V. Then there are natural

bijections of hom sets in Ho(V) given by

[v, C(x, y)] ∼= [x⊗ v, y] and [v, C(x, y)] ∼= [x, yv].

Proof. By definition of the tensoring, we have the following:

C(x⊗ v, y)

quotient
��

∼= // V(v, C(x, y))
quotient
��

C(x⊗ v, y)/∼
∼=
��

?
∼=

// V(v, C(x, y))/∼
∼=
��

[x⊗ v, y] [v, C(x, y)],

where the two downward maps under the quotient maps are bijections since x⊗ v is

cofibrant and C(x, y) is fibrant by Lemma 2.4.6. Hence, it suffices to show that for

any f, g : x⊗ v → y in C and their corresponding maps f ′, g′ : v → C(x, y) in V ,

f ∼ g in C ⇐⇒ f ′ ∼ g′ in V .

( =⇒ ) Assume f ∼ g in C. Take a path object for y

y �
� ∼

c
//

∆

77
Path(y)

(ev0,ev1)
// // y × y.
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By [Hov99, Proposition 1.2.5], since x⊗ v is cofibrant, there is a right homotopy

y

x⊗ v H //

f
11

g
--

Path(y)

ev0

88

ev1

&&
y.

By the tensor-hom adjunction, we have

C(x, y)

v
H′

//

f ′
//

g′ //

C(x,Path(y))
(ev0)∗

66

(ev1)∗

((

C(x, y).

It suffices to show that

C(x, y) C(x,c)
=c∗

//

C(x,∆)

((

∆
--

C(x,Path(y)) C(x,(ev0,ev1))

=(ev0,ev1)∗
// C(x, y × y)

∼=
��

C(x, y)× C(x, y)

is a path object. Since x is cofibrant, then by [Rie14, Lemma 9.2.3] the functor

C(x,−) : C → V preserves weak equivalences between fibrant objects and any fibra-

tion, as a right Quillen adjoint of x ⊗ −. But Path(y) is fibrant, since y × y is, and

(ev0, ev1) is a fibration. Hence c∗ is a weak equivalence and (ev0, ev1)∗ is a fibration.

( ⇐= ) Assume f ′ ∼ g′ in V . Take a cylinder object for v

v
∐
v �
� i0+i1 //

∇

;;Cyl(v) ∼
collv // // v.
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By [Hov99, Proposition 1.2.5], since C(x, y) is fibrant, there is a left homotopy

v

i0
&&

f ′

))

Cyl(v) H // C(x, y).

v

i1

88

g′

55

By the tensor-hom adjunction, we have

x⊗ v

x⊗i0 ((

f

''
x⊗ Cyl(v) H̃ // y.

x⊗ v

x⊗i1
66

g

77

It suffices to show that

x⊗ (v
∐
v)

x⊗(i0+i1)
//

x⊗∇

))

x⊗ Cyl(v)
x⊗collv // x⊗ v

(x⊗ v)
∐
(x⊗ v)

∼=

OO

∇

22

is a cylinder object. Since x is cofibrant, then by [Rie14, Lemma 9.2.3] the functor

x⊗− : V → C preserves weak equivalences between cofibrant objects and any cofi-

bration, as a left Quillen adjoint of C(x,−). But Cyl(v) is cofibrant, since v
∐
v is,

and i0 + i1 is a cofibration. Hence x⊗ collv is a weak equivalence and x⊗ (i0 + i1) is

a cofibration.

A similar argument also works for the case of weak tensoring and weak cotensoring.
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The following corollary gives us an equivalent statement of the external unit axiom

(see item (ii) in Definition 2.4.4).

Corollary 4.4.2. Let C be a V-enriched model category tensored over V. The follow-

ing statements are equivalent.

1. The category C satisfies the external unit axiom.

2. If x ∈ C is cofibrant and y ∈ C is fibrant, then [x, y] ∼= [1, C(x, y)].

Proof. Let q : Q1 ∼−→ 1 be a cofibrant replacement of the tensor unit 1. Let x ∈ C be

cofibrant and y ∈ C be fibrant.

(1.) =⇒ (2.) By the external unit axiom, the map x⊗Q1 ∼−−→
x⊗q

x is a weak equivalence

and so, by Proposition 4.4.1, it induces the following bijection in homotopy

[x⊗Q1, y]
∼= // [Q1, C(x, y)]

[x, y]

∼=(x⊗q)∗
OO

∴ ∼=
// [1, C(x, y)],

∼= q∗

OO

that is, the solid diagram induces an isomorphism [x, y] ∼= [1, C(x, y)] given by the

dash map. (2.) =⇒ (1.) We have the following

[x, y] ∼= [1, C(x, y)]

q∗−→∼= [Q1, C(x, y)]

∼= [x⊗Q1, y], by Proposition 4.4.1.
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Therefore, the map x ⊗ Q1
x⊗q−−→
∼

x is a weak equivalence, by saturation. Hence the

external unit axiom holds in C.

The following statement generalizes the one on simplicial model categories from

[GJ99, Lemma II.4.2]. This gives us a second equivalent statement of the external

unit axiom.

Proposition 4.4.3. Let C be a V-enriched model category tensored and cotensored

over V, and satisfying SM7. Let f : a→ b be a map in C between cofibrant objects.

1. If f is a weak equivalence, then for any fibrant object z ∈ C, the induced map

on hom objects f ∗ : C(b, z) → C(a, z) is a weak equivalence in V.

2. The converse implication holds if and only if C satisfies the external unit axiom.

Proof. By [GJ99, Lemma II.9.4], the map f : a → b between cofibrant objects in C

has a factorization

x

q

��

a

j
??

f
// b

such that j is a cofibration and q is a left inverse to a trivial cofibration i : b→ x.

1. If f : a → b is a weak equivalence, then the map j : a → x is a trivial cofi-

bration, and hence induces a trivial fibration j∗ : C(x, z) → C(a, z) for any fibrant

object z. Similarly, the trivial cofibration i induces a trivial fibration i∗, so that
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the map q∗ : C(b, z) → C(x, z) is a weak equivalence. Therefore, f ∗ = j∗q∗ is a weak

equivalence.

2. ( =⇒ ) By assumption, V satisfies the unit axiom. Hence, for a cofibrant replace-

ment q : Q1 ∼−→ 1 of the tensor unit 1, we have

V(1, C(x, z)) q∗

∼
// V(Q1, C(x, z))

C(x, z)

∼=

OO

(x⊗q)∗
∴∼ // C(x⊗Q1, z),

∼=

OO

for x ∈ C cofibrant and z ∈ C fibrant. Here, q∗ is a weak equivalence since the category

V satisfies the unit axiom as the hom object C(x, z) is a fibrant object. Therefore,

the map x ⊗ q : x ⊗ Q1
∼−→ x is a weak equivalence since C satisfies the detection

property (see item (3.) below) by assumption.

( ⇐= ) Suppose that

f ∗ : C(b, z) → C(a, z) (4.4.1)

is a weak equivalence for all fibrant object z ∈ C. It suffices to show that

[b, z]
f∗−→ [a, z]

is a bijection for any fibrant object z ∈ C. Applying [1,−] to (4.4.1), we obtain the

following commutative diagram by Corollary 4.4.2

[1, C(b, z)] ∼=
(f∗)∗

// [1, C(a, z)]

[b, z]

∼=

OO

f∗
∴ ∼= // [a, z].

∼=

OO

Hence, the map f : a→ b is a weak equivalence.
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Let C be a V-enriched model category C weakly tensored and weakly cotensored

over V . Consider the following axioms.

1. Homotopy tensor unit: For any cofibrant replacement q : Q1
∼−→ 1 and

cofibrant object x ∈ C, the map x⊗ q : x⊗Q1
∼−→ x is a weak equivalence in C.

2. π0 of mapping space: For any x, y ∈ C respectively cofibrant and fibrant

objects, we have [x, y] ∼= [1, C(x, y)].

3. Detection property: If a map f : x → y between cofibrant objects in C is

such that its restriction f ∗ : C(y, z) ∼−→ C(x, z) is a weak equivalence in V , for

all fibrant object z ∈ C, then f is also a weak equivalence in C.

Remark 4.4.4. Observe that the homotopy tensor unit is a generalization of the

external unit axiom, where the tensoring is replaced by the weak tensoring.

By Corollary 4.4.2 and Proposition 4.4.3, when C is tensored and cotensored

over V , those three axioms are equivalent formulations of the unit axiom. Below, we

show a few implications between them in the weak case.

Proposition 4.4.5. Let C be a V-enriched model category weakly tensored over V.

We have the following implications.

1. Homotopy tensor unit =⇒ π0 of mapping space.

2. π0 of mapping space =⇒ Detection property.
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Proof. By assumption, for any objects x, y ∈ C and v ∈ V there is a map

φx,y,v : C(x⊗ v, y) → V(v, C(x, y))

which is a weak equivalence whenever x and v are cofibrant, and y is fibrant.

(1.) Let q : Q1 ∼−→ 1 be a cofibrant replacement of the tensor unit 1 in V . Let x, y ∈ C

respectively cofibrant and fibrant objects. Assume that C satisfies the homotopy

tensor unit, so the map x⊗Q1
x⊗q−−→
∼

x is a weak equivalence. Hence, we have

[x, y]
(x⊗q)∗−−−−→∼=

[x⊗Q1, y]

γ(φx,y,Q1)∗−−−−−−→∼=
[Q1, C(x, y)]

∼=−→ [1, C(x, y)].

(2.) It suffices to show that the map [y, z]
f∗−→∼= [x, z] is a bijection for any fibrant object

z ∈ C. Applying [1,−] to the map C(y, z) f∗−→
∼

C(x, z), we have the commutative

diagram

[1, C(y, z)] (f∗)∗
∼=
// [1, C(x, z)]

[y, z]

∼=

OO

f∗
∴ ∼= // [x, z].

∼=

OO

Hence, the map f : x→ y is a weak equivalence.

Proposition 4.4.6. Let W
F // V
G
oo be a weak monoidal Quillen adjunction such that

F (1W) ∼= 1V .

1. The change of enrichment along G preserves the homotopy tensor unit.
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2. The change of enrichment along G preserves the π0 of mapping space axiom.

3. If G reflects weak equivalences between fibrant objects, then the change of en-

richment along G preserves the detection property.

Proof. (1.) Assume that the weak V-tensoring on C satisfies the homotopy tensor

unit, that is, the composite x⊗Q1V

∼

88
x⊗q
// x⊗ 1V

ρx
// x is a weak equivalence for x

cofibrant. For the weak W-tensoring on G∗C, the following

x⊗Q1W := x⊗ F (Q1W)

∼

55
x⊗q̃
// x⊗ 1V

ρx
// x

is a weak equivalence since q̃ is the weak equivalence F (Q1W)
∼
q̃

77

F (q)
// F (1W) ε // 1V ,

by Definition 2.4.8, making F (Q1W) be a cofibrant replacement of 1V .

(2.) Let x, y ∈ C, with x cofibrant and y fibrant. We have

[x, y] ∼= [1V , C(x, y)]

q̃∗−→∼= [F (Q1W), C(x, y)], since q̃ is a weak equivalence

∼= [LF (1W), C(x, y)]

∼= [1W ,RGC(x, y)], by the derived adjunction

∼= [1W , GC(x, y)], since C(x, y) is fibrant

∼= [1W , G∗C(x, y)].

(3.) Assume G reflects weak equivalences between fibrant objects and that C satisfies

the detection property. Let f : a → b be in (G∗C)0 = C0, with cofibrant objects
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a, b ∈ C. Assume that Gf ∗ : G∗C(b, z)
∼−→ G∗C(a, z), with z ∈ C fibrant, is a weak

equivalence. The weak equivalence Gf ∗ equals

G∗C(b, z) := GC(b, z) G(f∗)−−−→
∼

GC(a, z) =: G∗C(a, z), i.e.,

Gf ∗ = G
(
C(b, z) f∗−→ C(a, z)

)
is a weak equivalence.

Hence, the restriction C(b, z) f∗−→
∼

C(a, z) is a weak equivalence since G reflects weak

equivalences between fibrant objects and so the map f is a weak equivalence as the

V-enriched model category C satisfies the detection property. Therefore, the category

G∗C satisfies the detection property also.

Example 4.4.7. The following are examples of right Quillen functors G : D → C

that reflect weak equivalences between fibrant objects.

1. Quillen equivalences [Hov99, Corollary 1.3.16], for instance:

(a) Dold–Kan correspondence N : sModR
//

Ch≥0(R) : Γ
∼=oo ,

(b) Geometric realization and the singular set functor | · | : sSet
//

Top : Singoo .

2. Let C be a model category and G : D → C a right adjoint. If D admits the

right-induced model structure along G, then G reflects weak equivalences.

4.5 Preservation of the enriched model structure

The following is the definition of a weak V-model category, which is basically a

V-model category where the tensoring is replaced by a weak tensoring.
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Definition 4.5.1. Let V be a closed symmetric monoidal model category. A weak

V-model category is a V-enriched model category C weakly tensored and weakly

cotensored over V, satisfying SM7 and the homotopy tensor unit.

Remark 4.5.2. A V-model category C is in particular a weak V-model category.

Theorem 4.5.3. Let W
F // V
G
oo be a weak monoidal Quillen adjunction such that

F (1W) ∼= 1V . If C is a weak V-model category, then G∗C is a weak W-model category.

Proof. The category G∗C is a W-enriched category since G is a lax monoidal func-

tor. Also, G∗C has the same underlying category as C by Lemma 4.1.1, since

F (1W) ∼= 1V . In particular, the underlying category of G∗C still has a model struc-

ture. The category G∗C satisfies SM7 by Lemma 4.2.5, and inherits a weak tensoring

and weak cotensoring over W by Proposition 4.3.3. Finally, the category G∗C sat-

isfies the homotopy tensor unit by item (1.) from Proposition 4.4.6.

Corollary 4.5.4. Let W
F // V
G
oo be a weak monoidal Quillen adjunction such that

F (1W) ∼= 1V . If C is a V-model category, then G∗C is a weak W-model category.

Proof. This is a special case of Proposition 4.5.3, by Remark 4.5.2.

Proposition 4.5.5. Let W
F // V
G
oo be a weak monoidal Quillen adjunction such

that F (1W) ∼= 1V . If C is a V-enriched model category satisfying SM7 and the

π0 of mapping space axiom, then G∗C is a W-enriched model category satisfying SM7

and the π0 of mapping space axiom.

102



Proof. Apply Proposition 4.5.3 and item (2) from Proposition 4.4.6.

Proposition 4.5.6. Let W
F // V
G
oo be a weak monoidal Quillen adjunction such that

F (1W) ∼= 1V and G reflects weak equivalences between fibrant objects.

If C is a V-enriched model category satisfying SM7 and the detection property, then

G∗C is a W-enriched model category satisfying SM7 and the detection property.

Proof. Apply Proposition 4.5.3 and item (3) from Proposition 4.4.6.

4.6 Application: Comparing two enrichments

Via the Dold–Kan correspondence, we can produce two enrichments of Ch≥0(R)

over sModR, for a commutative ring R: one by applying Dold–Kan globally to the

whole category, the other by applying Dold–Kan locally to each hom complex.

Definition 4.6.1. (a) The “global enrichment” of Ch≥0(R) over sModR is de-

fined by

Homglobal
Ch≥0(R)(C,D) := HomsModR

(Γ(C),Γ(D)), for all C,D ∈ Ch≥0(R).

(b) The “local enrichment” of Ch≥0(R) over sModR is defined by

Homlocal
Ch≥0(R)(C,D) := Γτ≥0HomCh≥0(R)(C,D), for all C,D ∈ Ch≥0(R).

Here, the bifunctors HomsModR
and HomCh≥0(R) are the respective internal hom’s.
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Michael Opadotun [Opa21, Theorem 6.3.1] proved that “global enrichment” and

“local enrichment” of Ch≥0(R) over sModR defined above, are homotopy equivalent

and his result is stated as follows.

Theorem 4.6.2. For a commutative ring R, the natural map of simplicial R-modules

AW ∗ : HomCh≥0(R)(C ⊗N(R∆•), D) → HomCh≥0(R)(N(ΓC ⊗R∆•), D)

is a homotopy equivalence, with homotopy inverse

EZ∗ : HomCh≥0(R)(N(ΓC ⊗R∆•), D) → HomCh≥0(R)(C ⊗N(R∆•), D),

for all chain complexes C and D.

In Proposition 3.3.2, we proved an analogous statement to the above one from

Opadotun.

By applying Proposition 2.2.7 to the “global enrichment” defined above, we

obtain the following corollary.

Corollary 4.6.3. Considering the “global enrichment”1 of Ch≥0(R) over sModR.

(i) C ⊗ A := N(Γ(C) ⊗ A) defines a tensoring on Ch≥0(R) over sModR, for any

C ∈ Ch≥0(R) and A ∈ sModR.

(ii) CA := NHomsModR
(A,Γ(C)) defines a cotensoring on Ch≥0(R) over sModR,

for any C ∈ Ch≥0(R) and A ∈ sModR.
1The “global enrichment”, the tensoring and cotensoring defined in (i) and (ii) from Corollary

4.6.3 respectively are the one referred to on page 3 of Background material for TALBOT 2012:
https://math.mit.edu/events/talbot/2012/2012TalbotExercises.pdf.
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The following example illustrates the result of item (2.) from Proposition 4.1.4.

Example 4.6.4. There is neither a tensoring nor a cotensoring on Ch≥0(R) over

sModR associated to the “local enrichment” since the normalization

N : sModR → Ch≥0(R) is not strong monoidal. Similarly, since the denormalization

Γ : Ch≥0(R) → sModR is not strong monoidal, then there is neither a tensoring nor

a cotensoring on sModR over Ch≥0(R) associated to the “local enrichment” given by

Hom(A,B) := NHomsModR
(A,B), for all A,B ∈ sModR.

As an application of Remark 4.3.4, we have the following result.

Proposition 4.6.5. For all C,D ∈ Ch≥0(R) and A,B ∈ sModR, there is a natu-

ral homotopy equivalence of simplicial R-modules Γ(DC) ≃ Γ(D)Γ(C) and a natural

chain homotopy equivalence N(BA) ≃ N(B)N(A) for the Dold–Kan correspondence

N : sModR
//

Ch≥0(R) : Γ
∼=oo .

The above homotopy equivalences are given by weak equivalences in the respective

Hurewicz model categories [NN23].

Proof. By Definition 4.3.2 and Remark 4.3.4, the change of enrichment of the self-

enriched model category Ch≥0(R) along Γ gives the sModR-enriched model category

with weak tensoring and weak cotensoring. There is a map

ΓHomCh≥0(R)(E,D
C) → HomsModR

(ΓC,ΓHomCh≥0(R)(E,D)) (4.6.1)
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in sModR which is a weak equivalence when C,E ∈ Ch≥0(R) are cofibrant and

D ∈ Ch≥0(R) is fibrant. But in the Hurewicz model structure, every object is cofi-

brant and fibrant. Then the equation (4.6.1) is a homotopy equivalence for all C,D,E.

Specializing to E = 1Ch≥0(R) = R[0], (4.6.1) becomes

ΓHomCh≥0(R)

(
R[0], DC

)
≃ HomsModR

(
ΓC,ΓHomCh≥0(R) (R[0], D)

)
∼= HomsModR

(ΓC,ΓD) ,

i.e, Γ(DC) ≃ Γ(D)Γ(C).

Similarly by Proposition 4.3.3, the change of enrichment of the self-enriched

model category sModR along N gives the Ch≥0(R)-enriched model category with

weak tensoring and weak cotensoring. There is a map

NHomsModR
(X,BA) → HomCh≥0(R)(N(A), NHomsModR

(X,B)) (4.6.2)

in Ch≥0(R) which is a weak equivalence when A,X ∈ sModR are cofibrant and

B ∈ sModR is fibrant. But in the Hurewicz model structure, every object is cofibrant

and fibrant. Then the morphism (4.6.2) is a homotopy equivalence for all A,B,X.

Specializing to X = 1sModR = c(R), the arrow (4.6.2) becomes

NHomsModR

(
c(R), BA

) ∼−→ HomCh≥0(R)

(
N(A), NHomsModR

(c(R), B)
)

∼=−→ HomCh≥0(R)(N(A), N(B)),

i.e, N(BA) ≃ N(B)N(A).
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Remark 4.6.6. For a non-commutative ring R, the statements in this section are

analogous, using the enrichment, tensoring, and cotensoring of sModR over sAb and

of Ch≥0(R) over Ch≥0(Z), as in Lemmas 2.3.6 and 2.3.8.
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Chapter 5

Future Research Possibilities

There are a couple of ways the work presented in this dissertation could be ex-

tended. Hence, as future work we have the following.

(i) The Dold–Kan correspondence is a weak Quillen equivalence and we have shown

in Chapter 3 that the homotopy and the monoidal properties of the Hurewicz

model structure are both preserved after being transferred along the Dold–Kan

correspondence. One can check if this is a general property of weak Quillen

equivalences, that is, if similar homotopy and monoidal properties of a given

model structure are preserved after being transferred along any convenient weak

Quillen equivalence.

(ii) One might look into some potential applications of the results or examples of

the new concepts, mostly theoretical, developed in Chapter 4. For instance, it

could be interesting to produce some proper examples of weak V-adjunction,
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weak tensoring, weak cotensoring and weak V-model category.

(iii) Also, one could investigate the discussion from Chapter 4 in the case of monoids.

Let C be a weakly V-tensored category and R be a monoid in V , a left R-module

in C is an object X in C equipped with an action map

µ : R⊗X → X in C,

where the left-hand side denotes the weak tensoring of C over V as defined in

Definition 4.3.1. We have the following interesting questions.

• Is there a well-behaved homotopy theory of R-modules in this weak setting?

• Does the change of enrichment behave well with respect to modules, in-

ducing a nice Quillen functor

G∗ : {R-modules in C} → {G(R)-modules in G∗C}?

Here, one can require strict associativity and unitality if necessary.

(iv) Finally, another question that comes to mind is whether the notions of weak

tensoring and weak cotensoring, given by Definition 4.3.1, are model cate-

gory presentations of the ∞-categorical analogues. In other words, given a weak

V-model category C, defined in Definition 4.5.1, is the underlying ∞-category

of C tensored and cotensored over the underlying symmetric monoidal

∞-category of V? As references on this topic, see [Lur17, § 4.2], [GH15] and

[Hei23].
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