Week | Date | Topics covered | References | Homework assigned | Homework due |
---|---|---|---|---|---|
1 | 8/27 | Quick overview of topology and its applications. Topology of Rn. Metric spaces. |
Willard § 1.2 Bredon § I.1 Munkres § 2.20 Brown § 2.8 Sections 1-5 of this entry. |
HW1 - 0827 due 9/5 | |
8/29 | Topological spaces. Continuous functions. |
Willard § 2.3, 3.7 Bredon § I.2 Munkres § 2.12 Brown § 2.2, 2.5 |
HW1 - 0829 due 9/5 | ||
8/31 | Homeomorphisms. Neighborhoods. Bases and subbases. Comparing topologies. |
Willard § 2.3, 2.4 Bredon § I.2 Munkres § 2.12, 2.13 Brown § 2.1, 2.6, 2.7 |
HW1 - 0831 due 9/5 |   | |
2 | 9/3 | Labor Day - No lecture. | |||
9/5 | Subspaces. Products. |
Willard § 3.6, 3.8 Bredon § I.3, I.8 Munkres § 2.16, 2.15 Brown § 2.4, 2.3 |
HW2 - 0905 due 9/12 | HW 1: Lectures 8/27, 8/29, 8/31 Solutions |
|
9/7 | Infinite products. Disjoint unions. |
Willard § 3.8 Bredon § I.8 Munkres § 2.19 Brown § 3.1 |
HW2 - 0907 due 9/12 | ||
3 | 9/10 | Quotient spaces. | Willard § 3.9 Bredon § I.13 Munkres § 2.22 Brown § 4.2 |
HW3 - 0910 due 9/19 | |
9/12 | Limit points and closure. Interior. Sequences. |
Willard § 2.3, 4.10 Bredon § I.3 Munkres § 2.17 Brown § 1.3, 2.9 |
HW3 - 0912 due 9/19 | HW 2: Lectures 9/5, 9/7 Solutions |
|
9/14 | More on sequences. Hausdorff spaces. Countability axioms. |
Willard § 2.4, 4.10, 5.13, 5.16 Bredon § I.2, I.5 Munkres § 2.17, 4.30 Brown § 2.10 |
HW3 - 0914 due 9/19 | ||
4 | 9/17 | Nets. | Willard § 4.11 Bredon § I.6 Munkres § 3.Supplement Sections 1-7 of this entry. |
HW4 - 0917 due 9/26 | |
9/19 | Compactness. | Willard § 6.17 Bredon § I.7 Munkres § 3.26, 3.27 Brown § 3.5 |
HW4 - 0919 due 9/26 | HW 3: Lectures 9/10, 9/12, 9/14 Solutions |
|
9/21 | More on compactness. Compactness in Rn. (Intro to) Compactness via nets. |
Willard § 6.17 Bredon § I.7 Munkres § 3.26, 3.27 Brown § 3.5 |
HW4 - 0921 due 9/26 | ||
5 | 9/24 | Compactness via nets. Zorn's lemma. |
Willard § 6.17 Bredon § I.7 Munkres § 3.Supplement |
HW5 - 0924 due 10/3 | |
9/26 | Tychonoff's theorem. | Willard § 6.17 Bredon § I.8 Munkres § 5.37 Brown § 3.5 |
HW5 - 0926 due 10/3 | HW 4: Lectures 9/17, 9/19, 9/21 Solutions |
|
9/28 | Compactness and completeness in metric spaces. Uniform continuity. |
Willard § 6.17 Bredon § I.9 Munkres § 3.27, 3.28 Brown § 3.6 |
HW5 - 0928 due 10/3 | ||
6 | 10/1 | Separation axioms. | Willard § 5.13, 5.14, 5.15 Bredon § I.5 Munkres § 4.31, 4.32 Brown § 2.10 |
HW6 - 1001 due 10/10 | |
10/3 | More on separation axioms. Urysohn's lemma. |
Willard § 5.13, 5.14, 5.15 Bredon § I.5, I.10 Munkres § 4.31, 4.32, 4.33 Brown § 2.10 |
HW6 - 1003 due 10/10 | HW 5: Lectures 9/24, 9/26, 9/28 Solutions |
|
10/5 | Urysohn metrization theorem. | Willard § 7.22, 7.23 Bredon § I.9 Munkres § 4.34 |
HW6 - 1005 due 10/10 | ||
7 | 10/8 | (Improved) Urysohn metrization theorem. Tietze extension theorem. |
Willard § 5.15, 5.16, 7.23 Bredon § I.10 Munkres § 4.34, 4.35 Brown § 3.6 |
HW7 - 1008 due 10/17 | |
10/10 | Locally compact spaces. | Willard § 6.18 Bredon § I.11 Munkres § 3.29 Brown § 3.6 |
HW7 - 1010 due 10/17 | HW 6: Lectures 10/1, 10/3, 10/5 Solutions |
|
10/12 | One-point compactification. | Willard § 6.19 Bredon § I.11 Munkres § 3.29 Brown § 3.6 |
HW7 - 1012 due 10/17 | ||
8 | 10/15 | Stone-Čech compactification. | Willard § 6.19 Bredon § I.11 Munkres § 5.38 Brown § 3.6 |
HW8 - 1015 due 10/24 | |
10/17 | Proper maps. | Bredon § I.7, I.11 Brown § 3.6 |
HW8 - 1017 due 10/24 | HW 7: Lectures 10/8, 10/10, 10/12 Solutions |
|
10/19 | Connectedness. | Willard § 8.26 Bredon § I.4 Munkres § 3.23, 3.24 Brown § 3.3 |
HW8 - 1019 due 10/24 | ||
9 | 10/22 | Connected components. Path-connectedness. Path components. |
Willard § 8.26, 8.27 Bredon § I.4 Munkres § 3.24, 3.25 Brown § 3.3, 3.4 |
HW9 - 1022 due 10/31 | |
10/24 | Local path-connectedness. Homotopies. |
Willard § 8.27, 8.32 Bredon § I.4, I.14 Munkres § 3.25, 9.51 Brown § 3.3, 3.4, 6.5 |
HW9 - 1024 due 10/31 | HW 8: Lectures 10/15, 10/17, 10/19 Solutions |
|
10/26 | Homotopy equivalence. Categories. |
Willard § 8.32 Bredon § I.14 Munkres § 9.51, 9.58 Brown § 6.5, 6.1 Sections 1-4 of this entry. |
HW9 - 1026 due 10/31 | ||
10 | 10/29 | Functors. Pointed spaces. |
Willard § 8.32 Bredon § I.14 Brown § 6.1 Sections 1-3 of this entry. |
HW10 - 1029 due 11/7 | |
10/31 | Relative homotopies. Intro to groupoids. |
Willard § 8.32, 8.33 Bredon § I.14 Munkres § 9.51 Brown § 6.2 |
HW10 - 1031 due 11/7 | HW 9: Lectures 10/22, 10/24, 10/26 Solutions |
|
11/2 | Fundamental groupoid. Fundamental group. |
Willard § 8.33 Bredon § III.2 Munkres § 9.52 Brown § 6.2 |
HW10 - 1102 due 11/7 | ||
11 | 11/5 | Baire category theorem. | Willard § 7.25 Bredon § I.17 Munkres § 8.48 |
HW11 - 1105 due 11/26 | |
11/7 | Applications of the Baire category theorem. | Willard § 7.25 Bredon § I.17 Munkres § 8.48, 8.49 |
HW11 - 1107 due 11/26 | HW 10: Lectures 10/29, 10/31, 11/2 Solutions |
|
11/9 | More applications of the Baire category theorem. | Willard § 7.25 Bredon § I.17 Munkres § 8.48, 8.49 |
HW11 - 1109 due 11/26 | ||
12 | 11/12 | Partitions of unity and paracompactness. Note: Office hours canceled today and tomorrow. |
Willard § 6.20 Bredon § I.12 Munkres § 6.41 |
HW12 - 1112 due 11/28 | |
11/14 | More on partitions of unity and paracompactness. | Willard § 6.20 Bredon § I.12 Munkres § 6.41 |
HW12 - 1114 due 11/28 | No HW due. | |
11/16 | Lecture canceled. | ||||
11/19 - 11/23 | Thanksgiving break - No lectures. | ||||
13 | 11/26 | Compact-open topology. | Willard § 10.43 Bredon § VII.2 Munkres § 7.46 Brown § 5.6, 5.9 |
HW13 - 1126 due 12/5 | HW 11: Lectures 11/5, 11/7, 11/9 Solutions |
11/28 | More on the compact-open topology. Evaluation map. |
Willard § 10.43 Bredon § VII.2 Munkres § 7.46 Brown § 5.6, 5.9 |
HW13 - 1128 due 12/5 | HW 12: Lectures 11/12, 11/14 Solutions |
|
11/30 | Exponential law. | Willard § 10.43 Bredon § VII.2 Munkres § 7.46 Brown § 5.6, 5.9 |
HW13 - 1130 due 12/5 | ||
14 | 12/3 | Convergence in function spaces. | Willard § 10.43 Bredon § VII.2 Munkres § 7.46 |
HW14 - 1203 due 12/12 | |
12/5 | Compactly generated spaces. | Willard § 10.43 Munkres § 7.46 Brown § 5.9 |
HW14 - 1205 due 12/12 | HW 13: Lectures 11/26, 11/28, 11/30 Solutions |
|
12/7 | Continuity of limit functions. | Willard § 10.43 Munkres § 7.46 |
HW14 - 1207 due 12/12 | ||
15 | 12/10 | Completeness of C(X,Y). Metrizability of C(X,Y). |
Willard § 10.43 Munkres § 7.46, 7.47 This entry. |
No HW assigned. | |
12/12 | Last lecture. Compactness in function spaces. Arzelà-Ascoli theorem. |
Willard § 10.43 Munkres § 7.46, 7.47 |
No HW assigned. | HW 14: Lectures 12/3, 12/5, 12/7 Solutions |
|
12/13 | Additional office hour 3-4 PM (Thursday 12/13). | ||||
12/14 | No lecture. | ||||
Monday 12/17 | Additional office hour 4-6 PM. | ||||
Tuesday 12/18 | Final exam, 1:30 - 4:30 PM, room 443 Altgeld (usual lecture room). Open book exam. You may bring: the four textbooks, notebooks, printouts of course material, and your own homework. Glossary. Solutions. |
Cutoff | Letter grade |
---|---|
93.3 | A+ |
86.7 | A |
80 | A- |
73.3 | B+ |
66.7 | B |
60 | B- |
53.3 | C+ |
46.7 | C |
40 | C- |
Back to the Math 535 home page.