Math 535: Daily Log of Material Covered and Assigned Homework

WeekDateTopics coveredReferencesHomework assignedHomework due
1 8/27 Quick overview of topology and its applications.
Topology of Rn.
Metric spaces.
Willard § 1.2
Bredon § I.1
Munkres § 2.20
Brown § 2.8
Sections 1-5 of this entry.
HW1 - 0827 due 9/5  
8/29 Topological spaces.
Continuous functions.
Willard § 2.3, 3.7
Bredon § I.2
Munkres § 2.12
Brown § 2.2, 2.5
HW1 - 0829 due 9/5  
8/31 Homeomorphisms.
Neighborhoods.
Bases and subbases.
Comparing topologies.
Willard § 2.3, 2.4
Bredon § I.2
Munkres § 2.12, 2.13
Brown § 2.1, 2.6, 2.7
HW1 - 0831 due 9/5  
2 9/3 Labor Day - No lecture.      
9/5 Subspaces.
Products.
Willard § 3.6, 3.8
Bredon § I.3, I.8
Munkres § 2.16, 2.15
Brown § 2.4, 2.3
HW2 - 0905 due 9/12 HW 1: Lectures 8/27, 8/29, 8/31
Solutions
9/7 Infinite products.
Disjoint unions.
Willard § 3.8
Bredon § I.8
Munkres § 2.19
Brown § 3.1
HW2 - 0907 due 9/12  
3 9/10 Quotient spaces. Willard § 3.9
Bredon § I.13
Munkres § 2.22
Brown § 4.2
HW3 - 0910 due 9/19  
9/12 Limit points and closure.
Interior.
Sequences.
Willard § 2.3, 4.10
Bredon § I.3
Munkres § 2.17
Brown § 1.3, 2.9
HW3 - 0912 due 9/19 HW 2: Lectures 9/5, 9/7
Solutions
9/14 More on sequences.
Hausdorff spaces.
Countability axioms.
Willard § 2.4, 4.10, 5.13, 5.16
Bredon § I.2, I.5
Munkres § 2.17, 4.30
Brown § 2.10
HW3 - 0914 due 9/19  
4 9/17 Nets. Willard § 4.11
Bredon § I.6
Munkres § 3.Supplement
Sections 1-7 of this entry.
HW4 - 0917 due 9/26  
9/19 Compactness. Willard § 6.17
Bredon § I.7
Munkres § 3.26, 3.27
Brown § 3.5
HW4 - 0919 due 9/26 HW 3: Lectures 9/10, 9/12, 9/14
Solutions
9/21 More on compactness.
Compactness in Rn.
(Intro to) Compactness via nets.
Willard § 6.17
Bredon § I.7
Munkres § 3.26, 3.27
Brown § 3.5
HW4 - 0921 due 9/26  
5 9/24 Compactness via nets.
Zorn's lemma.
Willard § 6.17
Bredon § I.7
Munkres § 3.Supplement
HW5 - 0924 due 10/3  
9/26 Tychonoff's theorem. Willard § 6.17
Bredon § I.8
Munkres § 5.37
Brown § 3.5
HW5 - 0926 due 10/3 HW 4: Lectures 9/17, 9/19, 9/21
Solutions
9/28 Compactness and completeness in metric spaces.
Uniform continuity.
Willard § 6.17
Bredon § I.9
Munkres § 3.27, 3.28
Brown § 3.6
HW5 - 0928 due 10/3  
6 10/1 Separation axioms. Willard § 5.13, 5.14, 5.15
Bredon § I.5
Munkres § 4.31, 4.32
Brown § 2.10
HW6 - 1001 due 10/10  
10/3 More on separation axioms.
Urysohn's lemma.
Willard § 5.13, 5.14, 5.15
Bredon § I.5, I.10
Munkres § 4.31, 4.32, 4.33
Brown § 2.10
HW6 - 1003 due 10/10 HW 5: Lectures 9/24, 9/26, 9/28
Solutions
10/5 Urysohn metrization theorem. Willard § 7.22, 7.23
Bredon § I.9
Munkres § 4.34
HW6 - 1005 due 10/10  
7 10/8 (Improved) Urysohn metrization theorem.
Tietze extension theorem.
Willard § 5.15, 5.16, 7.23
Bredon § I.10
Munkres § 4.34, 4.35
Brown § 3.6
HW7 - 1008 due 10/17  
10/10 Locally compact spaces. Willard § 6.18
Bredon § I.11
Munkres § 3.29
Brown § 3.6
HW7 - 1010 due 10/17 HW 6: Lectures 10/1, 10/3, 10/5
Solutions
10/12 One-point compactification. Willard § 6.19
Bredon § I.11
Munkres § 3.29
Brown § 3.6
HW7 - 1012 due 10/17  
8 10/15 Stone-Čech compactification. Willard § 6.19
Bredon § I.11
Munkres § 5.38
Brown § 3.6
HW8 - 1015 due 10/24  
10/17 Proper maps. Bredon § I.7, I.11
Brown § 3.6
HW8 - 1017 due 10/24 HW 7: Lectures 10/8, 10/10, 10/12
Solutions
10/19 Connectedness. Willard § 8.26
Bredon § I.4
Munkres § 3.23, 3.24
Brown § 3.3
HW8 - 1019 due 10/24  
9 10/22 Connected components.
Path-connectedness.
Path components.
Willard § 8.26, 8.27
Bredon § I.4
Munkres § 3.24, 3.25
Brown § 3.3, 3.4
HW9 - 1022 due 10/31  
10/24 Local path-connectedness.
Homotopies.
Willard § 8.27, 8.32
Bredon § I.4, I.14
Munkres § 3.25, 9.51
Brown § 3.3, 3.4, 6.5
HW9 - 1024 due 10/31 HW 8: Lectures 10/15, 10/17, 10/19
Solutions
10/26 Homotopy equivalence.
Categories.
Willard § 8.32
Bredon § I.14
Munkres § 9.51, 9.58
Brown § 6.5, 6.1
Sections 1-4 of this entry.
HW9 - 1026 due 10/31  
10 10/29 Functors.
Pointed spaces.
Willard § 8.32
Bredon § I.14
Brown § 6.1
Sections 1-3 of this entry.
HW10 - 1029 due 11/7  
10/31 Relative homotopies.
Intro to groupoids.
Willard § 8.32, 8.33
Bredon § I.14
Munkres § 9.51
Brown § 6.2
HW10 - 1031 due 11/7 HW 9: Lectures 10/22, 10/24, 10/26
Solutions
11/2 Fundamental groupoid.
Fundamental group.
Willard § 8.33
Bredon § III.2
Munkres § 9.52
Brown § 6.2
HW10 - 1102 due 11/7  
11 11/5 Baire category theorem. Willard § 7.25
Bredon § I.17
Munkres § 8.48
HW11 - 1105 due 11/26  
11/7 Applications of the Baire category theorem. Willard § 7.25
Bredon § I.17
Munkres § 8.48, 8.49
HW11 - 1107 due 11/26 HW 10: Lectures 10/29, 10/31, 11/2
Solutions
11/9 More applications of the Baire category theorem. Willard § 7.25
Bredon § I.17
Munkres § 8.48, 8.49
HW11 - 1109 due 11/26  
12 11/12 Partitions of unity and paracompactness.
Note: Office hours canceled today and tomorrow.
Willard § 6.20
Bredon § I.12
Munkres § 6.41
HW12 - 1112 due 11/28  
11/14 More on partitions of unity and paracompactness. Willard § 6.20
Bredon § I.12
Munkres § 6.41
HW12 - 1114 due 11/28 No HW due.
11/16 Lecture canceled.      
11/19 - 11/23 Thanksgiving break - No lectures.
13 11/26 Compact-open topology. Willard § 10.43
Bredon § VII.2
Munkres § 7.46
Brown § 5.6, 5.9
HW13 - 1126 due 12/5 HW 11: Lectures 11/5, 11/7, 11/9
Solutions
11/28 More on the compact-open topology.
Evaluation map.
Willard § 10.43
Bredon § VII.2
Munkres § 7.46
Brown § 5.6, 5.9
HW13 - 1128 due 12/5 HW 12: Lectures 11/12, 11/14
Solutions
11/30 Exponential law. Willard § 10.43
Bredon § VII.2
Munkres § 7.46
Brown § 5.6, 5.9
HW13 - 1130 due 12/5  
14 12/3 Convergence in function spaces. Willard § 10.43
Bredon § VII.2
Munkres § 7.46
HW14 - 1203 due 12/12  
12/5 Compactly generated spaces. Willard § 10.43
Munkres § 7.46
Brown § 5.9
HW14 - 1205 due 12/12 HW 13: Lectures 11/26, 11/28, 11/30
Solutions
12/7 Continuity of limit functions. Willard § 10.43
Munkres § 7.46
HW14 - 1207 due 12/12  
15 12/10 Completeness of C(X,Y).
Metrizability of C(X,Y).
Willard § 10.43
Munkres § 7.46, 7.47
This entry.
No HW assigned.  
12/12 Last lecture.
Compactness in function spaces.
Arzelà-Ascoli theorem.
Willard § 10.43
Munkres § 7.46, 7.47
No HW assigned. HW 14: Lectures 12/3, 12/5, 12/7
Solutions
12/13 Additional office hour 3-4 PM (Thursday 12/13).
12/14 No lecture.      
Monday 12/17 Additional office hour 4-6 PM.
Tuesday 12/18 Final exam, 1:30 - 4:30 PM, room 443 Altgeld (usual lecture room).
Open book exam. You may bring: the four textbooks, notebooks, printouts of course material, and your own homework.
Glossary.
Solutions.

CutoffLetter grade
93.3 A+
86.7 A
80 A-
73.3 B+
66.7 B
60 B-
53.3 C+
46.7 C
40 C-

Back to the Math 535 home page.