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1 Fiber sequences

Definition 1.1. Let (X, zo) be a pointed space. The path space of X is the space
PX = {y € X" [~(0) = zo}
of paths in X starting at the basepoint. This can be expressed as the pullback

PX —— X!

N

{zo} —— X

Definition 1.2. The path-loop fibration on X is the evaluation map evy: PX — X.

This is indeed a fibration, in fact the fibration P(¢) obtained when replacing the map ¢: {xo} <
X by a fibration (via the path space construction).

The (strict) fiber of ev; is the based loop space
QX = {7 € X7 [(0) = (1) = @0},
hence the name of the fibration. We often write QX — PX — X.

Definition 1.3. Let f: (X,z9) — (Y,v0) be a pointed map between pointed spaces. The
homotopy fiber of f is

F(f) = {(z,7) € X x Y [ 4(0) = yo,7(1) = f(x)}.
This can be expressed as the pullback

F(f) —= PY

| o e

X Y
f



so that the projection p: F(f) — X given by p(z,7) = x is automatically a fibration.
The sequence F(f) & X %,V is called a fiber sequence

Proposition 1.4. Let W be a pointed space and g: W — X a pointed map. Consider the
lifting problem wn Top,

Then lifts g: W — F(f) of g correspond bijectively to pointed null-homotopies of the composite
fg: W =Y. In particular, a lift exists if and only if fg is pointed null-homotopic.

Proof. Note that limits (but not colimits) in Top and Top, agree, so that the pullback diagram
defining F(f) can be viewed in either category. Lifts of g

correspond to (pointed) maps H: W — PY making the diagram above commute, i.e. satisfying
evy o H = fg. These are precisely pointed null-homotopies of fg. n

The particular case of the statement can be reinterpreted as follows.

Corollary 1.5. For any pointed space W, applying the functor [W,—],: Top, — Set, to the
fiber sequence F(f) & X Ly yields

P« f

W, F(f)ls — W, X]. — WYL
which 1s an exact sequence of pointed sets.

There is a canonical “inclusion of the strict fiber into the homotopy fiber” ¢v: f~1(yo) — F(f)
defined by

W) = (z,¢y)

where ¢y, : I — Y is the constant path at yo € Y.



Proposition 1.6. If f: X — Y is a fibration, then the canonical map v: f~ (yo) — F(f) is a
homotopy equivalence.

Proof. Homework 6 Problem 2. O

Remark 1.7. The homotopy fiber F(f) is rarely a kernel of f in the homotopy category
Ho(Top,).

FEzercise 1.8. Let (X, o) and (Y, yo) be pointed spaces. Consider the sequence

Lx Py

X — XxY — Y

where 1x is the “slice inclusion” defined by tx(x) = (x, ) and py is the projection onto the
second factor. Show that tx: X — X x Y is the kernel of py in Ho(Top,).

Exercise 1.9. Consider the real axis inside the complex plane R C C, and the corresponding
inclusion R"™\ {0} c C"™'\ {0}. This descends to a map RP™ — CP™ on the quotients by
the actions of O(1) = {—1,1} C R* and U(1) = S* C C* respectively. As n goes to infinity,
this defines a map f: RP> — CP>. Alternately, f can be thought of as the map classifying
the complexification of the tautological real line bundle over RP*°.

Show that the map f does not admit a kernel in Ho(Top,).

Remark 1.10. This shows in particular that Ho(Top,) is not complete, though it does have all
small products, which are given by the Cartesian product as in Top,.



2 Homotopy invariance

Note that taking the homotopy fiber is functorial in the input f: X — Y, ie. is a functor
Arr(Top,) — Top, from the arrow category of Top,, and such that the map F(f) — X is a
natural transformation. Thus, a map of diagrams

o (Xinf) = (X’f—'>Y’),
which is a (strictly) commutative diagram in Top,

f
X —~Y (1)

w| o]

X — Y
f/

induces a map between homotopy fibers pr: F(f) — F(f’) making the diagram

Py S x ey )
oF th @yj
F(f) — X' —— v

P f

in Top, commute. Moreover, this assignment preserves compositions (as in “stacking another
square” below the right-hand square).

Let us study to what extent the homotopy fiber is a homotopy invariant construction.
Proposition 2.1. If a map of diagrams
0 (X ER Y) - (X’ LN Y’)

is an objectwise pointed homotopy equivalence, i.e. both maps ox: X = X' and py: Y =Y’
are pointed homotopy equivalences, then the induced map on homotopy fibers r: F(f) — F(f’)
15 also a pointed homotopy equivalence.

Proof. Let ¢x: X' — X and ¢y : Y/ — Y be homotopy inverses of oy and py respectively. In
the diagram (2)), the composite fixp': F(f') — Y is (pointed) null-homotopic, in fact by the
(pointed) null-homotopy

foxp' = Yy oy foxp
=Py floxibxp
~ oy f'p’
~ 1)y o x via the homotopy ¥y (H’)

= *



where H': f'p’ = % is the canonical null-homotopy of f'p’: F(f') — Y".
This choice of null-homotopy of fixp': F(f') — Y defines a (pointed) map

v F(f') = F(f)

which we claim is (pointed) homotopy inverse to ¢p.

QOF’le ~ 1dF(f’)' The map
id: F(f")— F(f)

corresponds to p': F(f') — X’ and the canonical null-homotopy H': f'p’ = .
The map
erYr: F(f) = F(f)
corresponds to ¢ x¥xp': F(f') — X’ and the null-homotopy
foxxp = oy fxp

~ oy Py oy fxp

= oy¥y floxxp’

~ oy Py P

~ pyy o * via the homotopy pyty (H').

The two maps are (pointed) homotopic, since they are related by operations of the form:
replacing ¢x¥x by idx:.

Yppp ~idppy.  Similar argument. []

Corollary 2.2. The pointed homotopy type of the homotopy fiber F(f) only depends on the
pointed homotopy class of f.

Proof. Let f,g: X — Y be pointed-homotopic maps, and let H: X A I, — Y be a pointed
homotopy form f to g. Proposition [2.1] ensures that the two induced maps on homotopy fibers
in the (strictly) commutative diagram

are (pointed) homotopy equivalences. ]



Remark 2.3. If the spaces involved X, Y , X’ and Y’ are well-pointed, then any pointed map
which is an unpointed homotopy equivalence is automatically a pointed homotopy equivalence.
In that case, the condition on ¢ is that it be an objectwise homotopy equivalence.

Remark 2.4. The map of diagrams : (X ER Y) — (X ! f—/> Y’ ) being an objectwise homotopy

equivalence does not guarantee that there is a choice of homotopy inverses ¥y : X’ — X and
Yy Y' = Y making the diagram in the reverse direction commute, i.e. satisfying f oy =

Yy o f'.

Ezample 2.5. Consider the (strictly) commutative diagram in Top,

Sn C Dn+1

|

St ——

where both downward arrows are (pointed) homotopy equivalences. Then there is no choice of
“upward” homotopy inverses S™ — S™ and * — D"*! making the “upward” diagram

Sn C Dn+1

I

P

commute strictly. Indeed, in any such strictly commutative diagram, the map S™ — S™ on the
left is constant, hence not a homotopy equivalence.

FEzercise 2.6. (Hatcher § 4.1 Exercise 9) Assume that a map of pairs f: (X, 4) — (X', 4')
induces isomorphisms as in the diagram

7T1(A) e 7T1(X) —— 7T1(X,A) a—> WO(A) e 7T0(X)

R N E
d
7T1(A/) —_— 7T1<X/) — 7T1(X/,A/> —_— 7'('0(14/) — 7T0(X/)
for any basepoint ag € A. Show that the 5-lemma holds in this situation, i.e. that the middle

map f.: m (X, A) = m (X', A') is also an isomorphism.

Recall that m1(X) naturally acts on m1(X, A), in such a way that d(a) = 9(/) holds if and only
if the elements «, 5 € m (X, A) differ by the action, i.e. & =y - for some v € 7 (X).

Proposition 2.7. If a map of diagrams
Y (X EN Y) N (X' LN Y’)

is an objectwise weak homotopy equivalence, i.e. both maps px: X = X' and py: Y =Y’ are
weak homotopy equivalences, then the induced map on homotopy fibers pp: F(f) — F(f') is
also a weak homotopy equivalence.



Proof. Consider the map of long exact sequences of homotopy groups induced by the map
of pairs ¢: (Y, X) — (Y, X’). The result follows from the natural isomorphism (Y, X) =
Tn—1(F(f)) and the generalized 5-lemma O



3 Iterated fiber sequence

Proposition 3.1. Consider the fiber sequence F(f) & X s Y. Then the inclusion of the
strict fiber of p into its homotopy fiber F(p) is a homotopy equivalence making the following
diagram commute:

L p f

QY ——~ F(f) X Y
|
F(p)

where v: QY — F(f) is defined by
t(y) = (zo,7) € F(f) = X xy PY.

Proof. The strict fiber of p is the subset of F(f)
P~ (o) = {(z0,7) | 7(0) = o, 7(1) = f(wo) = o} = QY
and the composite QY — F(p) — F(f) is
v+ (¢(7y), constant path at the basepoint of F(f)) — ¢(7).
The inclusion of the strict fiber p: QY = F (p) is a homotopy equivalence, since p is a fibration

(and using [1.6)). O

In light of the proposition, the sequence QY — F(f) — X is sometimes also called a fiber
sequence.

Proposition 3.2. The following triangle

—Qf
OxX —— QY
\~ L @

L

F(p)

commutes up to homotopy. Here, the map ': QX — F(p) is defined by
L(y) = (xpp),7) € Fp) = F(f) xx PX.

See May § 8.6 for more details.

Definition 3.3. The (long) fiber sequence generated by a pointed map f: X — Y is the
sequence

s x oy T ap) 2ax Loy S P2 x Ly (3)

where p: F(f) — X and ¢: QY — F(f) are defined above.

Such a sequence is sometimes called a Puppe sequence.
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Proposition 3.4. Let f: X — Y be a pointed map, and W any pointed space. Then applying
the functor [W, —|.: Top, — Set, to the fiber sequence generated by [ yields

oo WYL = WQF ()] — W.QX] — [W, QY] — W, F(f)], — [W. X]. — [WY],
which 1s a long exact sequence of pointed sets.

Proof. By and [3.2] each consecutive three spots of the long fiber sequence form, up to
homotopy equivalence, a fiber sequence. The result follows from [I.5] ]

Note that [WW, QX]. is naturally a group and [W, Q2%X], is naturally an abelian group.

Now we recover the usual long exact sequence of homotopy groups of a pair.

Corollary 3.5. Let i: A — X be a pointed map. Then there is a long exact sequence of
homotopy groups

o Tt (X A) D i (A) S (X)) D ma(XA) D i (A) =

where j: (X,a9) — (X, A) is given by the inclusion of the basepoint {ap} — A and O is the
usual boundary map.

Proof. Consider the fiber sequence generated by i: A — X and apply the functor [S°, —|, to
obtain a long exact sequence

=[SO QM ()], — [S°,Q AL — [S°, Q"X — [SY, Q" F(>)]. — [S°, Q" Al — L
Using the natural isomorphism
[S°, Q" X], = [¥"SY X], 2 [S™, X].
along with the natural isomorphism
(X, A) &m0 (F(0))

we see that the terms of the sequence are as claimed. One readily checks that the maps also
coincide up to sign, which does not affect exactness of the sequence. O
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