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1 Fiber sequences

Definition 1.1. Let (X, x0) be a pointed space. The path space of X is the space

PX = {γ ∈ XI | γ(0) = x0}

of paths in X starting at the basepoint. This can be expressed as the pullback

PX

��

//

y
XI

ev0

��

{x0} �
�

ι

// X

Definition 1.2. The path-loop fibration on X is the evaluation map ev1 : PX → X.

This is indeed a fibration, in fact the fibration P (ι) obtained when replacing the map ι : {x0} ↪→
X by a fibration (via the path space construction).

The (strict) fiber of ev1 is the based loop space

ΩX = {γ ∈ XI | γ(0) = γ(1) = x0},

hence the name of the fibration. We often write ΩX → PX → X.

Definition 1.3. Let f : (X, x0) → (Y, y0) be a pointed map between pointed spaces. The
homotopy fiber of f is

F (f) := {(x, γ) ∈ X × Y I | γ(0) = y0, γ(1) = f(x)}.

This can be expressed as the pullback

F (f)

��

//

y
PY

ev1

��

X
f

// Y
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so that the projection p : F (f)→ X given by p(x, γ) = x is automatically a fibration.

The sequence F (f)
p−→ X

f−→ Y is called a fiber sequence

Proposition 1.4. Let W be a pointed space and g : W → X a pointed map. Consider the
lifting problem in Top∗

F (f)
p
// X

f
// Y

W.

g̃

OO

g

==

Then lifts g̃ : W → F (f) of g correspond bijectively to pointed null-homotopies of the composite
fg : W → Y . In particular, a lift exists if and only if fg is pointed null-homotopic.

Proof. Note that limits (but not colimits) in Top and Top∗ agree, so that the pullback diagram
defining F (f) can be viewed in either category. Lifts of g

W

g

''

g̃

!!

H

��

F (f)

��

//

y
PY

ev1

��

X
f

// Y

correspond to (pointed) maps H : W → PY making the diagram above commute, i.e. satisfying
ev1 ◦H = fg. These are precisely pointed null-homotopies of fg.

The particular case of the statement can be reinterpreted as follows.

Corollary 1.5. For any pointed space W , applying the functor [W,−]∗ : Top∗ → Set∗ to the

fiber sequence F (f)
p−→ X

f−→ Y yields

[W,F (f)]∗
p∗
// [W,X]∗

f∗
// [W,Y ]∗

which is an exact sequence of pointed sets.

There is a canonical “inclusion of the strict fiber into the homotopy fiber” ι : f−1(y0) → F (f)
defined by

ι(x) = (x, cy0)

where cy0 : I → Y is the constant path at y0 ∈ Y .
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Proposition 1.6. If f : X → Y is a fibration, then the canonical map ι : f−1(y0)→ F (f) is a
homotopy equivalence.

Proof. Homework 6 Problem 2.

Remark 1.7. The homotopy fiber F (f) is rarely a kernel of f in the homotopy category
Ho(Top∗).

Exercise 1.8. Let (X, x0) and (Y, y0) be pointed spaces. Consider the sequence

X
ιX
// X × Y

pY
// Y

where ιX is the “slice inclusion” defined by ιX(x) = (x, y0) and pY is the projection onto the
second factor. Show that ιX : X → X × Y is the kernel of pY in Ho(Top∗).

Exercise 1.9. Consider the real axis inside the complex plane R ⊂ C, and the corresponding
inclusion Rn+1 \ {0} ⊂ Cn+1 \ {0}. This descends to a map RP n → CP n on the quotients by
the actions of O(1) = {−1, 1} ⊂ R× and U(1) = S1 ⊂ C× respectively. As n goes to infinity,
this defines a map f : RP∞ → CP∞. Alternately, f can be thought of as the map classifying
the complexification of the tautological real line bundle over RP∞.

Show that the map f does not admit a kernel in Ho(Top∗).

Remark 1.10. This shows in particular that Ho(Top∗) is not complete, though it does have all
small products, which are given by the Cartesian product as in Top∗.
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2 Homotopy invariance

Note that taking the homotopy fiber is functorial in the input f : X → Y , i.e. is a functor
Arr(Top∗) → Top∗ from the arrow category of Top∗, and such that the map F (f) → X is a
natural transformation. Thus, a map of diagrams

ϕ :
(
X

f−→ Y
)
→
(
X ′

f ′−→ Y ′
)
,

which is a (strictly) commutative diagram in Top∗

X

ϕX

��

f
// Y

ϕY

��

X ′

f ′

// Y ′

(1)

induces a map between homotopy fibers ϕF : F (f)→ F (f ′) making the diagram

F (f)

ϕF

��

p
// X

ϕX

��

f
// Y

ϕY

��

F (f ′)
p′

// X ′

f ′

// Y ′

(2)

in Top∗ commute. Moreover, this assignment preserves compositions (as in “stacking another
square” below the right-hand square).

Let us study to what extent the homotopy fiber is a homotopy invariant construction.

Proposition 2.1. If a map of diagrams

ϕ :
(
X

f−→ Y
)
→
(
X ′

f ′−→ Y ′
)

is an objectwise pointed homotopy equivalence, i.e. both maps ϕX : X
'−→ X ′ and ϕY : Y

'−→ Y ′

are pointed homotopy equivalences, then the induced map on homotopy fibers ϕF : F (f)→ F (f ′)
is also a pointed homotopy equivalence.

Proof. Let ψX : X ′ → X and ψY : Y ′ → Y be homotopy inverses of ϕX and ϕY respectively. In
the diagram (2), the composite fψXp

′ : F (f ′) → Y is (pointed) null-homotopic, in fact by the
(pointed) null-homotopy

fψXp
′ ' ψY ϕY fψXp

′

= ψY f
′ϕXψXp

′

' ψY f
′p′

' ψY ◦ ∗ via the homotopy ψY (H ′)

= ∗

4



where H ′ : f ′p′ ⇒ ∗ is the canonical null-homotopy of f ′p′ : F (f ′)→ Y ′.

This choice of null-homotopy of fψXp
′ : F (f ′)→ Y defines a (pointed) map

ψF : F (f ′)→ F (f)

which we claim is (pointed) homotopy inverse to ϕF .

ϕFψF ' idF (f ′). The map
id: F (f ′)→ F (f ′)

corresponds to p′ : F (f ′)→ X ′ and the canonical null-homotopy H ′ : f ′p′ ⇒ ∗.
The map

ϕFψF : F (f ′)→ F (f ′)

corresponds to ϕXψXp
′ : F (f ′)→ X ′ and the null-homotopy

f ′ϕXψXp
′ = ϕY fψXp

′

' ϕY ψY ϕY fψXp
′

= ϕY ψY f
′ϕXψXp

′

' ϕY ψY f
′p′

' ϕY ψY ◦ ∗ via the homotopy ϕY ψY (H ′).

The two maps are (pointed) homotopic, since they are related by operations of the form:
replacing ϕXψX by idX′ .

ψFϕF ' idF (f). Similar argument.

Corollary 2.2. The pointed homotopy type of the homotopy fiber F (f) only depends on the
pointed homotopy class of f .

Proof. Let f, g : X → Y be pointed-homotopic maps, and let H : X ∧ I+ → Y be a pointed
homotopy form f to g. Proposition 2.1 ensures that the two induced maps on homotopy fibers
in the (strictly) commutative diagram

F (f)

'
��

// X
� _

ι0 '
��

f
// Y

F (H) //// X ∧ I+

H
// Y

F (g)

'

OO

// X
?�

ι1 '

OO

g
// Y

are (pointed) homotopy equivalences.
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Remark 2.3. If the spaces involved X, Y , X ′, and Y ′ are well-pointed, then any pointed map
which is an unpointed homotopy equivalence is automatically a pointed homotopy equivalence.
In that case, the condition on ϕ is that it be an objectwise homotopy equivalence.

Remark 2.4. The map of diagrams ϕ :
(
X

f−→ Y
)
→
(
X ′

f ′−→ Y ′
)

being an objectwise homotopy

equivalence does not guarantee that there is a choice of homotopy inverses ψX : X ′ → X and
ψY : Y ′ → Y making the diagram in the reverse direction commute, i.e. satisfying f ◦ ψX =
ψY ◦ f ′.
Example 2.5. Consider the (strictly) commutative diagram in Top∗

Sn �
� // Dn+1

'
��

Sn // ∗

where both downward arrows are (pointed) homotopy equivalences. Then there is no choice of
“upward” homotopy inverses Sn → Sn and ∗ → Dn+1 making the “upward” diagram

Sn �
� // Dn+1

Sn

OO

// ∗

OO

commute strictly. Indeed, in any such strictly commutative diagram, the map Sn → Sn on the
left is constant, hence not a homotopy equivalence.

Exercise 2.6. (Hatcher § 4.1 Exercise 9) Assume that a map of pairs f : (X,A) → (X ′, A′)
induces isomorphisms as in the diagram

π1(A)

'
��

// π1(X)

'
��

// π1(X,A)

f∗
��

∂
// π0(A)

'
��

// π0(X)

'
��

π1(A′) // π1(X ′) // π1(X ′, A′)
∂
// π0(A′) // π0(X ′)

for any basepoint a0 ∈ A. Show that the 5-lemma holds in this situation, i.e. that the middle
map f∗ : π1(X,A)→ π1(X ′, A′) is also an isomorphism.

Recall that π1(X) naturally acts on π1(X,A), in such a way that ∂(α) = ∂(β) holds if and only
if the elements α, β ∈ π1(X,A) differ by the action, i.e. α = γ · β for some γ ∈ π1(X).

Proposition 2.7. If a map of diagrams

ϕ :
(
X

f−→ Y
)
→
(
X ′

f ′−→ Y ′
)

is an objectwise weak homotopy equivalence, i.e. both maps ϕX : X
∼−→ X ′ and ϕY : Y

∼−→ Y ′ are
weak homotopy equivalences, then the induced map on homotopy fibers ϕF : F (f) → F (f ′) is
also a weak homotopy equivalence.
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Proof. Consider the map of long exact sequences of homotopy groups induced by the map
of pairs ϕ : (Y,X) → (Y ′, X ′). The result follows from the natural isomorphism πn(Y,X) ∼=
πn−1(F (f)) and the generalized 5-lemma 2.6.
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3 Iterated fiber sequence

Proposition 3.1. Consider the fiber sequence F (f)
p−→ X

f−→ Y . Then the inclusion of the
strict fiber of p into its homotopy fiber F (p) is a homotopy equivalence making the following
diagram commute:

ΩY

ϕ'
��

ι
// F (f)

p
// X

f
// Y

F (p)

<<

where ι : ΩY → F (f) is defined by

ι(γ) = (x0, γ) ∈ F (f) = X ×Y PY.

Proof. The strict fiber of p is the subset of F (f)

p−1(x0) = {(x0, γ) | γ(0) = y0, γ(1) = f(x0) = y0} ∼= ΩY

and the composite ΩY → F (p)→ F (f) is

γ 7→ (ι(γ), constant path at the basepoint of F (f)) 7→ ι(γ).

The inclusion of the strict fiber ϕ : ΩY
'−→ F (p) is a homotopy equivalence, since p is a fibration

(and using 1.6).

In light of the proposition, the sequence ΩY → F (f) → X is sometimes also called a fiber
sequence.

Proposition 3.2. The following triangle

ΩX

ι′ ""

−Ωf
// ΩY

ϕ'
��

F (p)

commutes up to homotopy. Here, the map ι′ : ΩX → F (p) is defined by

ι′(γ) = (∗F (f), γ) ∈ F (p) = F (f)×X PX.

See May § 8.6 for more details.

Definition 3.3. The (long) fiber sequence generated by a pointed map f : X → Y is the
sequence

. . .→ Ω2X
Ω2f−−→ Ω2Y

−Ωι−−→ ΩF (f)
−Ωp−−→ ΩX

−Ωf−−→ ΩY
ι−→ F (f)

p−→ X
f−→ Y (3)

where p : F (f)→ X and ι : ΩY → F (f) are defined above.

Such a sequence is sometimes called a Puppe sequence.
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Proposition 3.4. Let f : X → Y be a pointed map, and W any pointed space. Then applying
the functor [W,−]∗ : Top∗ → Set∗ to the fiber sequence generated by f yields

. . .→ [W,Ω2Y ]∗ → [W,ΩF (f)]∗ → [W,ΩX]∗ → [W,ΩY ]∗ → [W,F (f)]∗ → [W,X]∗ → [W,Y ]∗

which is a long exact sequence of pointed sets.

Proof. By 3.1 and 3.2, each consecutive three spots of the long fiber sequence form, up to
homotopy equivalence, a fiber sequence. The result follows from 1.5.

Note that [W,ΩX]∗ is naturally a group and [W,Ω2X]∗ is naturally an abelian group.

Now we recover the usual long exact sequence of homotopy groups of a pair.

Corollary 3.5. Let i : A → X be a pointed map. Then there is a long exact sequence of
homotopy groups

. . .→ πn+1(X,A)
∂−→ πn(A)

i∗−→ πn(X)
j∗−→ πn(X,A)

∂−→ πn−1(A)→ . . .

where j : (X, a0) → (X,A) is given by the inclusion of the basepoint {a0} ↪→ A and ∂ is the
usual boundary map.

Proof. Consider the fiber sequence generated by i : A → X and apply the functor [S0,−]∗ to
obtain a long exact sequence

. . .→ [S0,ΩnF (i)]∗ → [S0,ΩnA]∗ → [S0,ΩnX]∗ → [S0,Ωn−1F (i)]∗ → [S0,Ωn−1A]∗ → . . . .

Using the natural isomorphism

[S0,ΩnX]∗ ∼= [ΣnS0, X]∗ ∼= [Sn, X]∗

along with the natural isomorphism

πn(X,A) ∼= πn−1(F (i))

we see that the terms of the sequence are as claimed. One readily checks that the maps also
coincide up to sign, which does not affect exactness of the sequence.
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