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The category Top is not Cartesian closed. In these notes, we explain how to remedy that
problem.

1 Compactly generated spaces

This section and the next are essentially taken from [3, §1,2].

1.1 Basic definitions and properties

Definition 1.1. Let X be a topological space. A subset A ⊆ X is called k-closed in X if for
any compact Hausdorff space K and continuous map u : K → X, the preimage u−1(A) ⊆ K is
closed in K.

The collection of k-closed subsets of X forms a topology, which contains the original topology
of X (i.e. closed subsets are always k-closed).

Notation 1.2. Let kX denote the space whose underlying set is that of X, but equipped with
the topology of k-closed subsets of X. Because the k-topology contains the original topology
on X, the identity function id : kX → X is continuous.

Definition 1.3. A space X is compactly generated (CG), sometimes called a k-space, if
kX → X is a homeomorphism. In other words, every k-closed subset of X is closed in X.

Example 1.4. Every locally compact space is CG.

Example 1.5. Every first-countable space is CG. More generally, every sequential space is CG.

Example 1.6. Every CW-complex is CG.

Notation 1.7. Let CG denote the full subcategory of Top consisting of compactly generated
spaces.

Notation 1.8. The construction of kX defines a functor k : Top→ CG, called the k-ification
functor.

Proposition 1.9. Let X be a CG space and Y an arbitrary space. Then a function f : X → Y is
continuous if and only if for every compact Hausdorff space K and continuous map u : K → X,
the composite fu : K → Y is continuous.
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Proposition 1.10. For any space X, we have k2X = kX, so that kX is always compactly
generated.

Proposition 1.11. Let X be a CG space and Y an arbitrary space. Then a function f : X → Y
is continuous if and only it is continuous when viewed as a function f : X → kY .

Proposition 1.11 can be reformulated in the following more suggestive way, as a universal
property.

For any CG space X and continuous map f : X → Y , there exists a unique continuous map
f̃ : X → kY satisfying f = id ◦ f̃ , i.e. making the diagram

kY
id
// Y

X

f̃ ==

f

66

commute. Note that f̃ has the same underlying function as f . This exhibits kY → Y as the
“closest approximation” of Y by a CG space.

Corollary 1.12. The k-ification functor k : Top → CG is right adjoint to the inclusion
ι : CG→ Top. In other words, CG is a coreflective subcategory of Top.

The identity function ιkX → X is the counit of the adjunction, whereas the unit W → kιW is
the identity map for any CG space W .

Proposition 1.13. 1. The category CG is complete. Limits in CG are obtained by applying
k to the limit in Top.

2. The category CG is cocomplete. Colimits in CG are computed in Top.

Proof. Let I be a small category and F : I → CG an I-diagram. Let us write Xi := F (i) and,
by abuse of notation, limiXi := limI F .

(1) Viewing the CG spaces Xi as spaces ιXi, we can compute the limit of the diagram ιF since
Top is complete (c.f. Homework 4 Problem 2). Applying k yields the CG space k(limi ιXi).
For any CG space W , we have a natural isomorphism

HomCG(W,k(lim
i
ιXi)) ∼= HomTop(ιW, lim

i
ιXi)

∼= lim
i

HomTop(ιW, ιXi)

= lim
i

HomCG(W,Xi)

where the last equality comes from the fact that CG is a full subcategory of Top. This proves
k(limi ιXi) = limiXi.

(2) We can compute the colimit X = colimi ιXi of the diagram ιF since Top is cocomplete
(c.f. Homework 4 Problem 2 and Remark afterwards). Since X is a quotient of a coproduct of
CG spaces ιXi, X is also CG, by [3, Prop. 2.1, Prop. 2.2]. Moreover it is the desired colimit
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in CG. For any CG space Y , we have a natural isomorphism

HomCG(X, Y ) = HomTop(ιX, ιY )

= HomTop(ι colim
i

ιXi, ιY )

= HomTop(colim
i

ιXi, ιY )

∼= lim
i

HomTop(ιXi, ιY )

= lim
i

HomCG(Xi, Y )

which proves X = colimiXi.

In particular, products in CG may not agree with the usual product in Top.

Notation 1.14. For CG spaces X and Y , write X ×0 Y = ιX × ιY for their usual product in
Top, and write X × Y = k(X ×0 Y ) for their product in CG.

1.2 Mapping spaces

Definition 1.15. Let X and Y be CG spaces. For any compact Hausdorff space K, continuous
map u : K → X, and open subset U ⊆ Y , consider the set

W (u,K, U) := {f : X → Y continuous | fu(K) ⊆ U}.

Denote by C0(X, Y ) the set of continuous maps from X to Y , equipped with the topology gen-
erated by all such subsets W (u,K, U). This topology is called the compact-open topology.

Note that C0(X, Y ) need not be CG. Write Map(X, Y ) := kC0(X, Y ).

Theorem 1.16. For any CG spaces X, Y , and Z, the natural map

ϕ : Map(X × Y,X)→ Map(X,Map(Y, Z)) (1)

is a homeomorphism.

The fact that ϕ is bijective tells us that CG is Cartesian closed, in the unenriched sense. The
theorem is even better: CG is Cartesian closed, in the enriched sense. Note that CG is enriched
in itself, given that the composition map

Map(X, Y )×Map(Y, Z)
◦−→ Map(X,Z)

is continuous.

Remark 1.17. The exponential object Map(X, Y ) is often denoted Y X . The isomorphism (1),
which can be written as

ZX×Y ∼= (ZY )X

is often called the exponential law.
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2 Weakly Hausdorff spaces

The category CG would be good enough to work with, but we can also impose a separation
axiom to our spaces.

Definition 2.1. A topological space X is weakly Hausdorff (WH) if for every compact
Hausdorff space K and every continuous map u : K → X, the image u(K) ⊆ X is closed in X.

Remark 2.2. Hausdorff spaces are weakly Hausdorff, since u(K) is compact and thus closed in
X if X is Hausdorff. This justifies the terminology.

Moreover, weakly Hausdorff spaces are T1, since the single point space ∗ is compact Hausdorff.
Thus we have implications

Hausdorff⇒ weakly Hausdorff⇒ T1.

Example 2.3. Every CW-complex is Hausdorff, hence in particular WH.

Proposition 2.4. If X is a WH space, then any larger topology on X is still WH. In particular,
kX is still WH.

Proof. Let X ′ be the set X equipped with a topology containing the original topology, i.e. the
identity function id : X ′ → X is continuous. For any compact Hausdorff space K and continuous
map u : K → X ′, the composite idu : K → X is continuous and so its image idu(K) ⊆ X is
closed in X. Thus u(K) = id−1idu(K) is closed in X ′.

Proposition 2.5. Any subspace of a WH space is WH.

Proof. Let X be a WH space and i : A ↪→ X the inclusion of a subspace. For any compact
Hausdorff space K and continuous map u : K → A, the composite iu : K → X is continuous
and so its image iu(K) ⊆ X is closed in X, and thus in A as well.

Notation 2.6. Let CGWH denote the full subcategory of CG consisting of compactly gen-
erated weakly Hausdorff spaces.

Definition 2.7. For any CG space X, let hX be the quotient of X by the smallest closed
equivalence relation on X (see [3, Prop. 2.22]). Then hX is still CG since it is a quotient of a
CG space [3, Prop. 2.1], and it is WH since we quotiented out a closed equivalence relation on
X [3, Cor. 2.21].

This defines a functor h : CG→ CGWH called weak Hausdorffification

By construction, the quotient map q : X � hX satisfies the following universal property. For
any CGWH space Y and continuous map f : X → Y , there exists a unique continuous map
f̃ : hX → Y satisfying f = f̃ q, i.e. making the diagram

X

f ((

q
// hX

f̃

!!

Y

commute. This exhibits X → hX as the “closest approximation” of X by a CGWH space.
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Corollary 2.8. The functor h : CG→ CGWH is left adjoint to the inclusion functor ι : CG→
CGWH. In other words, CGWH is a reflective subcategory of CG.

The quotient map q : X � hX is the unit of the adjunction, whereas the counit hιW → W is
the identity map for any CGWH space W .

Proposition 2.9. 1. The category CGWH is complete. Limits in CGWH are computed
in CG.

2. The category CGWH is cocomplete. Colimits in CGWH are obtained by applying h to
the colimit in CG.

Proof. Let I be a small category and F : I → CGWH an I-diagram.

(1) The limit X = limi ιXi computed in CG, which exists since CG is complete (by 1.13),
is still WH. Indeed, an arbitrary product in CG of CGWH spaces is still WH [3, Cor. 2.16],
and so is an equalizer in CG of two maps (by 2.5 and 2.4). Therefore X is also the limit in
CGWH, by the same argument as 1.13 (2).

(2) We have h(colimi ιXi) = colimXi in CGWH by the same argument as 1.13 (1).

To summarize the situation, there are two adjoint pairs as follows:

CG

ι
��

h
//

CGWH
ι

oo

Top

k

OO

Proposition 2.10. If X is a CG space and Y is a CGWH space, then Map(X, Y ) is CGWH.

Consequently, the category CGWH is enriched in itself. Note that it is also Cartesian closed
(in the enriched sense). Indeed, for any X, Y , and Z in CGWH, the natural map

ϕ : Map(X × Y,X)→ Map(X,Map(Y, Z))

is a homeomorphism.
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3 A convenient category of spaces

In this section, we explain in what sense it is preferable to work with the category CGWH
instead of Top. We follow the treatment in [1], itself inspired by [2].

Definition 3.1. A convenient category of topological spaces is a full replete (meaning
closed under isomorphisms of objects) subcategory C of Top satisfying the following conditions.

1. All CW-complexes are objects of C.

2. C is complete and cocomplete.

3. C is Cartesian closed.

Note that CG and CGWH are replete full subcategories of Top, since both conditions of being
CG or WH are invariant under homeomorphism. Let us summarize the discussion as follows.

Proposition 3.2. The categories CG and CGWH are convenient.

In fact, there are other desirable properties for a convenient category of spaces. For instance,
one would like that closed subspaces of objects in C also be in C. Both CG and CGWH satisfy
this additional condition.

Proposition 3.3. Consider inclusions of spaces A ⊆ B ⊆ X. If A is k-closed in B and B is
k-closed in X, then A is k-closed in X.

Proof. Let K be a compact Hausdorff space and u : K → X a continuous map. Then the
preimage u−1(B) is closed in K, hence compact (and also Hausdorff). Consider the restriction
u|u−1(B) : u−1(B) → B. Since A is k-closed in B, the preimage u|−1u−1(B)(A) = u−1(A) is closed

in u−1(B) and thus in K as well.

Corollary 3.4. A closed subspace of a CG space is also CG.

Proof. Let X be a CG space and B ⊆ X a closed subspace. Let A ⊆ B be a k-closed subset
of B. Then A is k-closed in X (since B is closed in X), hence closed in X (since X is CG).
Therefore A is closed in B.

Corollary 3.5. A closed subspace of a CGWH space is also CGWH.
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4 Some applications

Here is a toy example illustrating the use of the exponential law.

Proposition 4.1. For any “spaces” X and Y , the natural map [X, Y ]
∼=−→ π0 Map(X, Y ) is a

bijection.

Proof. Since the map
Map(X × I, Y )→ Map(I,Map(X, Y ))

is a bijection, two maps f, g : X → Y are homotopic if and only if they are connected by a
(continuous) path in Map(X, Y ).

Here is another benefit of working in the category CG.

Proposition 4.2. If X and Y are CW-complexes, then X ×Y inherits a CW-structure, where
a p-cell of X and a q-cell of Y produce a (p+ q)-cell of X × Y .

Here we do mean the product X ×Y is CG, not in Top. A priori, the product X ×0 Y in Top
could fail to be a CW-complex. See Hatcher (A.6) for details.
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